10,729 research outputs found

    Effective Equations of Motion for Quantum Systems

    Full text link
    In many situations, one can approximate the behavior of a quantum system, i.e. a wave function subject to a partial differential equation, by effective classical equations which are ordinary differential equations. A general method and geometrical picture is developed and shown to agree with effective action results, commonly derived through path integration, for perturbations around a harmonic oscillator ground state. The same methods are used to describe dynamical coherent states, which in turn provide means to compute quantum corrections to the symplectic structure of an effective system.Comment: 31 pages; v2: a new example, new reference

    ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans

    Full text link
    We introduce ScanComplete, a novel data-driven approach for taking an incomplete 3D scan of a scene as input and predicting a complete 3D model along with per-voxel semantic labels. The key contribution of our method is its ability to handle large scenes with varying spatial extent, managing the cubic growth in data size as scene size increases. To this end, we devise a fully-convolutional generative 3D CNN model whose filter kernels are invariant to the overall scene size. The model can be trained on scene subvolumes but deployed on arbitrarily large scenes at test time. In addition, we propose a coarse-to-fine inference strategy in order to produce high-resolution output while also leveraging large input context sizes. In an extensive series of experiments, we carefully evaluate different model design choices, considering both deterministic and probabilistic models for completion and semantic inference. Our results show that we outperform other methods not only in the size of the environments handled and processing efficiency, but also with regard to completion quality and semantic segmentation performance by a significant margin.Comment: Video: https://youtu.be/5s5s8iH0NF

    Trends in farm diversification

    Get PDF

    Heats of formation of perchloric acid, HClO4_4, and perchloric anhydride, Cl2_2O7_7. Probing the limits of W1 and W2 theory

    Full text link
    The heats of formation of HClO4_4 and Cl2_2O7_7 have been determined to chemical accuracy for the first time by means of W1 and W2 theory. These molecules exhibit particularly severe degrees of inner polarization, and as such obtaining a basis-set limit SCF component to the total atomization energy becomes a challenge. (Adding high-exponent dd functions to a standard spdspd basis set has an effect on the order of 100 kcal/mol for Cl2_2O7_7.) Wilson's aug-cc-pV(n+d)Z basis sets represent a dramatic improvement over the standard aug-cc-pVnZ basis sets, while the aug-cc-pVnZ+2d1f sequence converges still more rapidly. Jensen's polarization consistent basis sets still require additional high-exponent dd functions: for smooth convergence we suggest the \{aug-pc1+3d,aug-pc2+2d,aug-pc3+d,aug-pc4\} sequence. The role of the tight dd functions is shown to be an improved description of the Cl (3d) Rydberg orbital, enhancing its ability to receive back-bonding from the oxygen lone pairs. In problematic cases like this (or indeed in general), a single SCF/aug-cc-pV6Z+2d1f calculation may be preferable over empirically motivated extrapolations. Our best estimate heats of formation are ΔHf,298∘[\Delta H^\circ_{f,298}[HClO4_4(g)]=−0.6±]=-0.6\pm1 kcal/mol and ΔHf,298∘[\Delta H^\circ_{f,298}[Cl2_2O7_7(g)]=65.9±]=65.9\pm2 kcal/mol, the largest source of uncertainty being our inability to account for post-CCSD(T) correlation effects. While G2 and G3 theory have fairly large errors, G3X theory reproduces both values to within 2 kcal/mol.Comment: J. Mol. Struct. (THEOCHEM), in press (WATOC'05 special issue

    Simplification of Health and Social Services Enrollment and Eligibility: Lessons for California From Interviews in Four States

    Get PDF
    Explores state officials' and advocates' views on issues involved in streamlining enrollment and eligibility processes, including the importance of staff buy-in, community partners' outreach efforts, and technological challenges and lessons learned

    Surgical site infection: Evidence Update

    Get PDF

    Optimized hash for network path encoding with minimized false positives

    Get PDF
    The Bloom filter is a space efficient randomized data structure for representing a set and supporting membership queries. Bloom filters intrinsically allow false positives. However, the space savings they offer outweigh the disadvantage if the false positive rates are kept sufficiently low. Inspired by the recent application of the Bloom filter in a novel multicast forwarding fabric, this paper proposes a variant of the Bloom filter, the optihash. The optihash introduces an optimization for the false positive rate at the stage of Bloom filter formation using the same amount of space at the cost of slightly more processing than the classic Bloom filter. Often Bloom filters are used in situations where a fixed amount of space is a primary constraint. We present the optihash as a good alternative to Bloom filters since the amount of space is the same and the improvements in false positives can justify the additional processing. Specifically, we show via simulations and numerical analysis that using the optihash the false positives occurrences can be reduced and controlled at a cost of small additional processing. The simulations are carried out for in-packet forwarding. In this framework, the Bloom filter is used as a compact link/route identifier and it is placed in the packet header to encode the route. At each node, the Bloom filter is queried for membership in order to make forwarding decisions. A false positive in the forwarding decision is translated into packets forwarded along an unintended outgoing link. By using the optihash, false positives can be reduced. The optimization processing is carried out in an entity termed the Topology Manger which is part of the control plane of the multicast forwarding fabric. This processing is only carried out on a per-session basis, not for every packet. The aim of this paper is to present the optihash and evaluate its false positive performances via simulations in order to measure the influence of different parameters on the false positive rate. The false positive rate for the optihash is then compared with the false positive probability of the classic Bloom filter

    A variational approach to dislocation problems for periodic Schr\"odinger operators

    Get PDF
    As a simple model for lattice defects like grain boundaries in solid state physics we consider potentials which are obtained from a periodic potential V=V(x,y)V = V(x,y) on R2\R^2 with period lattice Z2\Z^2 by setting Wt(x,y)=V(x+t,y)W_t(x,y) = V(x+t,y) for x<0x < 0 and Wt(x,y)=V(x,y)W_t(x,y) = V(x,y) for x≥0x \ge 0, for t∈[0,1]t \in [0,1]. For Lipschitz-continuous VV it is shown that the Schr\"odinger operators Ht=−Δ+WtH_t = -\Delta + W_t have spectrum (surface states) in the spectral gaps of H0H_0, for suitable t∈(0,1)t \in (0,1). We also discuss the density of these surface states as compared to the density of the bulk. Our approach is variational and it is first applied to the well-known dislocation problem [E. Korotyaev, Commun. Math. Phys. 213 (2000), 471-489], [E. Korotyaev, Asymptotic Anal. 45 (2005), 73-97] on the real line. We then proceed to the dislocation problem for an infinite strip and for the plane. In an appendix, we discuss regularity properties of the eigenvalue branches in the one-dimensional dislocation problem for suitable classes of potentials.Comment: 19 pages, 3 figure
    • …
    corecore