743 research outputs found

    Exploring the relationship between adolescent biological maturation, physical activity, and sedentary behaviour: A systematic review and narrative synthesis

    Get PDF
    Context: Across adolescence, there is a notable decline in physical activity in boys and girls. Maturational timing may be a risk factor for disengagement from physical activity and increased sedentary behaviours during adolescence. Objective: This systematic review aimed to summarise literature that examined the relationship between maturational timing, physical activity and sedentary behaviour in adolescents. Methods: Six electronic databases were searched for articles that assessed biological maturation and physical activity (including sports participation and active transportation) or sedentary behaviours in adolescents. Two reviewers conducted title, abstract, and full-text screening, reference and forward citation searches. Included articles were evaluated for quality using a standardised tool. A narrative synthesis was used to analyse the findings due to the heterogeneity of the studies. Results: Searches yielded 78 articles (64 unique studies) that met the inclusion criteria, representing 242,316 participants (153,179 unique). Studies ranged from 30.0% (low) to 91.7% (high) in quality. An inverse relationship between maturational timing and physical activity (in 50 and 60% of studies in boys and girls, respectively) and a positive relationship between maturational timing and sedentary behaviour (in 100% and 53% of studies in boys and girls, respectively) was most commonly reported. Evidence supporting an association between maturational timing, sports participation, and active transportation was inconsistent. Conclusions: While this review demonstrates some evidence for early maturational timing as a risk factor for disengagement from physical activity and increase in sedentary behaviours, the reviewed literature also demonstrates that this relationship is complex. Future research that tracks maturity-related variations in physical activity and sedentary behaviours over adolescence is warranted

    Genome-scale constraint-based modeling of Geobacter metallireducens

    Get PDF
    Background: Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results: The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens\u27 specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided a fast and cost-effective way to understand the metabolism of G. metallireducens. Conclusion: We have developed a genome-scale metabolic model for G. metallireducens that features both metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy generation

    Predictive factors for skeletal complications in hormone-refractory prostate cancer patients with metastatic bone disease

    Get PDF
    Factors predictive of skeletal-related events (SREs) in bone metastatic prostate cancer patients with hormone-refractory disease were investigated. We evaluated the frequency of SREs in 200 hormone-refractory patients consecutively observed at our Institution and followed until death or the last follow-up. Baseline parameters were evaluated in univariate and multivariate analysis as potential predictive factors of SREs. Skeletal-related events were observed in 86 patients (43.0%), 10 of which (5.0%) occurred before the onset of hormone-refractory disease. In univariate analysis, patient performance status (P=0.002), disease extent (DE) in bone (P=0.0001), bone pain (P=0.0001), serum alkaline phosphatase (P=0.0001) and urinary N-telopeptide of type one collagen (P=0.0001) directly correlated with a greater risk to develop SREs, whereas Gleason score at diagnosis, serum PSA, Hb, serum albumin, serum calcium, types of bone lesions and duration of androgen deprivation therapy did not. Both DE in bone (hazard ratio (HR): 1.16, 95% confidence interval (CI): 1.07–1.25, P=0.000) and pain score (HR: 1.13, 95% CI: 1.06–1.20, P=0.000) were independent variables predicting for the onset of SREs in multivariate analysis. In patients with heavy tumour load in bone and great bone pain, the percentage of SREs was almost twice as high as (26 vs 52%, P<0.02) and occurred significantly earlier (P=0.000) than SREs in patients with limited DE in bone and low pain. Bone pain and DE in bone independently predict the occurrence of SREs in bone metastatic prostate cancer patients with hormone-refractory disease. These findings could help physicians in tailoring the skeletal follow-up most appropriate to individual patients and may prove useful for stratifying patients enrolled in bisphosphonate clinical trials

    Common and Unique Contributions of Decorin-Binding Proteins A and B to the Overall Virulence of Borrelia burgdorferi

    Get PDF
    As an extracellular bacterium, the Lyme disease spirochete Borrelia burgdorferi resides primarily in the extracellular matrix and connective tissues and between host cells during mammalian infection, where decorin and glycosaminoglycans are abundantly found, so its interactions with these host ligands potentially affect various aspects of infection. Decorin-binding proteins (Dbps) A and B, encoded by a 2-gene operon, are outer surface lipoproteins with similar molecular weights and share approximately 40% identity, and both bind decorin and glycosaminoglycans. To investigate how DbpA and DbpB contribute differently to the overall virulence of B. burgdorferi, a dbpAB mutant was modified to overproduce the adhesins. Overproduction of either DbpA or DbpB resulted in restoration of the infectivity of the mutant to the control level, measured by 50% infectious dose (ID50), indicating that the two virulence factors are interchangeable in this regard. Overproduction of DbpA also allowed the mutant to disseminate to some but not all distal tissues slightly slower than the control, but the mutant with DbpB overproduction showed severely impaired dissemination to all tissues that were analyzed. The mutant with DbpA overproduction colonized all tissues, albeit generating bacterial loads significantly lower than the control in heart and joint, while the mutant overproducing DbpB remained severely defective in heart colonization and registered bacterial loads substantially lower than the control in joint. Taken together, the study indicated that DbpA and DbpB play a similar role in contribution to infectivity as measured by ID50 value but contribute differently to dissemination and tissue colonization

    Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis

    Get PDF
    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response

    Perspectives of San Juan healthcare practitioners on the detection deficit in oral premalignant and early cancers in Puerto Rico: a qualitative research study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Puerto Rico, relative to the United States, a disparity exists in detecting oral precancers and early cancers. To identify factors leading to the deficit in early detection, we obtained the perspectives of San Juan healthcare practitioners whose practice could be involved in the detection of such oral lesions.</p> <p>Methods</p> <p>Key informant (KI) interviews were conducted with ten clinicians practicing in or around San Juan, Puerto Rico. We then triangulated our KI interview findings with other data sources, including recent literature on oral cancer detection from various geographic areas, current curricula at the University of Puerto Rico Schools of Medicine and Dental Medicine, as well as local health insurance regulations.</p> <p>Results</p> <p>Key informant-identified factors that likely contribute to the detection deficit include: many practitioners are deficient in knowledge regarding oral cancer and precancer; oral cancer screening examinations are limited regarding which patients receive them and the elements included. In Puerto Rico, specialists generally perform oral biopsies, and patient referral can be delayed by various factors, including government-subsidized health insurance, often referred to as Reforma. Reforma-based issues include often inadequate clinician knowledge regarding Reforma requirements/provisions, diagnostic delays related to Reforma bureaucracy, and among primary physicians, a perceived financial disincentive in referring Reforma patients.</p> <p>Conclusions</p> <p>Addressing these issues may be useful in reducing the deficit in detecting oral precancers and early oral cancer in Puerto Rico.</p

    saeRS and sarA Act Synergistically to Repress Protease Production and Promote Biofilm Formation in Staphylococcus aureus

    Get PDF
    Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level

    An Open Source Simulation Model for Soil and Sediment Bioturbation

    Get PDF
    Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and further development. The framework combines the advantages of rule-based lattice models with the application of parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison with a commonly used model attest the predictive power of the approach

    Impacts of Parasites in Early Life: Contrasting Effects on Juvenile Growth for Different Family Members

    Get PDF
    Parasitism experienced early in ontogeny can have a major impact on host growth, development and future fitness, but whether siblings are affected equally by parasitism is poorly understood. In birds, hatching asynchrony induced by hormonal or behavioural mechanisms largely under parental control might predispose young to respond to infection in different ways. Here we show that parasites can have different consequences for offspring depending on their position in the family hierarchy. We experimentally treated European Shag (Phalacrocorax aristoteli) nestlings with the broad-spectrum anti-parasite drug ivermectin and compared their growth rates with nestlings from control broods. Average growth rates measured over the period of linear growth (10 days to 30 days of age) and survival did not differ for nestlings from treated and control broods. However, when considering individuals within broods, parasite treatment reversed the patterns of growth for individual family members: last-hatched nestlings grew significantly slower than their siblings in control nests but grew faster in treated nests. This was at the expense of their earlier-hatched brood-mates, who showed an overall growth rate reduction relative to last-hatched nestlings in treated nests. These results highlight the importance of exploring individual variation in the costs of infection and suggest that parasites could be a key factor modulating within-family dynamics, sibling competition and developmental trajectories from an early age
    corecore