8,658 research outputs found

    Pentalogy of Cantrell : the first Maltese case with successful outcome

    Get PDF
    Pentalogy of Cantrell is a rare disorder which was first described by Cantrell and his colleagues in 1958. It is comprised of congenital heart disease and midline defects. Surgical treatment is possible with internalisation of the heart, repair of associated intracardiac anomalies and repair of the thoraco-abdominal defect. In this article the authors describe the first Maltese case, with a successful outcome.peer-reviewe

    Adaptation of a general circulation model to ocean dynamics

    Get PDF
    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented

    Importance of an Astrophysical Perspective for Textbook Relativity

    Get PDF
    The importance of a teaching a clear definition of the ``observer'' in special relativity is highlighted using a simple astrophysical example from the exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example shows that a source moving relativistically toward a single observer at rest exhibits a time ``contraction'' rather than a ``dilation'' because the light travel time between the source and observer decreases with time. Astrophysical applications of special relativity complement idealized examples with real applications and very effectively exemplify the role of a finite light travel time.Comment: 5 pages TeX, European Journal of Physics, in pres

    Measuring the eccentricity of the Earth orbit with a nail and a piece of plywood

    Full text link
    I describe how to obtain a rather good experimental determination of the eccentricity of the Earth orbit, as well as the obliquity of the Earth rotation axis, by measuring, over the course of a year, the elevation of the Sun as a function of time during a day. With a very simple "instrument" consisting of an elementary sundial, first-year students can carry out an appealing measurement programme, learn important concepts in experimental physics, see concrete applications of kinematics and changes of reference frames, and benefit from a hands-on introduction to astronomy.Comment: 12 pages, 6 figure

    Are the hosts of VLBI selected radio-AGN different to those of radio-loud AGN?

    Full text link
    Recent studies have found that radio-AGN selected by radio-loudness show little difference in terms of their host galaxy properties when compared to non-AGN galaxies of similar stellar mass and redshift. Using new 1.4~GHz VLBI observations of the COSMOS field we find that approximately 49±8\pm8\% of high-mass (M >> 1010.5^{10.5} M_{\odot}), high luminosity (L1.4_{1.4} >> 1024^{24} W~Hz1^{-1}) radio-AGN possess a VLBI detected counterpart. These objects show no discernible bias towards specific stellar masses, redshifts or host properties other than what is shown by the radio-AGN population in general. Radio-AGN that are detected in VLBI observations are not special, but form a representative sample of the radio-loud AGN population.Comment: 6 pages, 4 figures, lette

    Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies

    Full text link
    We show that the observed upper bound on the line-of-sight velocity dispersion of the stars in an early-type galaxy, sigma<400km/s, may have a simple dynamical origin within the LCDM cosmological model, under two main hypotheses. The first is that most of the stars now in the luminous parts of a giant elliptical formed at redshift z>6. Subsequently, the stars behaved dynamically just as an additional component of the dark matter. The second hypothesis is that the mass distribution characteristic of a newly formed dark matter halo forgets such details of the initial conditions as the stellar "collisionless matter" that was added to the dense parts of earlier generations of halos. We also assume that the stellar velocity dispersion does not evolve much at z<6, because a massive host halo grows mainly by the addition of material at large radii well away from the stellar core of the galaxy. These assumptions lead to a predicted number density of ellipticals as a function of stellar velocity dispersion that is in promising agreement with the Sloan Digital Sky Survey data.Comment: ApJ, in press (2003); matches published versio

    Deepest Near-IR Surface Photometry of Galaxies in the Local Sphere of Influence

    Full text link
    We present near-IR, deep (4 mag deeper than 2MASS) imaging of 56 Local Volume galaxies. Global parameters such as total magnitudes and stellar masses have been derived and the new near-IR data combined with existing 21cm and optical B-band data. We present multiwavelength relations such as the HI mass-to-light ratio and investigate the maximum total baryonic mass a galaxy can have.Comment: 4 pages, 3 figures, To be published in the proceedings of "Galaxies in the Local Volume", ed. B. Koribalski, H. Jerje

    Polarization in the prompt emission of gamma-ray bursts and their afterglows

    Full text link
    Synchrotron is considered the dominant emission mechanism in the production of gamma-ray burst photons in the prompt as well as in the afterglow phase. Polarization is a characteristic feature of synchrotron and its study can reveal a wealth of information on the properties of the magnetic field and of the energy distribution in gamma-ray burst jets. In this paper I will review the theory and observations of gamma-ray bursts polarization. While the theory is well established, observations have prove difficult to perform, due to the weakness of the signal. The discriminating power of polarization observations, however, cannot be overestimated.Comment: 16 pages, 9 figures, accepted for publication in the New Journal of Physics focus issue on Gamma Ray Burst

    Physical constraints on the sizes of dense clouds in the central magnetospheres of Active Galactic Nuclei

    Get PDF
    The range of microphysical and global dynamical timescales in the central regions of Active Galactic Nuclei (AGN) is sufficiently wide to permit the existence of multiphase structure. In particular, very dense, cool clouds can coexist with a hot, magnetically-dominated medium and can thereby efficiently reprocess the continuum radiation generated in this primary source region. The strong dynamical forces in this central magnetosphere can give rise to extremely small clouds. Microphysical processes then determine whether such clouds can indeed survive, in spite of their extremely contrasting properties relative to the surrounding environment, for long enough to produce potentially observable thermal reprocessing signatures. We examine specific physical constraints on the thicknesses of such reprocessing clouds. Our results are plotted to show the range of conditions that is representative of the central regions of AGN. We find a parameter subspace in the extreme high density regime for which the effects of microphysical diffusion processes can be overcome and for which cool gas can maintain pressure equilibrium with the ambient magnetosphere.Comment: 9 pages, LaTeX type, 2 postscript figures, uses rotate.sty and epsf.sty, accepted for publication in MNRA
    corecore