592 research outputs found

    Unravelling the size distribution of social groups with information theory on complex networks

    Full text link
    The minimization of Fisher's information (MFI) approach of Frieden et al. [Phys. Rev. E {\bf 60} 48 (1999)] is applied to the study of size distributions in social groups on the basis of a recently established analogy between scale invariant systems and classical gases [arXiv:0908.0504]. Going beyond the ideal gas scenario is seen to be tantamount to simulating the interactions taking place in a network's competitive cluster growth process. We find a scaling rule that allows to classify the final cluster-size distributions using only one parameter that we call the competitiveness. Empirical city-size distributions and electoral results can be thus reproduced and classified according to this competitiveness, which also allows to correctly predict well-established assessments such as the "six-degrees of separation", which is shown here to be a direct consequence of the maximum number of stable social relationships that one person can maintain, known as Dunbar's number. Finally, we show that scaled city-size distributions of large countries follow the same universal distribution

    Killing-Yano tensors and some applications

    Full text link
    The role of Killing and Killing-Yano tensors for studying the geodesic motion of the particle and the superparticle in a curved background is reviewed. Additionally the Papadopoulos list [74] for Killing-Yano tensors in G structures is reproduced by studying the torsion types these structures admit. The Papadopoulos list deals with groups G appearing in the Berger classification, and we enlarge the list by considering additional G structures which are not of the Berger type. Possible applications of these results in the study of supersymmetric particle actions and in the AdS/CFT correspondence are outlined.Comment: 36 pages, no figure

    Evidence for the Gompertz Curve in the Income Distribution of Brazil 1978-2005

    Full text link
    This work presents an empirical study of the evolution of the personal income distribution in Brazil. Yearly samples available from 1978 to 2005 were studied and evidence was found that the complementary cumulative distribution of personal income for 99% of the economically less favorable population is well represented by a Gompertz curve of the form G(x)=exp[exp(ABx)]G(x)=\exp [\exp (A-Bx)], where xx is the normalized individual income. The complementary cumulative distribution of the remaining 1% richest part of the population is well represented by a Pareto power law distribution P(x)=βxαP(x)= \beta x^{-\alpha}. This result means that similarly to other countries, Brazil's income distribution is characterized by a well defined two class system. The parameters AA, BB, α\alpha, β\beta were determined by a mixture of boundary conditions, normalization and fitting methods for every year in the time span of this study. Since the Gompertz curve is characteristic of growth models, its presence here suggests that these patterns in income distribution could be a consequence of the growth dynamics of the underlying economic system. In addition, we found out that the percentage share of both the Gompertzian and Paretian components relative to the total income shows an approximate cycling pattern with periods of about 4 years and whose maximum and minimum peaks in each component alternate at about every 2 years. This finding suggests that the growth dynamics of Brazil's economic system might possibly follow a Goodwin-type class model dynamics based on the application of the Lotka-Volterra equation to economic growth and cycle.Comment: 22 pages, 15 figures, 4 tables. LaTeX. Accepted for publication in "The European Physical Journal B

    Sputum inflammatory cells from patients with allergic rhinitis and asthma have decreased inflammasome gene expression

    Get PDF
    Deficits in inflammasomes, a key element of innate immunity, confer increased susceptibility to infection. We report that sputum cells from asthmatics have decreased expression of inflammasome factors, consistent with reports of increased infection risk in asthmatics

    Neuropsychological constraints to human data production on a global scale

    Get PDF
    Which are the factors underlying human information production on a global level? In order to gain an insight into this question we study a corpus of 252-633 Million publicly available data files on the Internet corresponding to an overall storage volume of 284-675 Terabytes. Analyzing the file size distribution for several distinct data types we find indications that the neuropsychological capacity of the human brain to process and record information may constitute the dominant limiting factor for the overall growth of globally stored information, with real-world economic constraints having only a negligible influence. This supposition draws support from the observation that the files size distributions follow a power law for data without a time component, like images, and a log-normal distribution for multimedia files, for which time is a defining qualia.Comment: to be published in: European Physical Journal

    Variational Principle underlying Scale Invariant Social Systems

    Get PDF
    MaxEnt's variational principle, in conjunction with Shannon's logarithmic information measure, yields only exponential functional forms in straightforward fashion. In this communication we show how to overcome this limitation via the incorporation, into the variational process, of suitable dynamical information. As a consequence, we are able to formulate a somewhat generalized Shannonian Maximum Entropy approach which provides a unifying "thermodynamic-like" explanation for the scale-invariant phenomena observed in social contexts, as city-population distributions. We confirm the MaxEnt predictions by means of numerical experiments with random walkers, and compare them with some empirical data

    A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer

    Full text link
    We introduce a Markov model for the evolution of a gene family along a phylogeny. The model includes parameters for the rates of horizontal gene transfer, gene duplication, and gene loss, in addition to branch lengths in the phylogeny. The likelihood for the changes in the size of a gene family across different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space, where N is the number of organisms, hh is the height of the phylogeny, and M is the sum of family sizes. We apply the model to the evolution of gene content in Preoteobacteria using the gene families in the COG (Clusters of Orthologous Groups) database

    Ground state at high density

    Full text link
    Weak limits as the density tends to infinity of classical ground states of integrable pair potentials are shown to minimize the mean-field energy functional. By studying the latter we derive global properties of high-density ground state configurations in bounded domains and in infinite space. Our main result is a theorem stating that for interactions having a strictly positive Fourier transform the distribution of particles tends to be uniform as the density increases, while high-density ground states show some pattern if the Fourier transform is partially negative. The latter confirms the conclusion of earlier studies by Vlasov (1945), Kirzhnits and Nepomnyashchii (1971), and Likos et al. (2007). Other results include the proof that there is no Bravais lattice among high-density ground states of interactions whose Fourier transform has a negative part and the potential diverges or has a cusp at zero. We also show that in the ground state configurations of the penetrable sphere model particles are superposed on the sites of a close-packed lattice.Comment: Note adde

    Requirements of leaf wetness and temperature for infection of groundnut by rust

    Get PDF
    Experiments are described to quantify the effects of temp. and duration of leaf wetness on infection of groundnut by Puccinia arachidis. After inoculation, a min. period of leaf wetness, m, was necessary for infection. When leaf wetness duration was >m, lesion density increased with increasing wetness duration to an asymptote, Dmax. The principal effects of temp. were on m and Dmax. The value of m decreased linearly from 6 h, as temp. increased from 15 to 25°C and increased slightly at temp. >25°. Dmax increased with temp. from zero at 8° to a max. at 22°, and decreased to zero again at c. 30°. The experimental results were used to produce a set of curves relating an infection index to leaf wetness duration at different temp. The implications for infection of groundnut crops are discussed in relation to the climate at Patancheru in southern India
    corecore