2,507 research outputs found
Symmetry implies independence
Given a quantum system consisting of many parts, we show that symmetry of the
system's state, i.e., invariance under swappings of the subsystems, implies
that almost all of its parts are virtually identical and independent of each
other. This result generalises de Finetti's classical representation theorem
for infinitely exchangeable sequences of random variables as well as its
quantum-mechanical analogue. It has applications in various areas of physics as
well as information theory and cryptography. For example, in experimental
physics, one typically collects data by running a certain experiment many
times, assuming that the individual runs are mutually independent. Our result
can be used to justify this assumption.Comment: LaTeX, contains 4 figure
Statistically validated networks in bipartite complex systems
Many complex systems present an intrinsic bipartite nature and are often
described and modeled in terms of networks [1-5]. Examples include movies and
actors [1, 2, 4], authors and scientific papers [6-9], email accounts and
emails [10], plants and animals that pollinate them [11, 12]. Bipartite
networks are often very heterogeneous in the number of relationships that the
elements of one set establish with the elements of the other set. When one
constructs a projected network with nodes from only one set, the system
heterogeneity makes it very difficult to identify preferential links between
the elements. Here we introduce an unsupervised method to statistically
validate each link of the projected network against a null hypothesis taking
into account the heterogeneity of the system. We apply our method to three
different systems, namely the set of clusters of orthologous genes (COG) in
completely sequenced genomes [13, 14], a set of daily returns of 500 US
financial stocks, and the set of world movies of the IMDb database [15]. In all
these systems, both different in size and level of heterogeneity, we find that
our method is able to detect network structures which are informative about the
system and are not simply expression of its heterogeneity. Specifically, our
method (i) identifies the preferential relationships between the elements, (ii)
naturally highlights the clustered structure of investigated systems, and (iii)
allows to classify links according to the type of statistically validated
relationships between the connected nodes.Comment: Main text: 13 pages, 3 figures, and 1 Table. Supplementary
information: 15 pages, 3 figures, and 2 Table
Cross-Sectional Study of Toxoplasma gondii Infection in Pig Farms in England
Ingestion of undercooked meat has been proposed as an important source of human Toxoplasma gondii infection. To ascertain the contribution of meat consumption to the risk of human infection, estimates of the prevalence of infection in meat-producing animals are required. A cross-sectional study was conducted to assess T. gondii infection in pigs raised in England, to identify risk factors for infection, and to compare performance of two serological tests: modified agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA). Blood samples from 2071 slaughter pigs originating from 131 farms were collected and 75 (3.6%) were found to be positive by MAT. Positive pigs originated from 24 farms. A subset of samples (n = 492) were tested using ELISA, and a significant disagreement (p = 50% probability of having at least one infected pig (n = 5, 6.8%) and (2) >= 10% probability (n = 15, 20.5%). Data on putative risk factors were obtained for 73 farms. Using a 10% cutoff, the relative risk (RR) of infection was higher in farms where cats have direct access to pigs' food (RR = 2.6; p = 0.04), pigs have outdoor access (RR = 3.0; p = 0.04), and farms keeping <= 200 pigs (RR = 3.9; p = 0.02), with strong collinearity between the three variables. The findings suggest a low level of T. gondii infection in the farms studied, most of which are likely to send to slaughter batches comprising 100% uninfected pigs. These results provide key inputs to quantitatively assess the T. gondii risk posed by pork to consumers
Holographic renormalization as a canonical transformation
The gauge/string dualities have drawn attention to a class of variational
problems on a boundary at infinity, which are not well defined unless a certain
boundary term is added to the classical action. In the context of supergravity
in asymptotically AdS spaces these problems are systematically addressed by the
method of holographic renormalization. We argue that this class of a priori ill
defined variational problems extends far beyond the realm of holographic
dualities. As we show, exactly the same issues arise in gravity in non
asymptotically AdS spaces, in point particles with certain unbounded from below
potentials, and even fundamental strings in flat or AdS backgrounds. We show
that the variational problem in all such cases can be made well defined by the
following procedure, which is intrinsic to the system in question and does not
rely on the existence of a holographically dual theory: (i) The first step is
the construction of the space of the most general asymptotic solutions of the
classical equations of motion that inherits a well defined symplectic form from
that on phase space. The requirement of a well defined symplectic form is
essential and often leads to a necessary repackaging of the degrees of freedom.
(ii) Once the space of asymptotic solutions has been constructed in terms of
the correct degrees of freedom, then there exists a boundary term that is
obtained as a certain solution of the Hamilton-Jacobi equation which
simultaneously makes the variational problem well defined and preserves the
symplectic form. This procedure is identical to holographic renormalization in
the case of asymptotically AdS gravity, but it is applicable to any Hamiltonian
system.Comment: 37 pages; v2 minor corrections in section 2, 2 references and a
footnote on Palatini gravity added. Version to appear in JHE
Pathogenesis of aerosolized Eastern Equine Encephalitis virus infection in guinea pigs
Mice and guinea pigs were experimentally exposed to aerosols containing regionally-distinct strains (NJ1959 or ArgM) of eastern equine encephalitis virus (EEEV) at two exclusive particle size distributions. Mice were more susceptible to either strain of aerosolized EEEV than were guinea pigs; however, clinical signs indicating encephalitis were more readily observed in the guinea pigs. Lower lethality was observed in both species when EEEV was presented at the larger aerosol distribution (> 6 μm), although the differences in the median lethal dose (LD50) were not significant. Virus isolation and immunohistochemistry indicated that virus invaded the brains of guinea pigs within one day postexposure, regardless of viral strain or particle size distribution. Immunohistochemistry further demonstrated that neuroinvasion occurred through the olfactory system, followed by transneuronal spread to all regions of the brain. Olfactory bipolar neurons and neurons throughout the brain were the key viral targets. The main microscopic lesions in infected guinea pigs were neuronal necrosis, inflammation of the meninges and neuropil of the brain, and vasculitis in the brain. These results indicate that guinea pigs experimentally infected by aerosolized EEEV recapitulate several key features of fatal human infection and thus should serve as a suitable animal model for aerosol exposure to EEEV
Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis.
Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the "gold standard" for the diagnosis of melioidosis; results can take 3-7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation
Mortality after emergency department intubation
Introduction The purpose of this study is to identify the rate of emergency department (ED) intubation and the mortality associated with ED intubation. Methods We conducted a retrospective chart review of all patients intubated in the ED between 1 January 2004 an
Expression of an Epitope-Tagged Virulence Protein in Rickettsia parkeri Using Transposon Insertion
Despite recent advances in our ability to genetically manipulate Rickettsia, little has been done to employ genetic tools to study the expression and localization of Rickettsia virulence proteins. Using a mariner-based Himar1 transposition system, we expressed an epitope-tagged variant of the actin polymerizing protein RickA under the control of its native promoter in Rickettsia parkeri, allowing the detection of RickA using commercially-available antibodies. Native RickA and epitope-tagged RickA exhibited similar levels of expression and were specifically localized to bacteria. To further facilitate protein expression in Rickettsia, we also developed a plasmid for Rickettsia insertion and expression (pRIE), containing a variant Himar1 transposon with enhanced flexibility for gene insertion, and used it to generate R. parkeri strains expressing diverse fluorescent proteins. Expression of epitope-tagged proteins in Rickettsia will expand our ability to assess the regulation and function of important virulence factors
Accuracy of self-reported height measurements in parents and its effect on mid-parental target height calculation
BACKGROUND: Clinical determination of mid-parental height is an important part of the assessment of a child's growth, however our clinical impression has been that parents cannot be relied upon to accurately report their own heights. Therefore, we conducted this study to assess the accuracy of parental height self-reporting and its effect on calculated mid-parental target height for children presenting to a pediatric endocrinology office. METHODS: All parents bringing their children for an initial evaluation to a pediatric endocrinology clinic over a period of nine months were questioned and then measured by a pediatric endocrinologist. Parents were blinded to the study. Mid-parental target heights, based on reported and actual height were compared. RESULTS: There were 241 families: 98 fathers and 217 mothers in our study. Mean measured paternal height was 173.2 cm, self reported 174.9 cm (p < 0.0001), partner reported 177 cm (p = 0.0004). Only 50% of fathers and 58% of mothers reported their height within ± 2 cm of their measured height, while 15% of fathers and 12% of mothers were inaccurate by more than 4 cm. Mean measured maternal height was 160.6 cm, self-reported 161.1 cm (NS), partner reported 161.7 cm (NS). Inaccuracy of height self-report had a small but significant effect on the mean MPTH (0.4 cm, p = 0.045). Analysis showed that only 70% of MPTH calculated by reported heights fell within ± 2 cm of MPTH calculated using measured heights, 24% being in ± 2–4 cm range, and 6% were inaccurate by more than 4 cm. CONCLUSION: There is a significant difference in paternal measured versus reported heights with an overall trend for fathers to overestimate their own height. A large subset of parents makes a substantial error in their height self-report, which leads to erroneous MPTH. Inaccuracy is even greater when one parent reports the other parent's height. When a child's growth is in question, measured rather than reported parental heights should be obtained
- …