2,930 research outputs found

    Turbulent dissipation in the ISM: the coexistence of forced and decaying regimes and implications for galaxy formation and evolution

    Get PDF
    We discuss the dissipation of turbulent kinetic energy Ek in the global ISM by means of 2-D, MHD, non-isothermal simulations in the presence of model radiative heating and cooling. We argue that dissipation in 2D is representative of that in three dimensions as long as it is dominated by shocks rather than by a turbulent cascade. Energy is injected at a few isolated sites in space, over relatively small scales, and over short time periods. This leads to the coexistence of forced and decaying regimes in the same flow. We find that the ISM-like flow dissipates its turbulent energy rapidly. In simulations with forcing, the input parameters are the radius l_f of the forcing region, the total kinetic energy e_k each source deposits into the flow, and the rate of formation of those regions, sfr_OB. The global dissipation time t_d depends mainly on l_f. In terms of measurable properties of the ISM, t_d >= Sigma_g u_rms^2/(e_k sfr_OB), where Sigma_g is the average gas surface density and u_rms is the rms velocity dispersion. For the solar neighborhood, t_d >= 1.5x10^7 yr. The global dissipation time is consistently smaller than the crossing time of the largest energy-containing scales. In decaying simulations, Ek decreases with time as t^-n, where n~0.8-0.9. This suggests a decay with distance d as Ek\propto d^{-2n/(2-n)} in the mixed forced+decaying case. If applicable to the vertical direction, our results support models of galaxy evolution in which stellar energy injection provides significant support for the gas disk thickness, but not models of galaxy formation in which this energy injection is supposed to reheat an intra-halo medium at distances of up to 10-20 times the optical galaxy size, as the dissipation occurs on distances comparable to the disk height.Comment: 23 pages, including figures. To appear in ApJ. Abstract abridge

    Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number

    Get PDF
    There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This article aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimontovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a sub-domain of the continuum range which the conventional Knudsen number classification does not account for appropriately. In this sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics

    Tritrophic Interaction of Parasitoid \u3ci\u3eLysiphlebus testaceipes \u3c/i\u3e(Hymenoptera: Aphidiidae), Greenbug, \u3ci\u3eSchizaphis graminum\u3c/i\u3e (Homoptera: Aphididae), and Greenbug-Resistant Sorghum Hybrids

    Get PDF
    Interactions of the parasitoid Lysiphlebus testaceipes (Cresson) and the greenbug, Schizaphis graminum (Rondani), on greenbug-resistant ‘Cargill 607E’ (antibiosis), ‘Cargill 797’ (primarily tolerance), and -susceptible ‘Golden Harvest 510B’ sorghum, Sorghum bicolor (L.) Moench, were tested using three levels of biotype I greenbug infestation. The parasitoid infestation rate was 0.5 female and 1.0 male L. testaceipes per plant. For all three greenbug infestation levels, the parasitoid brought the greenbug under control (i.e., prevented the greenbugs from killing the plants) on both resistant hybrids, but it did not prevent heavy leaf damage at the higher greenbug infestation rates. At the low greenbug infestation rate (50 greenbugs per resistant plant when parasitoids were introduced), greenbugs damaged 5 and 18% of the total leaf area on ‘Cargill 797’ and ‘Cargill 607E’, respectively, before greenbugs were eliminated. Leaf damage was higher for the intermediate infestation study (120 greenbugs per plant), 21% and 30% leaf area were damaged on the resistant sorghum hybrids ‘Cargill 797’ and ‘Cargill 607E’, respectively. At the high greenbug infestation rate (300 greenbugs per plant), heavy damage occurred: 61% on ‘Cargill 607E’ and 75% on ‘Cargill 797’. The parasitoids did not control greenbugs on the susceptible sorghum hybrid ’Golden Harvest 510B’. L. testaceipes provided comparable control on both greenbug-resistant hybrids. This study supports previous studies indicating that L. testaceipes is effective in controlling greenbugs on sorghum with antibiosis resistance to greenbugs. Furthermore, new information is provided indicating that L. testaceipes is also effective in controlling greenbugs on a greenbug-tolerant hybrid

    Restoration of Frequency-Dependent Depression of the H-Reflex by Passive Exercise in Spinal Rats

    Get PDF
    Hyper-reflexia, measured as a decrease of low frequency-dependent depression of the H-reflex, is known to occur in both humans and animals after spinal cord injury (SCI). Previous studies have shown that passive exercise for 3 months could be used to restore low frequency-dependent depression of the H-reflex after SCI. To determine the effects of various periods of time on the ability of passive exercise to restore low frequency-dependent depression of the H-reflex. Spinal Cord Injury Mobilization Program of the Center for Translational Neuroscience, the research arm of the Jackson T Stephens Spine and Neuroscience Institute, Little Rock, AR, USA. Adult rats underwent complete spinal cord transection at the T10 level. The hindlimbs were passively exercised in different groups of rats for 1 h/day, 5 days/week for 15, 30, 45, 60, or 90 days, and low frequency-dependent depression of the H-reflex was tested. Statistically significant low frequency-dependent depression of the H-reflex was evident by 30 days of exercise, although numerical reductions were seen even at 15 days. There was a linear decrease in low frequency-dependent depression of the H-reflex with duration of passive exercise. Passive exercise can restore frequency-dependent depression of spinal reflexes in a time-dependent manner if used following complete spinal transection

    Nanoparticulate CpG Immunotherapy in RAO- Affected Horses: Phase I and IIa Study

    Get PDF
    Background: Recurrent airway obstruction (RAO), an asthma-like disease, is 1 of the most common allergic diseases in horses in the northern hemisphere. Hypersensitivity reactions to environmental antigens cause an allergic inflammatory response in the equine airways. Cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODN) are known to direct the immune system toward a Th1-pathway, and away from the pro-allergic Th2-line (Th2/Th1-shift). Gelatin nanoparticles (GNPs) are biocompatible and biodegradable immunological inert drug delivery systems that protect CpG-ODN against nuclease degeneration. Preliminary studies on the inhalation of GNP-bound CpG-ODN in RAO-affected horses have shown promising results. Objectives: The aim of this study was to evaluate the clinical and immunological effects of GNP-bound CpG-ODN in a double-blinded, placebo-controlled, prospective, randomized clinical trial and to verify a sustained effect post-treatment. Animals and Methods: Twenty-four RAO-affected horses received 1 inhalation every 2 days for 5 consecutive administrations. Horses were examined for clinical, endoscopic, cytological, and blood biochemical variables before the inhalation regimen (I), immediately afterwards (II), and 4 weeks post-treatment (III). Results: At time points I and II, administration of treatment rather than placebo corresponded to a statistically significant decrease in respiratory effort, nasal discharge, tracheal secretion, and viscosity, AaDO2 and neutrophil percentage, and an increase in arterial oxygen pressure. Conclusion and Clinical Importance: Administration of a GNP-bound CpG-ODN formulation caused a potent and persistent effect on allergic and inflammatory-induced clinical variables in RAO-affected horses. This treatment, therefore, provides an innovative, promising, and well-tolerated strategy beyond conventional symptomatic long-term therapy and could serve as a model for asthma treatment in humans

    Revisiting Clifford algebras and spinors III: conformal structures and twistors in the paravector model of spacetime

    Full text link
    This paper is the third of a series of three, and it is the continuation of math-ph/0412074 and math-ph/0412075. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of the group Spin_+(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the lorentzian R{4,1}$ spacetime. We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra Cl(1,3)(C) using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose the Clifford algebra over R{4,1} is also used to describe conformal maps, instead of R{2,4}. Although some papers have already described twistors using the algebra Cl(1,3)(C), isomorphic to Cl(4,1), the present formulation sheds some new light on the use of the paravector model and generalizations.Comment: 17 page
    • 

    corecore