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ADAPTATION OF A GENERAL CIRCULATION 

MODEL TO-OCEAN DYNAMICS 

Richard E. Turner,  Thomas H. Rees, 
and Gerard E .  Woodbury 
Langley Research Center 

SUMMARY 

A new primitive -variable general circulation model of the ocean has been developed 
in which fast external gravity waves may be suppressed with rigid-lid surface constraint 
pressures .  The surface pressure  filtering technique is easier  to apply than the conven- 
tional s t ream function technique, and since the resulting model is derived in t e rms  of 
primitive variables, it is conceptually simpler.  From theoretical considerations, the 
model appears to be a candidate for  limited region simulation, as well as simulation of 
global regions. 

INTRODUCTION 

Ocean circulation models are generally formulated either in t e r m s  of a s t ream 
function, such as the Bryan model given in reference 1, o r  else as a primitive-variable 
model, such as the one developed in reference 2. Both types of models have problems 
that one might like to avoid. 

Stream function models a r e  difficult to apply to multiconnected regions involving 
Since the momentum equations a re  formulated in t e rms  of a s t ream function, islands. 

such models may be conceptually complex; and since s t ream function models simply can- 
not represent divergent flow fields, they a r e  limited to large-scale problems where tidal 
motions can be neglected. 
tidal basins.) Primitive-variable models, on the other hand, a r e  conceptually simple and 
flexible. Islands and divergent flow fields are easily represented with primitive -variable 
ocean models. Unfortunately, primitive-variable models which do not f i l ter  fas t  external 
gravity waves associated with free-surface topography require large amounts of computer 
time. 

(Tidal motions become more important in coastal zones and 

The present model is a pseudo-primitive-variable model in which the fast  external 
gravity waves a r e  fi l tered by applying constraint p ressures  computed f rom the rigid-lid 
assumption. 
simplicity normally associated with a primitive-variable model. 

The resulting model can use a long time step and yet has  the conceptual 
The model's vertical  
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structure is represented by a generally scaled variable that allows a simple but flexible 
treatment of bottom topography and land-sea boundaries as well as free-surface topog- 
raphy in situations where free-surface geometry is important. Islands are easily repre-  
sented in the model because the boundary conditions at the islands are known a pr ior i  as 
opposed to s t ream function models wherein boundary values of the s t ream function around 
islands are difficult to obtain. 

The surface pressure  technique for  fi l tering the external gravity wave is not entirely 
new. A similar  approach is presented in reference 3; however, the present model has  
several  advantages. Firs t ,  the mathematical model presented herein allows a general  
stretching of the vertical  coordinate rather than the l inear stretching given in reference 3. 
Second, the model is derived in t e rms  of spherical polar coordinates and is suitable fo r  
large-scale circulation problems. The rigid-lid model has been investigated analytically 
f o r  open boundary situations and appears to be a candidate for  such problems. Finally, 
the subgrid mixing formulation is presented in t e rms  of a strain-rate tensor that properly 
vanishes when the fluid rotates in the rigid body mode. Consequently, erroneous shear  
s t r e s ses  a r e  not produced by simple rigid body rotations as in most previous works. 

Thus, the present model fulfills a basic need that exis ts  in the field of dynamic 
oceanography. A conceptually simple model has been established that can operate effi- 
ciently with a long time step. It is well suited to large-scale closed region simulation 
where free-surface topography is not important, as well  as to small-scale open lateral  
boundary simulations where free-surface topography may be important. 

NASA is presently studying potential use of satell i tes to monitor water pollution. 
Efforts will be made to determine the enhancement of remotely sensed data by use of 
circulation models. Since there is no way a t  the present time to penetrate the ocean 
depths by remote sensing, the initial attempt to study ocean pollution problems by remote 
sensing must be done by inferring subsurface phenomena f rom circulation models used i n  
conjunction with remote and in si tu measurements. 

A description of the mathematical basis f o r  the present model is given in refer- 
ence 4. In the present report ,  the specialization of the mathematical model fo r  ocean 
simulation is presented as well as preliminary computations on a 10' global grid. A s im-  
plified analysis of boundary condition specification for  computation of rigid-lid constraint 
p ressures  is given in appendix A by Huw C. Davies. Detailed calculation for  a model of 
the surface layers  of the North Atlantic Ocean is presented and discussed in reference 5. 
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SYMBOLS 

A 

B 

Df 

E 

f 

gi j 

H (xj, t) 

KH 

KO 

KV 

z.. 
11 

determinant of quasi-horizontal metr ic  tensor in spherical polar coordinates; 
also, area in appendix A 

parameter  in equation of state 

drag coefficient fo r  bottom friction calculations 

specific heat at constant volume of sea water 

a r r ay  specifying total depth distribution at horizontal position ( x1,x2) 
and time t 

flat-top depth distribution a r r ay  o r  depth relative to the mean sea  level geoid 

internal energy per unit mass  

group of t e rms  in equations (24) and (25) 

Coriolis parameter  

acceleration due to gravity 

covariant element of the metric tensor 

four -dimensional function specifying instantaneous height of horizontal para- 
metr ic  surfaces referred to the mean sea level geoid 

gr id  point indices 

horizontal subgrid mixing coefficient 

Von Kgrmgn constant for  turbulent flow, 0.4 

vertical  subgrid mixing coefficient 

physical components of the deviatoric strain-rate tensor 
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j 
z square root of second scalar for zi 
2i mixed tensor components of deviatoric strain-rate tensor 

j 

normal unit vector CY n 

P pressure  

- 
P approximate p re s  sure  

surface constraint p ressure  

hydrostatic pressure  for  rigid lid 

pC 

pf 

q perturbation constraint p ressure  in appendix A 

r mean radius of Earth 

S salinity mass  fraction 

ii (fib+) source te rm 

physical velocity component of coordinate grid point in jth direction relative 
to rotating Earth 

S a r c  length 

T temperature,  OC 

t time 

physical component of fluid velocity vector relative to rotating Earth 

M 

horizontal velocity component at end of f i r s t  stage of integration 
uCY 

U horizontal velocity at  ocean bottom 

physical component of fluid velocity relative to coordinate grid points in 
jth direction 

vj 
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PO 

OP 
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Q, 

w 

- 
w 

Indices: 

i , j  

t 

total depth of ocean in transformed coordinates 

contravariant coordinate variables of reference coordinate system 

Cartesian coordinates 

grid increment 

horizontal perturbation velocity in appendix A 

generalized density 

parameter  in equation of state 

elemental fluid volume 

function specifying layer  thickness distribution 

density of sea water 

density of sea water a t  standard conditions 

elements of two-dimensional square matrix used to  compute Coriolis force 

time increment 

gene r a1 physical parameter  

angular velocity of Earth 

mean molecular weight of sea water 

take on values 1, 2, o r  3 

computed at  time t 
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p 

a, P take on values 1 o r  2 only 

192, 3 particular coordinate direction 

The summation convention is used for  multiple indices unless otherwise indicated. 

Notation: 

space and time average 0 
0 finite increment in ( ) 

Pr imes  denote the difference between instantaneous value and space-time average. 

ANALYSIS 

The model is based upon conservation of mass,  momentum, salinity, and internal 
energy. The Navier -Stokes equations for  a rotating, nearly spherical Earth a r e  somewhat 
simplified by several  important assumptions and approximations. 
motion for  the vertical velocity is reduced to the hydrostatic approximation by neglecting 
local acceleration and other t e rms  of the same magnitude. 
imation, which neglects density differences except in the buoyancy te rm,  is made. Third, 
since the equations a r e  solved numerically on a finite-difference grid,  s t r e s ses  and pro- 
cesses  occurring on scales  too small  to be resolved on the grid are parametrized o r  
neglected. Molecular viscosity and conductivity are neglected. An empirical  equation of 
state, giving density as a function of temperature, salinity, and pressure,  is adopted. 
Finally, the 'rigid-lid" approximation, which suppresses external inertia-gravitational 
oscillations by forcing the f r ee  surface to conform approximately to the mean sea  level 
geoid, is optionally incorporated. 

First, the equation of 

Second, the Boussinesq approx- 

Coordinate System 

For flexibility, the equations a r e  formulated in spherical polar tensor notation. The 
coordinate system chosen for the ocean model is described in detail in reference 4. 
coordinates are divided into two horizontal comporients x1 and x2 and one vertical 
component x3. The bottom horizontal parametric surface (x3 = 0) follows the ocean 
bottom topography, while the upper coordinate surface (x3 = X3) follows the upper surface 
of the ocean. Intermediate surfaces can be located as desired. To add flexibility to the 
model vertical  structure, the equations of motion a r e  formulated in t e rms  of density mul- 
tiplied by the vertical  scale factor to form a "generalized density" 

The 
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(Po = 1) 

The family of x3-surfaces is controlled by the choice of &, which can vary with xl, 
x2, x3, and time. An x3-surface is constructed by translating f rom x3 = 0 a physical 

distance lo fi dx3 perpendicular to the local x3-surfaces. 
x3  

The x1 parametric lines at the surface x3 = 0 are intersections of constant- 
longitude planes with the ocean bottom. The x2 parametr ic  l ines a t  the surface x3 = 0 
are intersections of constant-latitude cones with the ocean bottom. Since the "horizontal" 
velocity components follow the x1 and x2 parametric lines, these components are gen- 
erally not perpendicular to the local gravity vector. Therefore, in the momentum equa- 
tions the components of gravity along the quasi-horizontal coordinate lines are included in 
the momentum balance. The validity of this formulation presupposes a small  angle 
between dx3 and the local gravity vector. 

From reference 4, the square of the elemental a r c  length is shown to be 
approximately 

(ds)2 = (r d ~ ' ) ~  + (r sin x1 dx2)2 + g33 (dx3)" 

so that 

g22 = (r sin x1)2 

The determinant of the quasi-horizontal metric tensor is 

(3) 

The unit vectors along dxl, dx2, and dx3 fo rm an orthogonal tr iad,  and since g33 is 
allowed to vary with time, the grid points have physical velocities S1, S a ,  and S 3  rela- 
tive to rotating Earth.  The momentum equations are presented in t e r m s  of physical veloc- 
ities U1, U2, and U3 relative to rotating Earth such that 

ui = vi + si 
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where 
ponents are given with respect to the local (dx1,dx2,dx3) triad. In the model presented 
herein, S1 and S2 are always neglected as in reference 4, and S3 is determined by 
the manner in which the vertical  structure is chosen; The technique used to compute V3 
is presented in a subsequent section of this report .  

Vi is the physical velocity of the fluid relative to the grid. All velocity com- 

Dynamic Equations 

A rigorous derivation of the governing equations in spherical polar tensors is pre-  
The equations a r e  given here  in final form only. sented in reference 4. 

equation in t e rms  of the generalized density < is 
The continuity 

where the second and third t e rms  represent horizontal and vertical  divergence, 
respectively . 

The dynamic equation for  momentum conservation in the xl-direction (north-south 
direction) is 

In the above equation, the three t e rms  on the left side (from left to right) represent 
accumulation and horizontal and vertical  advection. 
the pressure gradient term.  
where w is the angular velocity of the Earth. 
which a r i s e s  f rom departure of the quasi-horizontal parametric surfaces f rom the t rue 

The f i r s t  t e rm on the right side is 
The second te rm on the right side is the Coriolis force term,  

The third t e rm is the oblique gravity t e rm 

a 
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local horizontal. 
to the mean sea level geoid is 

The instantaneous height of the horizontal coordinate surface referenced 

3 
H x , ~  ( j )  = -  ' J X  5 d x 3 - D f  

Po 0 

where 
on the right side of equation ( 5 )  represent horizontal and vertical  subgrid diffusion, respec- 
tively. The brackets ( ) indicate space and time averaging, and the primed quantities 
indicate the difference between the instantaneous value and the space-time average. The 
next to last te rm represents centrifugal force,  while the last t e rm arises from motion of 
the vertical grid structure. Similarly, the momentum equation in the x2-direction (east- 
west direction) is 

Df is the depth relative to the mean sea level geoid. The fourth and fifth t e rms  

The momentum equation in the x3-direction is discarded in favor of the hydrostatic 
approximation. 

The equation for conservation of salinity is 

a 1 -((IS) + - a t  



where the three t e r m s  on the left side represent accumulation and horizontal and vertical  
advection, and the pecond and third t e r m s  on the right side represent horizontal and ver -  

tical subgrid transport .  The t e rm - 5 (fi<S) is a source term.  Similarly, the equa- 

tion for  conservation of internal energy E is 

1 
6 

where work of compression is ignored. 

Density and Pressure  Computations 

Since the density of sea water is numerically very close to 1 g/cm3, the Boussinesq 
approximation which neglects variations in p,  except where multiplied by g, is a rea- 
sonable one and is used herein. 
example, the generalized density < is given simply by < = G. However, since the 
actual density is required in computing pressure,  the technique f o r  computing p is out- 
lined in this section. 

This approximation simplifies the calculations. For 

The empirical  equation of state f rom reference 1 which gives density p (in g/cm3) 
(in bars (1 bar  = 0.1 MN/m2)), salinity mass  fraction S as a function of sea pressure  

(in ppt), and temperature T (in OC) is 
P 

B 
p(S’T’P) = 1.000027(X + 0.698B) 

where 

B = P + 1 + 5890 + 38T - 0.375T2 + 3s 

and 

X = 1779.5 + 11.25T - 0.0745T2 - (3.8 + O.01T)S 

10 
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Temperature T is given by  

- 
where Cv is specific heat at constant volume and w is mean molecular weight of sea 
water. The seas are assumed to be in hydrostatic equilibrium, so P is computed by 
integrating (with respect to x3) the hydrostatic equation, 

For  given S and T, equations (9) and (10) form two simultaneous equations in two 
unknowns, To simplify the solution, an approximate pressure  P is f i r s t  computed from 
equation (10) by setting p = 1 g/cm3. The density is then taken as p = p(S,T,P) in 
equation (9), and equation (10) is again applied to give a closer approximation to P. 

N 

Vertical Velocity 

In equations (4) to (8), V3 is needed to compute vertical  transport. The formula- 
tion allows - to be chosen quite generally provided that the following boundary con- 
ditions a t  the bottom and upper surfaces are met: 

(11) 3 V - 0 at  x3 = 0 and x3 = X 3 -  

In the present model, V3 (and hence S 3 )  is determined by requiring that 

where the function D specifies the total depth distribution. The function (( x3) which 
defines the x3 profile of the generalized density 5 is restr ic ted so that 

10x3t(x3) dx3 = 1 

Otherwise, t ; (x3)  
chosen, the expression fo r  V3 can be found by substituting equation (12) into equation (4), 

integrating with respect to x3 f rom the bottom surface (x3 = 0) to  some specified 
x3-surface, and applying the boundary conditions of equation (11). 

can be any positive, single-valued function. Once this function is 

The result  is 

11 
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An expression for  aD/at can be obtained by evaluating equation (14) at x3 = X3 where 
v3 = 0 (eq. (11)) and solving for  aD/at; that is, 

aD 

Equation (14) resul ts  directly f rom specifying 5 by equation (12). The determination 
of V3 in this manner allows one to specify the x3 grid point as a given fraction of the 
total depth regardless  of the spatial variation of the depth. It should be pointed out that 
because of the formulation of the governing equations in t e rms  of moving grid points, 
other methods of specifying V3 could be adopted. For example, a hybrid Euler-Lagrange 
system of coordinates could be achieved by specifying V3 = 0 along with S1 = S2 = 0. 

Gravitational In stability 

In the ocean, convective overturning maintains a stable vertical  density profile. The 
hydrostatic approximation employed herein neglects vertical  accelerations and prevents 
the model f rom simulating convective overturning. Therefore, a stable density profile 
must be maintained in the model artificially. Every water column is tested separately 
(at each integration step) for  a gravitational instability. Firs t ,  the reference-pressure 
densities are computed for  each grid point in a given vertical  column. 
of reference-pressure densities decrease monotonically with grid distance from the 
bottom, then no gravitational instability exists in the given column. 
bility is detected a t  level K (where K denotes the number of gr id  points f rom the 

If the grid values 

A gravitational insta- 

bottom) when p (K) 5 P p  (K+l). The instability is alleviated by mixing 
Psurf ace surf ace 

the two nodal Cells to uniformity in temperature, salinity, and velocity. The new values 
of temperature, salinity, and velocity for  both cells are computed to be 

12 



The total internal energy, salt, and momentum in the two cells are, therefore, conserved. 
The readjustment scheme given is chosen for  simplicity and i s  intended to serve as an 
example only. A more  complex and rigorous technique is given in reference 1. 

Subgrid Mixing 

The action of the unresolved subgrid waves on the resolvable waves is treated by a 
nonlinear kinematic eddy viscosity in the horizontal directions and by a specified viscosity 
in the vertical  direction. 

The subgrid velocity correlation tensor is taken to be proportional to the strain-rate 
tensor; that is, the velocity correlation components are related to the tensor strain-rate 
components by (from ref. 4) 

(U,'UB') = -KHiap (U,'U3') = -KvLCy3 

where 

(i and j not summed) (16) 

and the iij a r e  given for  the quasi-two-dimensional case as 

a 1 3 = , , 3  aul/6 

13 
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i 2 3  = 31- 

i i 3 ,  = l e 2 ,  ,, 33 k i p )  
23, = 0 (1 7i) 

In the horizontal directions the strain-rate tensor is the basis for  subgrid mixing. 
strain-rate tensor, computed by assuming quasi-two-dimensional motion (zero s t ra in  ra te  
in the vertical direction), is used to compute the horizontal kinematic eddy viscosity KH. 
The tensor analogy fo r  KH, modeled after reference 6, is from reference 4, 

The 

KH = fi(KoA)2 1 

where KO = 0.4, A is the reference grid dimension, and 

In the vertical  direction the subgrid mixing coefficient K 
with depth. 

is specified and may vary V 

The horizontal subgrid mixing for  salinity and sensible heat flux from reference 4 
are 

(Ua'E') = -KH - 

(a not summed) (20) 

(a not summed) (21) 
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where Cv is the specific heat at constant volume and W is the mean molecular weight 
of sea water. 
flux are 

The corresponding vertical  subgrid mixing for  salinity and sensible heat 

( u 3 's' )=-%ax_ a s 3 / ~  

The approximation used herein is that 
ature. If one desires ,  different values of KH can be used. 

KV is identical fo r  velocity, salinity, and temper- 

Surf ace P res su re  Approach to Rigid-Lid Approximation 

For the present model a simple technique has been developed to fi l ter  external 
gravity waves. Incorporation of this filtering technique allows the model to simulate 
large-scale flow efficiently without troublesome external gravity waves. However, the 
model formulation allows deletion of the external gravity wave fi l ter  to simulate tidal 
motions and free-surface topography effects in small-scale studies. The gravity wave 
f i l ter  discussed in this section (which is a form of the rigid-lid approximation customarily 
used in s t ream function models of large-scale ocean circulation) is applicable both for  
problems having closed natural boundaries and for problems having open boundaries. 

The technique is based upon the idea that fas t  external gravity waves can be fi l tered 
f rom the model by computing and applying the pressure  that a rigid lid would exert  on the 
ocean surface to negate time-dependent depth fluctuations. Application of the constraint 
p ressure  involves only the horizontal momentum equations. 

The constraint p ressure  P, is introduced into the momentum tendencies given in 
equations (5) and (6) by replacing P with Pf + Pc, where Pf is the hydrostatic pressure  
based upon the flat-top depth. By grouping terms,  equations (5) and (6) can be rewrit ten as 

Jg33 aPc = -- - 1 + G F 1  
fi ax 

&u1) a 



where F1 and F2 contain all the remaining t e r m s  divided by 6) in equations (5) 

and (6). Equations (24) and (25) contain three unknowns, x(tJ"TJl), 

The third equation needed to close the system can be obtained after noticing that P, 
must be consistent with the requirement that the depth not vary with time. From equa- 
tions (l), (12), and (131, the ocean depth given at a point (x1,x2) is 

( a @ J 2 ) ,  p,. 

Thus, P, must be consistent with 

Substituting equation (4) into equation (27), integrating, and applying the boundary condi- 
tions on V3 (eq. (11)) result  in 

When equations (24) and (25) are substituted into the derivative of equation (28) with 
respect to t ime and equation (26) is used, there follows 

which because of equation (27) vanishes leaving 

as the governing Poisson equation for  Equation (29) is correct  in theory; however, 
in practice 
insure that aD/at vanishes. These additional considerations are given in a subsequent 
section which deals with the numerical details. 

P,. 

Pc cannot be computed exactly and additional requirements a r e  needed to 
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Boundary Conditions 

Boundary conditions to the dynamic equations are required at the ocean floor, along 
land-sea boundaries (and open boundaries, if any), and at the air-sea interface. Those 
boundary conditions which have not already been discussed are noted in this section. 

Ocean bottom friction.- For  currents  i n  the bottom layer,  fr iction te rms  are com- 
puted by use of a neutrally stable Prandtl layer model, originally used in  an atmospheric 
circulation model (ref. 6). In essence, the Prandtl  layer model assumes that vertical 
subgrid transport  is in equilibrium within a thin bottom layer.  The momentum transport  
in  the Prandtl layer is derived f rom reference 6 as 

= 0 and CD is a drag coefficient. I x 3 = ~  
where U, 

Air-sea interface.- The interaction t e rms  at the air-sea interface are wind stress 

p (Ua'U3'), heat transport  rate p(E'U3'), and salinity counterflux p S U 

effect of evaporation upon the water mass  of the system is neglected. 
t e rms  must be specified. 

. The 
3 7  

These interaction 
Methods for  computing them are given in reference 6. 

Land-sea boundaries. - The boundary condition at coastlines requires that mass  
transport  normal to the beach be zero at the boundary. 
satisfied by requiring the depth to be zero a t  boundary points. 
follows a parametr ic  line connecting boundary points. 

This condition is automatically 
Thus, the coastline always 

When the rigid-lid approximation is used, an additional boundary condition - that 
the mass  transport  normal to the beach in a water column adjacent to a land boundary is 
zero - is required. 
throughout the column. 

This condition is imposed by subtracting the mean values of U, 

Open boundary conditions fo r  rigid-lid applications. - A simplified analysis of bound- 
~ ~- 

a ry  condition specification for  the momentum equations and surface constraint p ressure  
is given in appendix A. The approach is a version of a method by Davies in reference 7 
for  studying the uniqueness of solutions to the shallow water equations in a finite region. 
Along inflow boundaries, the velocity components U, must be specified. The surface 
constraint p ressure  can be computed f rom an equation s imilar  to equation (B11) in 
appendix B. Along outflow boundaries, ei ther normal outflow velocity o r  else surface 
constraint p ressure  must be specified. When velocities are specified, they must satisfy 
mass  conservation. Since Pc has an analogy with the surface topography caused by 
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external gravity waves, one might specify 
along the outflow boundaries. In many oceanographic flow situations, the geostrophic 
approximation in which the Coriolis force is balanced by the pressure  gradient is justified. 
In the case of a limited region, it should be possible to choose boundaries through regions 
where the geostrophic approximation is valid. Then along an  outflow boundary, approxi- 
mate values for  Pc would be computed f rom outflow velocities. To see this, recall  
equation (5) and retain only the pressure  gradient, the oblique gravity te rm,  and the 
Coriolis term.  The sum of all three t e rms  vanishes in the geostrophic approximation; 
thus, if dx' lies along the outflow boundary, one has  the expression 

Pc by measuring the free-surface topography 

which can be integrated along the outflow boundaries to  specify Pc. 

COMPUTATIONAL SCHEME 

The dynamic equations are solved over a three-dimensional grid by a finite- 
difference scheme which is similar to the method used in reference 6. 
central differencing in time and space, is often referred to as leapfrog. 

The technique, 

Lattice Structure 

The dependent variables are laid out over the three-dimensional lattice so that 

@ (x1,x2,x3) = @(IAx1,JAx2,KAx3) = @(IyJyK) 

3 where the Ax1 translation is f rom north to south, Ax2 f rom west to east, and Ax 
is along the local x3 parametr ic  line, perpendicular to the ocean bottom and positive up. 
On the two-dimensional horizontal grid, all dependent variables are defined a t  t ime 
t - 7 on half of the gr id  points and at time t on the remaining gr id  points. The t ime 
structure does not change with x3; in other words, at latitude index I and longitude 
index J, the variables are defined at the same time f o r  each point in the column. 
the twin time lattices may be referred to as "even" or  "odd," depending upon whether 
I + J is even o r  odd. The even lattice, defined at  t ime t, f o r  example, is used to update 
the odd lattice f rom time t - 7 to t + 7. Then the odd lattice at t + 7 is used to 
update the even lattice f rom time t to t + 27. 

Thus, 
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Space Differencing of Dynamic Equations 

To illustrate the computational sequence, integration of the salinity conservation 
equation is described. For  simplicity put 

with 

in equation (7) and get the simpler result  

The subgrid mixing given by equations (20) and (22) with the assumed simplifications 
becomes 

(S'Ua') = -KH a,a? as as 
(S'U3') = Kv 2 (33) 

The quantities V3 and (S'U,'> are computed at (I,J,K,tl/2), whereas the quantities 

(Stun') are computed at (h1/2,J,K) and (IYJ&1/2,K). Thus, to update dependent 

variables on the odd lattice f rom time t - T to time t + T ,  one uses  the following 
procedure : 

(1) Use the even lattice at time t to compute 

S(I+l,J,K) U1(I+1,JYK) - S(1-1,J,K) Ul(I-lyJyK) "(sua) = 
axa 2 Ax1 

S(I, J+l,K) U2(I, J+1 ,K) - S(1, J-1 ,K) Ua(1, J-1 ,K) 
+ 

2 Ax2 

and 

1 9  

1111 I I  I I I  I I I l l  I 111 I11111I 1 1 1  II I I I I I I II II I I I I I  II II I l l  I ll1111 I I I I I  I I l l  



where 

S(I+l,J,K*l) + S(Ih12J,K*l) + S(I,J+l,K*l) + S(I,J-l,K-+l) - 

a S(1, J,K*1/2) = 

S(I+1, J,K) + S(1-l,J,K) + S(1, J+l,K) + S(1,J-1,K) 
8 + 

(2) Use the odd lattice at time t - T to compute 

S(I,J,Kg + KV(K-1/2)r(I, J,K) - S(I,J,K-1) 
Ax3 Ax3 3 - - -  

Ax3 

Recall that Kv is specified at each vertical level. 

(3) Use both the odd lattice at time t - T and the even lattice a t  time t to compute 

K H ( I + ~ / ~ , J , ~ )  S(I+I,J,K) - [ AX' 
= -  

Ax1 

KH(I,J+1/2,K) S(I,J+I,K) - S(I,J,K) KH(17J-1/29K! S(I,J,K) - 
Ax2 1 Ax2 I+ Ax2 [ Ax2 

where, f o r  example, KH(I+1/2,J,K) is computed f rom equations (16) to (19). From equa- 
tions (16) and (17), le t  
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where 

U2(1+1,J,K) + U2(I+1,J+17K) + U2(IYJ+1,K) + U2(I,J7K) 

4 
A(U2) = ~ 

and 

U2(I+1,JYK) + U2(I+1,J-17K) + U2(IYJ-1,K) + U2(I,J7K) 

B(U2) = 4 

Then 

where A(U1) and B U1) are defined in a manner s imilar  to A(U2) 
respectively. 

and B(U2),  ( 
Using equations (18) and (19), one gets 

The values of KH(I-1/2,J,K), KH(I,J+1/2,K), and KH(I,J-1/2,K) are computed by 

simple permutations of the indices. Note that Lll and Ll2 were simplified because 

of the assumption \/;;; = ,/== fi= 1. 

Time Differencing fo r  Dynamic Equations and Constraint Pressure  

Since the constraint p ressure  affects only the momentum tendencies, it is convenient 
to break the integration process  into two distinct stages. In the first stage the dependent 
variables 5 ,  S ,  and E are updated with equations (4), (7), and (8), respectively. Since 
Pc is not known in the first stage, U1 and U2 are updated with Pc = 0 in equa- 
tions (24) and (25). At the end of the first-stage integration, 5 ,  S ,  and E have the cor- 
rect new values while U1 and U2 have incorrect values denoted by fil and 5 , .  For  
clarity, equations (24) and (25) may now be rewritten in t e r m s  of el and b2 by using 

(bUl)t+T (5u,)t-7 (5Ul)t+T- (< t+7- ul) (5t+781) - (5u,)t-T 
+ (34) - - 

27 27 - 2 7  2 7  
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27 2 7  

The first-stage integration of the momentum equations is 

t+7- 

27 

and 

t+ 7-- (I u2) - ( 5 U 2 y  
27 

(I t+7- u 2 )  - ( w 2 y  
(35) 

2 7  

defined to be 

(37) 

In the second stage of integration, the correct  values of U1 and U2 are found f rom the 
equations 

and 

In order  to solve equations (38) and (39) f o r  Ult+7 and U2t+7-, a third equation 
for  Pc is needed. In theory, one can substitute equations (38) and (39) into the time 
derivative of equation (28) and solve a Poisson-type equation fo r  Pc at time t + 7 as 

denoted in equation (29). Then Ult+' and U2t+T can be found f rom equations (38) 
and (39). The fallacy in this simplistic approach is that Pc cannot be found exactly; 
consequently, equation (27) would be violated over a long period of time. The proper 
approach, then, is to apply equation (28) in such a way that the time variation of D(xa,t) 
is bounded. 
par t  evaluated at t ime t + 7, so that 

More specifically, equation (28) is replaced by its time-discretized counter- 
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Since Pc cannot be computed exactly, Dt+2T and Dt must differ f rom the rigid-lid 
t depth Df. In the order  of computation, D will have been determined by previous com- 

putations, but the value of Dt+27 can still be specified. In practice,  Dt+2T is set 
equal to Df in equation (40). Substituting equations (38) and (39) into equation (40) yields 

One can obtain equations for  the surface pressure  along open inflow and closed lateral 
boundaries f rom equation (41). This is done by applying the fictitious boundary conditions 
given in appendix B as equation (B6) for  closed boundaries o r  equations (B12) and (B13) 
for  inflow boundaries. Equation (41) can be solved for  Pc by relaxation when the bound- 
a ry  conditions for  P, are known. 

In the derivation of equation (41), no account was taken of the possibility that 
in equations (24) and (25) might contain Uat+', as would occur when the Coriolis t e rm is 
integrated implicitly. Consequently, equation (41) can be solved in a straightforward 
manner only when an explicit integration technique is used. In ocean circulation problems, 
when long time steps are achieved by filtering external gravity waves, the minimum upper 
bound for  the t ime increment is determined by the Coriolis t e rm (fT 5 1). Since implicit 
treatment of the Coriolis t e rm increases  the allowable time step, a simplistic technique 
has been devised f o r  implicit integration of the Coriolis t e rm in conjunction with the sur -  
face pressure  constraint technique for  steady-state solutions. Equations (24) and (25) are 
rewritten to include values of 

Fa 

Pc f rom the previous step, so that 

t-2 7 

(a, not summed) (42) 

t where A P c  = Pc - Pctm2'. The first stage of the integration is then defined by the 
relationship 

(a not summed) (43) 
t+7- 

=&pa-- 
27 & 

(5  ua) - (cv,)t-7 
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and with the Coriolis force computed as 

The second integration stage is performed with 

@E axa 2 7  
(44) 

When U, t+T converges to a steady-state solution, P: converges to a steady-state 

value while 5, converges to Uat+'. The Coriolis force is thus treated implicitly. 

MODEL SIMULATION RESULTS 

A computer model based upon the mathematical model described herein was 
developed on a global 10' grid, and some preliminary numerical simulations have been 
performed. Since a 10' resolution is too coarse to be compared in detail with the real 
world, only qualitative features  of the flow field a r e  discussed. 

In particular, a one-layer flat-bottom model was developed with continental geometry 
and surface wind stress included; salinity and heat transport  were not included because of 
the long time scales required for  these quantities to reach quasi-equilibrium conditions. 
The annual mean wind stress used to drive the flow field is plotted in figure 1 and was 
obtained f rom reference 8. 
and calculations continued until quasi-equilibrium was reached. The resulting flow field 
is presented in figure 2 with the zero meridian at the left boundary and extending to 360' 
at the right boundary. The model simulation area runs  f rom the North Pole at the upper 
boundary to the South Pole at the lower boundary. The real-world flow field, taken from 
reference 9, is shown in figure 3. The model flow field contains large gyres  in the cor- 
rec t  positions and rotating in the proper sense but without realist ic detail. The equatorial 
currents  are observed to be weak. The western intensifications are not present except in 
the North Atlantic, and the west wind drift  is observed in  the South Pacific. The probable 
cause for  loss  of real ism in the model flow field is the coarse grid spacing and the single 
layer for  vertical resolution. During the computer experiment, the ocean's depth remained 
constant to five significant figures: therefore the constraint pressure technique was 
working properly. 
valid and ready for  further development on a finer scale. 

The model was started from res t  by applying the wind stress 

From this experiment, i t  was concluded that the overall approach is 
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For detailed simulation results, the reader  is refer red  to  reference 5 wherein the 
results of a model of the North Atlantic Ocean on a 2.5' grid fo r  wind-driven surface 
currents are presented and compared with real-world data. 

CONCLUDING REMARKS 

A new pseudo-primitive -variable ocean circulation model has  been developed along 
with a surface pressure constraint technique for  filtering fast external gravity waves. 
The coordinate system follows the ocean bottom and surface. The advantages of the 
mathematical model presented herein a r e  (1) the ease of determination of, boundary con- 
ditions, (2) the ability to  either resolve or filter external gravity waves, and (3) the ability 
to  utilize coastal bottom topography. The model has been tested under some simple situ- 
ations which indicate that the surf ace pressure constraint method can produce divergence- 
f r ee  flow fields in circulation problems involving wind stress. The resul ts  of the present 
report  indicate that the new ocean model warrants further investigation. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
July 15, 1976 
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APPENDIX A 

SPECIFICATION O F  BOUNDARY CONDITIONS FOR COMPUTATION 

O F  RIGID-LID CONSTRAINT PRESSURE 

Huw C. Davies 
University of Reading 
Berkshire, England 

In this appendix an idealized analysis i s  made of the specification of boundary con- 
ditions fo r  the constraint p ressure  field. 
the technique used by Davies in reference 7 to specify boundary conditions for  the shallow 
water equations. 

The approach is s imilar  to, but simpler than, 

The analysis begins with the equation of motion fo r  a constant-density fluid confined 
between two parallel plates with a uniform separation distance and bounded by inflow, out- 
flow, and no-flow surfaces. 
taken to be the sole driving forces;  thus, equations (5) and (6) simplify in rectangular 
Cartesian coordinates to 

The constraint p ressure  gradient and the Coriolis force are 

where 

The method of solution is to find the rate of growth for  perturbations of U, and then to 
specify Pc so that perturbations in U, are minimized. Let perturbations in U, 
and Pc be E, and q, respectively; thus, equation (AI) becomes 

Upon neglecting quadratic perturbation t e rms  and using equation (Al) ,  the governing equa- 
t ionfor  becomes 
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aEa a u E a +  €pa) = -- aq 
a t  +z( P + f u a p E p  - 

Next, a specification of q is sought which causes the volume integral of to  
decrease in time and thus minimize the total perturbation energy. An equation for  
is found by multiplying equation (A3) by ea to get 

eaea 

aq  
a t  azo 
-- a p i a )  + E a - & p p E a  + E&) = - E a  - 

The Coriolis force cancels in the summation. Then the time derivative of e a e a  is 
integrated over a volume v to yield 

a t  d v  -1 V €a! 3 (epa)  d v  

aq dv - s, 
In order  to analyze the effects of boundary conditions on the left side of equation (A5), the 
first and last  t e rms  on the right side can be rearranged to get 

a at lv (q) dv = - lv 5 (Upe,ea) dv + lv U p  s(F) dv 

Consider the right side of equation (A6), wherein 

The first two integrals combine to give 
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(Up F ) n p  
JAO 

the third integral simplifies to 

-I 

dAo - JAI dAI 

and the last t e r m  vanishes leaving equation (A6) as 

Next, suppose that initially e a e a  vanishes everywhere on the interior of v. Then only 
two surface integrals remain on the right side of equation (A7), those being 

where n is positive outward on surface dA of v. Consequently, equation (A7) 
simplifies to 

P 

- c  

- JAo a 0  - JAc dAc 

where dAI, dAo, and dAc refer to inflow, outflow, and closed boundaries, respec- 
tively. Since the first t e rm on the right side of equation (A8) increases  the perturbation 
energy, = 0 must be maintained on inflow boundaries to insure a stable cam- 

be nonzero on outflow boundaries. Since 
third t e rm vanishes, as well as Eana on closed boundaries. Thus, equation (A8) 
reduces to 

putation. The second t e rm tends to decrease perturbation energy so that e a e a  p may 
must vanish on inflow boundaries, the 
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The vanishing of E , E ,  on inflow boundaries is equivalent to specifying U, on 
inflow boundaries. Because of equation (A9), 
therefore, either U,n, or P, must be specified along the outflow boundary. 

E, n,q vanishes along outflow boundaries; 
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APPENDIX B 

SPECIAL FORMS O F  THE POISSON EQUATION FOR CONSTRAINT 

PRESSURE ALONG LATERAL BOUNDARIES 

The central  difference approximation of the governing equation for  the constraint 
pressure,  equation (41), takes on a symmetrical  form in the problem region interior. 
Near real and open lateral boundaries, this equation loses  its symmetry and assumes  
special fo rms  which are studied in this appendix. 

Equation (41), the governing relation fo r  Pc, is 

Consider the staggered time grid lattice with U1 directed along positive dxl,  U2 
directed along positive dx2, and x1 = I Ax1 and x2 = J Ax2 as shown in sketch (a). 

0 

X 

0 X 0 X 0- 

x 

0 

Sketch (a) 

The values of 5, U1, and U2 are known a t  t ime t on the circles,  and the values of 
t‘, fil, and fi2 a t  time t + T are known on the crosses .  
of Pc at time t are sought on the circles.  

From equation (Bl) the values 
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Interior Solutions 

When all the gr id  points are inside lateral  boundaries, the finite-difference approx- 
imation for equation (Bl) fo r  simplicity only one vertical  layer is considered and 

Df(I,J) - Dt(I,J) 3 Ct+'(1+l,J) Cl(I+l,J) - Ct+T(I-l,J) C1(1-1,J) J __ ___ ++ - . -  

472 27 2 Ax1 

Closed Lateral  Boundaries 

In order  to describe the treatment of computations near closed lateral boundaries, 
the boundary parallel  to dx2 is used as an example. The computations at other bound- 
aries are treated similarly. Assume that the zero depth point associated with a closed 
lateral boundary occurs  at I - 2 
dx2 at I - 1, and to prevent m a s s  loss  f rom the system, 

For the single layer being considered and with \TA = fi = 6 = 1, equation (38) inte- 
grated over the depth gives 

(see sketch (a)). Then the boundary is parallel to 
Ut+T(I-l,J) must vanish. 

The finite-difference notation is since UlfT(I - l , J )  = 0) ( 
w - c  A X 3  t+7 

(I-1,J) Ui(1-1,J) = - D (I-l ,J)Fc(I,J)  - Pc(I-2,JjJ 
27 2 A d  

(B4) 
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When equation (B4) is substituted into equation (B2), the t e rms  involving Gl(I-lyJ) and 
Pc(I,J) - Pc(I-2,J) cancel leaving 

3 pt+7(I,J+l) fi2(I,J+1) - Ct+'(I,J-l) e2(IYJ-1) 3 - 
Df(I+l,J) Pc(I+2,J) - Pc(I,J) [ 2.~1-  3 -%[ 2 Ax2 

- - 
2 Ax1 

7 

c J 

which does not involve C1(I-l,J) o r  Pc(I-2,J). A s  an alternative to 
one can use equation (B2) fo r  the case under consideration by applying 
boundary conditions 

Cl(I-l,J) = 0 I 
using equation (B5), 
the fictitious 

Inflow Boundaries 

To describe boundary computations for  inflow boundaries, a boundary passing 
through the grid point (I-1,J) parallel to dx2 is used as an example. The development 

of an equation fo r  the computation of P, follows the development of equation (41) in the 
text. 

\/II = \igll= 6 = 1) which contains both boundary values and interior values of U, 

Consider a finite-difference approximation f o r  equation (40) for  one layer and 

ct+'(I,J+l) U2t+7(I,J+1) - ct+'(I,J-l) U2 I 2 Ax2 
- Ax3 

32 



I 

APPENDIX B 

In the case under consideration, Ult+'(I-l,J) is a boundary value which, according to 
appendix A, must be prescribed. The other three velocities involved in equation (B7) are 

Ult+'(I+l, J), Ul+7(I,J+l),  and U;+'(I,J-l). Each of these velocities must be computed 
from either equation (38) o r  e lse  equation (39). Recalling again the simplification used 

(one layer and fi = fi = fi = 1), one has  for  Ult+.'(I+l,J) f rom equation (38) 

(B8) 

for  U:+T(I,J+l) f rom equation (39) 

Df(1, J+1) - Ax3 t+7 (I,J+1) U2 t+7 (I,J+l) = - rt+'(I,J+1) c2(1,J+1) - PC(I,J+2) - PC(I,JjJ 
2 7  2 7  2 Ax2 

and for  U2t+T(I,J-1) 

Df(17 J-1) - AX3 < t+T  (1,J-1) U2t+7(I,J-l) = - Ax3 St+'(I,J-l) c2(1,J-1) - Fc(I,J) - Pc(17J-28 
2 7  2 7  2 Ax2 

Next, the governing equation for  
substituting equations (B8), (B9), and (B10) into equation (B7) to get 

P, for the case under consideration is obtained by 

Df(I,J) - Dt(I,J) Ax3p+T(1+1,J) El(I+l,J) - ct+'(I-1,J) U;+.'(I-1,J) 3 +- 
472 2 7  2 A X ~  

Df(I+l,J) Pc(I+2, J) - Pc(I, J) Df(1, J+1) PCU, J+2) - Pc(I, J) [ 2Ax1 3' 2Ax2 [ -  2Ax2  1 - - 
2 Ax1 

Df (I, J- 1) Pc(I, J) - Pc(I, 5-21 

2 Ax2 [ 2 Ax2 3 
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Equation (B11) is the proper form of equation (41) to use adjacent to inflow boundaries. 
Here again one can make equation (B2) equal to equation (B11) by specifying 

Cl(I-l,J) = U,t+'(I-l,J) 

along with 

P,(I-Z,J) Pc(I,J) 0313) 

as a fictitious boundary condition on Pc. Thereby the symmetry of equation (B2) is 
preserved. 

Outflow Boundaries 

The constraint p ressure  is usually specified along outflow boundaries. Velocity 
boundary conditions are then specified by upstream differencing. 
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Figure 1.- Annual mean wind stress on global oceans (ref. 8). 



Figure 2. - Current vector field froni model in quasi-equilibrium. 10 days from initiation. 
One (two) bars across arrow denote two (four) tinies scale. 
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Figure 3.- Observed global currents. (Reproduced from ref. 9 by permission of publisher.) 
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