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As a simple model for lattice defects like grain boundaries in solid state physics we
consider potentials which are obtained from a periodic potential V = V (x, y) on R

2 with
period lattice Z

2 by setting Wt(x, y) = V (x + t, y) for x < 0 and Wt(x, y) = V (x, y)

for x � 0, for t ∈ [0,1]. For Lipschitz-continuous V it is shown that the Schrödinger
operators Ht = −� + Wt have spectrum (surface states) in the spectral gaps of H0, for
suitable t ∈ (0,1). We also discuss the density of these surface states as compared to the
density of the bulk. Our approach is variational and it is first applied to the well-known
dislocation problem (Korotyaev (2000, 2005) [15,16]) on the real line. We then proceed
to the dislocation problem for an infinite strip and for the plane. In Appendix A, we
discuss regularity properties of the eigenvalue branches in the one-dimensional dislocation
problem for suitable classes of potentials.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In solid state physics, one first studies crystallized matter with a perfectly regular atomic structure where the atoms
are located on a periodic lattice. However, most crystals are not perfectly periodic; in fact, the regular pattern of atoms
may be disturbed by various defects which fall into two main classes: there are defects which leave the lattice unchanged
(like impurities or vacancies), and there are more serious “geometric” defects of the lattice itself, cf. [2], which may involve
translations and rotation of portions of the lattice. Such lattice dislocations occur, in particular, at grain boundaries in alloys.
These models are deterministic but may be generalized to include randomness.

Many of the geometric defects mentioned above are accessible to mathematical analysis only after some idealization
which leads to the following type of problem, cf. [6]: there is a periodic potential V : R

d → R with period lattice Z
d and a

Euclidean transformation T : R
d → R

d such that the potential coincides with V in the half-space {x ∈ R
d | x1 � 0} and with

V ◦ T in {x1 < 0}. In the simplest cases T is translation in the direction of one of the coordinate axes, with again two main
subcases: translation orthogonal to the hyperplane {x1 = 0} or translations that keep the x1-coordinate fixed. In the present
paper, we discuss the case d = 2 (where the coordinates are denoted by x and y) and we will mainly focus on translation
in the x-direction. In a forthcoming companion paper [13] we will then study some aspects of the rotation problem where
we take the given periodic potential V in the right half-plane and a rotated version V ◦ Mϑ in the left half-plane with Mϑ

denoting rotation by the angle ϑ ; some results from the present paper will be essential for [13].
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The one-dimensional dislocation problem is particularly simple: Let V : R → R be a periodic potential with period 1 and
let

Wt(x) :=
{

V (x), x � 0,

V (x + t), x < 0,
(1.1)

for t ∈ [0,1]. The (self-adjoint) operator Ht := − d2

dx2 + Wt is called the dislocation operator, t the dislocation parameter. There
is quite a number of results available on this problem: it is well known and easy to see that the essential spectrum of Ht
does not depend on t for 0 � t � 1; also Ht cannot have any embedded eigenvalues. Furthermore, there is no singular
continuous spectrum, cf. [6]. For 0 < t < 1, the operators Ht may have bound states (discrete eigenvalues) located in the
gaps of the essential spectrum. These eigenvalues and the corresponding resonances have been studied by Korotyaev [15,16]
in great detail, using powerful results from analytic function theory which are specific to the one-dimensional, periodic case.
While, predictably, our results for the one-dimensional periodic case are weaker than Korotyaev’s, our method of proof is
very elementary and can be generalized in several directions; most importantly, we can apply our techniques to dislocation
problems in dimensions greater than 1. In one dimension, we also give a more systematic treatment of regularity properties
of the eigenvalue “branches”; in particular, it is shown that the eigenvalue branches are Lipschitz-continuous if V is (locally)
of bounded variation.

The one-dimensional dislocation problem is mainly included to introduce and test our variational approach which is
inspired by [5,1]: we use approximations by problems on intervals (−n − t,n) with periodic boundary conditions where it
is easy to control the spectral flow, and let n tend to ∞. This idea can be adapted to the study of the translation problem
for the strip Σ := R × (0,1) in R

2 with periodic boundary conditions in the y-variable, say. In R
2, we consider dislocation

potentials Wt defined by

Wt(x, y) :=
{

V (x, y), x � 0,

V (x + t, y), x < 0,
(1.2)

for t ∈ [0,1]. On the strip Σ we obtain existence results for eigenvalues of St := −� + Wt in the spectral gaps of S0.
From that we easily derive that Dt := −� + Wt , acting in L2(R

2), will have surface states with a non-zero density on
an appropriate scale, for suitable t ∈ (0,1). To distinguish the bulk from the surface density of states for this problem, we
consider the operators −�+ Wt on squares Q n = (−n,n)2 with Dirichlet boundary conditions, for n large, count the number
of eigenvalues inside a compact subset of a non-degenerate spectral gap of D0 and scale with n−2 for the bulk and with
n−1 for the surface states. Taking the limits n → ∞ (which exist as explained in [6,10]), we obtain the integrated density of
states measures ρbulk(Dt , I) for the bulk and ρsurf(Dt , J ) for the surface states of this model; here I ⊂ R and J ⊂ R\σ(D0)

are open intervals and J ⊂ R\σ(D0). Our main result can be described as follows: If (a,b) is a (non-trivial) spectral gap of
the periodic operator −�+ V , acting in L2(R

2), then for any compact interval [α,β] ⊂ (a,b) with α < β there is a t ∈ (0,1)

such that ρsurf(Dt , (α,β)) > 0. Upper bounds for the surface density of states are discussed in [13].
Our paper is organized as follows. Section 2 deals with dislocation on the real line. Here it is shown that the k-th

gap in the essential spectrum of Ht (if it is open) is crossed by effectively k eigenvalues of Ht as t increases from 0
to 1. As an example, we discuss a periodic step potential in Section 3 where one can compute the eigenvalues of the
dislocation operator numerically. Note that our calculations yield numbers which are exact up to finding the zeros of some
transcendental functions. Related pictures can be found in [7] where a different numerical approach has been used.

In Section 4 we adapt the method of Section 2 to the dislocation problem on the strip Σ . The results obtained for the
strip then easily yield spectral information for the dislocation problem in the plane. Section 5 presents examples from the
class of muffin tin potentials where one can “see” the motion of the eigenvalues rather directly for either translation in the
x-direction or in the y-direction. Finally, we include Appendix A on regularity properties of the functions describing the
eigenvalues of the dislocation operator Ht in one dimension.

For basic notation and definitions concerning self-adjoint operators in Hilbert space, we refer to [14,19].

2. Dislocation on the real line

In this section, we study perturbations of periodic Schrödinger operators on the real line where the potential is obtained
from a periodic potential by a coordinate shift on the left half-axis.

Let h0 denote the (unique) self-adjoint extension of − d2

dx2 defined on C∞
c (R). Our basic class of potentials is given by

P := {
V ∈ L1,loc(R,R); ∀x ∈ R: V (x + 1) = V (x)

}
. (2.1)

Potentials V ∈ P belong to the class L1,loc,unif(R) which coincides with the Kato-class on the real line; in particular, any
V ∈ P has relative form-bound zero with respect to h0 and thus the form-sum H of h0 and V ∈ P is well defined (cf. [3]).
For V ∈ P given, we define the dislocation potentials Wt as in Eq. (1.1), for 0 � t � 1; as before, the form-sum Ht of h0
and Wt is well defined.

We begin with some well-known results pertaining to the spectrum of H = H0. As explained in [8,20], we have

σ(H) = σess(H) =
∞⋃[

γk, γ
′

k

]
, (2.2)
k=1
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where the γk and γ ′
k satisfy γk < γ ′

k � γk+1, for all k ∈ N, and γk → ∞ as k → ∞. Moreover, the spectrum of H is purely
absolutely continuous. The intervals [γk, γ

′
k] are called the spectral bands of H . The open intervals Γk := (γ ′

k , γk+1) are the
spectral gaps of H ; we say the k-th gap is open or non-degenerate if γk+1 > γ ′

k .
In order to determine the essential spectrum of Ht for 0 < t < 1, we introduce Dirichlet boundary conditions at x = 0 for

the operator H0 and at x = 0 and x = −t for Ht to obtain the operators

H D = H− ⊕ H+, Ht,D = H−
t ⊕ H(−t,0) ⊕ H+, (2.3)

where H± acts in R
± with a Dirichlet boundary condition at 0, H−

t in (−∞,−t) with Dirichlet boundary condition at −t
and H(−t,0) in (−t,0) with Dirichlet boundary conditions at −t and 0. Since H(−t,0) has purely discrete spectrum and
since the operators H−

t and H− are unitarily equivalent, we conclude that σess(H D) = σess(Ht,D). It is well known that
decoupling by (a finite number of) Dirichlet boundary conditions leads to compact perturbations of the corresponding
resolvents (in fact, perturbations of finite rank) and thus Weyl’s essential spectrum theorem yields σess(H D) = σess(H) and
σess(Ht,D) = σess(Ht).

In addition to the essential spectrum, the operators Ht may have discrete eigenvalues below the infimum of the essential
spectrum and inside any (non-degenerate) gap, for t ∈ (0,1); these eigenvalues are simple. The eigenvalues of Ht in the gaps
of H depend continuously on t; cf. Appendix A for a brief exposition of the relevant perturbational arguments, which are
fairly standard. A more complete and precise picture is established in the following lemma which says that the discrete
eigenvalues of Ht inside a given gap Γk of H can be described by an (at most) countable, locally finite family of continuous
functions, defined on suitable subintervals of [0,1].

Lemma 2.1. Let k ∈ N and suppose that the gap Γk of H is open, i.e., γ ′
k < γk+1 . Then there is a ( finite or countable) family of

continuous functions f j : (α j, β j) → Γk, where 0 � α j < β j � 1, with the following properties:

(i) f j(t) is an eigenvalue of Ht , for all α j < t < β j and for all j. Conversely, for any t ∈ (0,1) and any eigenvalue E ∈ Γk of Ht there
is a unique index j such that f j(t) = E.

(ii) As t ↓ α j (or t ↑ β j ), the limit of f j(t) exists and belongs to the set {γ ′
k , γk+1}.

(iii) For all but a finite number of indices j the range of f j does not intersect a given compact subinterval [a′,b′] ⊂ Γk.

For the convenience of the reader, we include a proof in Appendix A. Under stronger assumptions on V one can show
that the eigenvalue branches are Hölder- or Lipschitz-continuous, or even analytic; cf. Appendix A. Additional information
on the eigenvalue functions f j can be found in [15,16].

It is our aim in this section to show that at least k eigenvalues move from the upper to the lower edge of the k-th
gap as the dislocation parameter ranges from 0 to 1. Using the notation of Lemma 2.1 and writing f i(αi) := limt↓αi f i(t),
f i(βi) := limt↑βi f i(t), we now define

Nk := #
{

i
∣∣ f i(αi) = γk+1, f i(βi) = γ ′

k

} − #
{

i
∣∣ f i(αi) = γ ′

k, f i(βi) = γk+1
}
. (2.4)

Thus Nk is precisely the number of eigenvalue branches of Ht that cross the k-th gap moving from the upper to the lower
edge minus the number crossing from the lower to the upper edge. Put differently, Nk is the spectral multiplicity which
effectively crosses the gap Γk in downwards direction as t increases from 0 to 1.

Our main result in this section says that Nk = k, provided the k-th gap is open:

Theorem 2.2. Let V ∈ P and suppose that the k-th spectral gap of H is open, i.e., γ ′
k < γk+1 . Then Nk = k.

Again, the results obtained by Korotyaev in [15,16] are more detailed; e.g., it is shown that, for any t ∈ (0,1), the
dislocation operator Ht has two unique states (an eigenvalue and a resonance) in any given gap of the periodic problem. On
the other hand, our variational arguments are more flexible and allow an extension to higher dimensions, as will be seen
in the sequel. In this sense, the importance of this section lies in testing our approach in the simplest possible case. For
further reading concerning the spectral flow through the gaps of perturbed Schrödinger operators, we recommend [18,22].

The main idea of our proof—somewhat reminiscent of [5,1]—goes as follows: consider a sequence of approximations on
intervals (−n − t,n) with associated operators Hn,t = − d2

dx2 + Wt with periodic boundary conditions. We first observe that
the gap Γk is free of eigenvalues of Hn,0 and Hn,1 since both operators are obtained by restricting a periodic operator on
the real line to some interval of length equal to an entire multiple of the period, with periodic boundary conditions. Second,
the operators Hn,t have purely discrete spectrum and it follows from Floquet theory (cf. [8,20]) that Hn,0 has precisely
2n eigenvalues in each band while Hn,1 has precisely 2n + 1 eigenvalues in each band. As a consequence, effectively k
eigenvalues of Hn,t must cross any fixed E ∈ Γk as t goes from 0 to 1. To obtain the result of Theorem 2.2 we only have
to take the limit n → ∞. Here we employ several technical lemmas. In the first one, we show that the eigenvalues of the
family Hn,t depend continuously on the dislocation parameter.

Lemma 2.3. The eigenvalues of Hn,t depend continuously on t ∈ [0,1].
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Proof. We may assume that the eigenvalues of Hn,t are numbered according to min–max. Since the Hilbert space
L2(−n − t,n) depends on t , we use the unitary mappings

Un,t : L2(−n − t,n) → L2(−n,n), (Un,t f )(x) := √
σn,t f (σn,t x), (2.5)

where σn,t := 2n+t
2n . Let H̃n,t := Un,t Hn,t U−1

n,t and W̃t(x) := Wt(σn,t x) so that (writing σ = σn,t )

H̃n,t = σ−2h0 + W̃t(x) = σ−2(h0 + σ 2W̃t(x)
)
. (2.6)

It is easy to see that the mapping [0,1] � t �→ σ 2W̃t ∈ L1(−n,n) is continuous. Now the usual perturbational and variational
arguments for quadratic forms ([14] and Appendix A) imply that the eigenvalues of h0 + σ 2W̃t depend continuously on t ,
and then the same is true for the eigenvalues of Hn,t . �

The next lemma is to establish a connection between the spectra of Ht and Hn,t for 0 � t � 1 and n large. In the
proof and henceforth, we will make use of the following cut-off functions: We pick some ϕ ∈ C∞

c (−2,2) with 0 � ϕ � 1
and ϕ(x) = 1 for |x| � 1. For k ∈ (0,∞) we then define ϕk(x) := ϕ(x/k) so that suppϕk ⊂ (−2k,2k), ϕk(x) = 1 for |x| � k,
|ϕ′

k(x)| � Ck−1 and |ϕ′′
k (x)| � Ck−2. Finally, we let ψk := 1 − ϕk . For any self-adjoint operator T we denote the spectral

projection associated with an interval I ⊂ R by P I (T ) and we write dim P I (T ) to denote the dimension of the range of the
projection P I (T ).

Lemma 2.4. Let k ∈ N with Γk �= ∅. Let t ∈ (0,1) and suppose that η1 < η2 ∈ Γk are such that η1, η2 /∈ σ(Ht). Then there is an n0 ∈ N

such that η1, η2 /∈ σ(Hn,t) for n � n0 , and

dim P (η1,η2)(Ht) = dim P (η1,η2)(Hn,t), n � n0. (2.7)

Proof. In the subsequent calculations, we always take k := n/4, for n ∈ N.
(1) Let E ∈ (η1, η2) ∩ σ(Ht) with associated normalized eigenfunction u. Then uk := ϕku ∈ D(Hn,t), Hn,t uk = Ht uk and

‖uk‖ → 1 as n → ∞. Since

‖Hn,t uk − Euk‖ � 2 · ∥∥ϕ′
k

∥∥∞
∥∥u′∥∥ + ∥∥ϕ′′

k

∥∥∞‖u‖, (2.8)

it is now easy to conclude that dim P (η1,η2)(Hn,t) � dim P (η1,η2)(Ht) for n large.
(2) We next assume for a contradiction that η ∈ Γk satisfies η ∈ σ(Hn,t) for infinitely many n ∈ N. Then there is a

subsequence (n j) j∈N ⊂ N such that η ∈ σ(Hn j ,t); we let un j ,t ∈ D(Hn j ,t) denote a normalized eigenfunction and set

v1,n j := ϕk j un j ,t, v2,n j := ψk j un j ,t, (2.9)

so that v1,n j ∈ D(Ht) and ‖(Ht − η)v1,n j ‖ → 0 as j → ∞ by a similar estimate as in part (1) (and using a simple bound
for ‖u′

n,t‖ which follows from the fact that V has relative form-bound zero w.r.t. h0). Let us now show that v2,n j → 0 (and
hence ‖v1,n j ‖ → 1) as j → ∞: The function

ṽ2,n j :=
{

v2,n j (x), x � 0,

v2,n j (x − t), x < 0,
(2.10)

belongs to the domain of Hn j ,0 and Hn j ,0 ṽ2,n j = [Hn j ,t v2,n j ]∼ , where [·]∼ is defined in analogy with Eq. (2.10). Since we
also have (Hn j ,t − η)v2,n j → 0, as j → ∞, we see that (Hn j ,0 − η)ṽ2,n j → 0. But dist(η,σ (Hn,0)) � δ0 > 0 for all n and
the Spectral Theorem implies that ‖ṽ2,n j ‖ → 0 as j → ∞. We have thus shown that ‖v1,n j ‖ → 1 and ‖(Ht − η)v1,n j ‖ → 0
which implies that η ∈ σ(Ht).

(3) It remains to show that dim P (η1,η2)(Hn,t) � dim P (η1,η2)(Ht), for n large. The proof by contradiction follows the lines

of part (2); instead of a sequence of functions un j we work with an orthonormal system u(1)
n j

, . . . , u(�)
n j

of eigenfunctions
where � = dim P (η1,η2)(Ht + 1). We leave the details to the reader. �
Remark 2.5. In fact, using standard exponential decay estimates for resolvents of Schrödinger operators, cf. [21], it can be
shown that the eigenvalues of Ht and Hn,t in the gap Γk are exponentially close, for n large; e.g., if E ∈ σ(Ht)∩Γk for some
t ∈ (0,1), then there are constants c � 0 and α > 0 such that the operators Hn,t have an eigenvalue in (E −ce−αn, E +ce−αn),
for n large. There is a similar converse statement with the roles of Ht and Hn,t exchanged; cf. also Remark 4.2 for further
discussion.

The desired connection between the spectral flow for (Hn,t)0�t�1 and (Ht)0�t�1 is obtained by applying Lemma 2.4 at
suitable ti ∈ [0,1] and η1,i < η2,i ∈ Γk . We now construct an appropriate partition of the parameter interval [0,1].

Lemma 2.6. Let k ∈ N with Γk �= ∅. Then there exists a partition 0 = t0 < t1 < · · · < tK−1 < tK = 1 and there exist E j ∈ Γk and
n0 ∈ N such that

E j /∈ σ(Ht) ∪ σ(Hn,t), ∀t ∈ [t j−1, t j], j = 1, . . . , K , n � n0. (2.11)
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Proof. For any t ∈ [0,1] there exists ηt ∈ Γk such that ηt /∈ σ(Ht). Since the spectrum of Ht depends continuously on the
parameter t there also exists ε = εt > 0 such that ηt /∈ σ(Hτ ) for all τ ∈ (t − εt , t + εt). By compactness, we can find a
partition (τ j)0� j�K (with τ0 = 0, τK = 1) such that the intervals (τ j − ε j, τ j + ε j) cover [0,1]. Set E j := ητ j . We next pick
arbitrary points t j ∈ (τ j, τ j + ε j) ∩ (τ j+1 − ε j+1, τ j+1), for j = 1, . . . , K − 1, set t0 = 0, tK = 1 and see that E j /∈ σ(Ht) for
t j−1 � t � t j , j = 1, . . . , K . By Lemma 2.4, using Lemma 2.3 combined with a simple compactness argument, we then find
that we also have E j /∈ σ(Hn,t) for t ∈ [t j−1, t j] and n large. �

We are now ready for the proof of Theorem 2.2.

Proof of Theorem 2.2. Let E j be as in Lemma 2.6 and Nk as in Eq. (2.4). We fix some Ẽ ∈ Γk such that Ẽ > E j for j =
0, . . . , K and Ẽ /∈ σ(Ht j ) ∪ σ(Hn,t j ) for j = 0, . . . , K and for all n large. It is then easy to see that

Nk =
K∑

j=1

(
dim P (E j ,̃E)(Ht j ) − dim P (E j ,̃E)(Ht j−1)

)
(2.12)

and that

dim P (−∞,̃E)(Hn,1) − dim P (−∞,̃E)(Hn,0) =
K∑

j=1

(
dim P (E j ,̃E)(Hn,t j ) − dim P (E j ,̃E)(Hn,t j−1)

)
. (2.13)

The left-hand side of (2.13) equation equals k. Furthermore, by Lemma 2.4, we have

dim P (E j ,̃E)(Ht j ) = dim P (E j ,̃E)(Hn,t j ) (2.14)

for all j and all n large, and the desired result follows. �
3. A one-dimensional periodic step potential

In this section, we study the one-dimensional 2π -periodic potential

V (x) :=
{−1, x ∈ [0,π ],

1, x ∈ (π,2π).
(3.1)

(While the other sections of this paper deal with 1-periodic potentials, we have preferred to work here with period 2π
in order to keep the explicit calculations done by hand as simple as possible.) To obtain the band-gap structure of H =
− d2

dx2 + V , we compute the discriminant function

D(E) := ϕ1(2π ; E) + ϕ′
2(2π ; E) = tr

(
ϕ1(2π ; E) ϕ′

1(2π ; E)

ϕ2(2π ; E) ϕ′
2(2π ; E)

)
(3.2)

where ϕ1( · ; E) and ϕ2( · ; E) solve the equation

−u′′ + (V − E)u = 0 (3.3)

and satisfy the boundary conditions

ϕ1(0; E) = ϕ′
2(0; E) = 1 and ϕ′

1(0; E) = ϕ2(0; E) = 0. (3.4)

The matrix M(E) on the right-hand side of (3.2) is called the monodromy matrix. A simple computation shows that
[−1/2,1/2] ⊂ Γ1, where Γ1 is the first spectral gap of H (with numbering according to Floquet theory). Note that the

gap edges of Γ1 also equal the first eigenvalue in the (semi-)periodic eigenvalue problem for − d2

dx2 + V in L2(0,2π), cf., e.g.,
[8,4].

As explained in [8,20], for any E /∈ σ(H), there are two solutions ϕ±(x; E) ∈ C1(R), square integrable at ±∞, of (3.3);
in fact, the functions ϕ±(x; E) are exponentially decaying at ±∞ and exponentially increasing at ∓∞. In our example, the
dislocation potential Wt for t ∈ (0,1) will produce a bound state at E if and only if the boundary conditions coming from
ϕ+(0; E) and ϕ−(t; E) match up, i.e.,

ϕ−(t; E) = ϕ+(0; E) and ϕ′−(t; E) = ϕ′+(0; E). (3.5)

An equivalent condition for (3.5) is the equality of the ratio functions ϕ−(t;E)

ϕ′−(t;E)
and ϕ+(0;E)

ϕ′+(0;E)
, cf. [7]. We compute the Floquet

solutions ϕ± by solving the equation −u′′ + (V − E)u = 0 for x < 0 and x > 0 and for E varying in [−1/2,1/2], assuming
that (u(0), u′(0)) equals an appropriate eigenvector of M(E). Note that, since D(E) < −2, both eigenvalues of M(E) are
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Fig. 1. An eigenvalue branch of Ht in the first spectral gap.

negative and not equal to −1. Finally, we divide [−1/2,1/2] into 100 subintervals of equal length and compute numerical
values for t such that∣∣∣∣ϕ−(t; E)

ϕ′−(t; E)
− ϕ+(0; E)

ϕ′+(0; E)

∣∣∣∣ < ε, (3.6)

where the error ε > 0 is small. This leads to the following plot of t �→ E(t), see Fig. 1.

4. Periodic potentials on the strip and the plane

Let V : R
2 → R be Z

2-periodic and Lipschitz-continuous and let Σ = R × (0,1) denote the infinite strip of width 1. We
denote by St the (self-adjoint) operator −�+ Wt , acting in L2(Σ), with periodic boundary conditions in the y-variable and
with Wt defined as in Eq. (1.2); again, the parameter t ranges between 0 and 1. Since S0 is periodic in the x-variable, its
spectrum has a band-gap structure.

We first observe that the essential spectrum of the family St does not depend on the parameter t , i.e., σess(St) = σess(S0)

for all t ∈ [0,1]. As in Section 2, this follows from the compactness of (St − c)−1 − (St,D − c)−1, where St,D is St with an
additional Dirichlet boundary condition at x = 0, say. (While, in one dimension, adding in a Dirichlet boundary condition
at a single point causes a rank-one perturbation of the resolvent, the resolvent difference is now Hilbert–Schmidt, which
can be seen from the following well-known line of argument: If −�Σ denotes the (negative) Laplacian in L2(Σ) and
−�Σ;D is the (negative) Laplacian in L2(Σ) with an additional Dirichlet boundary condition at x = 0, then (−�Σ + 1)−1 −
(−�Σ;D + 1)−1 has an integral kernel which can be written down explicitly using the Green’s function for −�Σ and the
reflection principle.)

While the essential spectrum of the family St does not change as t ranges through [0,1], St will have discrete eigenvalues
in the spectral gaps of S0 for appropriate values of t . We have the following result.

Theorem 4.1. Let (a,b), a < b, denote a spectral gap of St and let E ∈ (a,b). Then there exists t = tE ∈ (0,1) such that E is a discrete
eigenvalue of St .

Proof. (1) As on the real line, we work with approximating problems on finite size sections of the infinite strip Σ . Let

Σn,t := (−n − t,n) × (0,1), n ∈ N, (4.1)

and consider Sn,t := −� + Wt acting in L2(Σn,t) with periodic boundary conditions in both coordinates. The operator Sn,t
has compact resolvent and purely discrete spectrum accumulating only at +∞. The rectangles Σn,0 (respectively, Σn,1)
consist of 2n (respectively, 2n + 1) period cells. By routine arguments (see, e.g., [20,8]), the number of eigenvalues below
the gap (a,b) is an integer multiple of the number of cells in these rectangles; we conclude, that eigenvalues of Sn,t must
cross the gap as t increases from 0 to 1.

(2) Let E ∈ (a,b). According to (1), for any n ∈ N we can find tn ∈ (0,1) such that E ∈ σdisc(Sn,tn ); then there are
eigenfunctions un ∈ D(Sn,tn ) with Sn,tn un = Eun , ‖un‖ = 1, and ‖∇un‖ � C for some constant C � 0. We now choose cut-off
functions ϕn as in Section 2 and denote the natural extension to R

2 again by ϕn . We also let ψn = 1 − ϕn . Clearly,∥∥(Stn − E)(ϕn/4un)
∥∥,

∥∥(Sn,tn − E)(ψn/4un)
∥∥ � c/n, (4.2)

for some c � 0. There is a subsequence (tn j ) j∈N ⊂ (tn)n∈N and t ∈ [0,1] such that tn j → t as j → ∞. Since V is Lipschitz,
we may infer from (4.2) that∥∥(St − E)(ϕn j/4un j )

∥∥ → 0, j → ∞, (4.3)

and it remains to show that ‖ψn/4un‖ → 0 so that ‖ϕn/4un‖ → 1. We associate with functions v :Σn,t → C functions
ṽ :Σn,0 → C by

ṽ(x, y) :=
{

v(x, y), x > 0,

v(x − t, y), x < 0,
(4.4)
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in analogy with Eq. (2.10). Then [ψn/4un]∼ ∈ D(Sn,0) and∥∥(Sn,0 − E)[ψn/4un]∼
∥∥ = ∥∥(Sn,tn − E)(ψn/4un)

∥∥ � c/n. (4.5)

Since (a,b)∩σ(Sn,0) = ∅ for all n ∈ N, and since E ∈ (a,b), the Spectral Theorem implies that [ψn/4un]∼ → 0 (and therefore
also ψn/4un → 0) as n → ∞.

We therefore have shown that the functions vn j := ϕn j/4un j for j ∈ N satisfy ‖(St − E)vn j ‖ → 0 and ‖vn j ‖ → 1 as j → ∞
which implies E ∈ σ(St). �
Remark 4.2. By a well-known line of argument, one can obtain exponential localization of the eigenfunctions of St near the
interface {(x, y) | x = 0}. Since we will use exponential localization in a more systematic way in the forthcoming paper [13]
we only give a brief sketch here: Suppose that E ∈ (a,b) and t ∈ (0,1) satisfy E ∈ σ(St). Let u ∈ D(S0) = D(St) denote a
normalized eigenfunction and let ϕn , n ∈ N, be as in the proof of Theorem 4.1. As above, we have

(St − E)(ϕnu) = −2∇ϕn · ∇u − (�ϕn)u =: rn, (4.6)

where ‖rn‖ � c/n, for n ∈ N. Since rn has support in the interval (−2n − 1,2n) we now see that there exist constants C � 0
and α > 0 such that

‖χ|x|�4nu‖ �
∥∥χ|x|�4n(St − E)−1rn

∥∥ � Ce−αn, (4.7)

by standard exponential decay estimates for the resolvent kernel of Schrödinger operators (cf., e.g., [21,13]).

We now turn to the dislocation problem on the plane R
2 where we study the operators

Dt = −� + Wt, 0 � t � 1. (4.8)

Denote by St(ϑ) the operator St with ϑ-periodic boundary conditions in the y-variable. Since Wt is periodic with respect
to y, we have

Dt �
⊕∫

[0,2π ]
St(ϑ)

dϑ

2π
, (4.9)

and hence the spectrum of Dt has a band-gap structure; furthermore, Dt has no singular continuous part, cf. [6,11]. As for
the spectrum of St inside the gaps of S0, Theorem 4.1 leads to the following result.

Theorem 4.3. Let (a,b) denote a spectral gap of D0 , a > infσess(D0), and let E ∈ (a,b). Then there exists t = tE ∈ (0,1) with
E ∈ σ(Dt).

Proof. Let ϕnun ∈ D(St) as in part (2) of the proof of Theorem 4.1 denote an approximate solution of the eigenvalue problem
for St and E . We extend un to a function ũn(x, y) on R

2 which is periodic in y. Writing Φn = Φn(x, y) := ϕn(x)ϕn(y) we
compute

(Dt − E)(Φnũn) = (−∂2
x − ∂2

y + Wt − E
)(

ϕn(x)ϕn(y)ũn(x, y)
)

= ϕn(y)
[
(St − E)

(
ϕn(x)un

)]∼ − ϕn(x)
(
2ϕ′

n(y)∂yũn + ϕ′′
n (y)ũn

)
. (4.10)

The norms of the three terms on the right-hand side can be estimated (up to a constant which is independent of n) by εn,
1
n n and 1

n2 n, respectively, and we see that∥∥(Dt − E)(Φnũn)
∥∥ � c0(1 + nε), (4.11)

while ‖Φnũn‖ � c0n with a constant c0 > 0. This implies the desired result. �
Remark 4.4. We learn from the above proof that there are functions

vn = vn(x, y) := 1

‖Φnũn‖Φnũn (4.12)

that satisfy ‖vn‖ = 1, supp vn ⊂ [−n,n]2 and

(Dt − E)vn → 0, n → ∞. (4.13)

These functions play a key role in our analysis of the rotation problem at small angle in [13].
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We finally turn to a brief discussion of the i.d.s. (the integrated density of states [24]) for the dislocation operators Dt .
We adopt the natural distinction of [6,10,17] between bulk and surface states. Roughly speaking, the bulk states correspond
to states away from the interface with energies in the spectral bands while the surface states for 0 < t < 1 are produced by
the interface and are (exponentially) localized near the interface. The (integrated) density of states measures for the bulk
and surface states use a different scaling factor in the following definition: restricting Dt to large squares Q n = (−n,n)2 and
taking Dirichlet boundary conditions, we obtain the operators D(n)

t . For I ⊂ R an open interval, let N(I, D(n)
t ) denote the

number of eigenvalues of D(n)
t in I , counting multiplicities. We then define for open intervals I ⊂ R and J ⊂ R \σ(D0) with

J ⊂ R \ σ(D0)

ρbulk(I, Dt) = lim
n→∞

1

4n2
N

(
I, D(n)

t

)
, ρsurf( J , Dt) = lim

n→∞
1

2n
N

(
J , D(n)

t

)
. (4.14)

The existence of the limits in (4.14) has been established in [10,17] for ergodic Schrödinger operators. Note that the surface
density of states measure is defined (and possibly non-zero) for subintervals of the spectral bands, but then Eq. (4.14) is not
suited to capture the surface states (cf. [10,17]).

The fact that the surface density of states exists does not mean it is non-zero and there are only rare examples where
we know ρsurf to be non-trivial. It is one of the main results of the present paper to show that dislocation moves enough
states through the gap to have a non-trivial surface density of states, for suitable parameters t . Indeed, it is now easy to
derive the following result:

Corollary 4.5. Let (a,b) be a spectral gap of D0 with a > infσess(D0), and let ∅ �= J ⊂ (a,b) be an open interval. Then there is a
t ∈ (0,1) such that ρsurf( J , Dt) > 0.

Proof. Let [α,β] ⊂ J with α < β , fix E ∈ (α,β), and let 0 < ε < min{E − α,β − E}. By Theorem 4.3 and Remark 4.4 there
exist t = tE ∈ (0,1) and a function u0 in the domain of Dt satisfying ‖u0‖ = 1, supp u0 compact, and ‖(Dt − E)u0‖ < ε.
Let ν ∈ N be such that supp u0 ⊂ (−ν,ν)2; note that, in the present proof, ν corresponds to the n of Remark 4.4. We then
see that the functions ϕk , defined by ϕk(x, y) := u0(x, y − 2kν) for k ∈ N, have pairwise disjoint supports, are of norm 1,
and satisfy ‖(Dt − E)ϕk‖ < ε. Furthermore, we have suppϕk ⊂ (−n,n)2 provided (2k + 1)ν < n. Denoting Mn := span{ϕk |
k ∈ N, k � 1

2 ( n
ν − 1)}, it is clear that dim Mn � n/(3ν), for all n large. Let Nn denote the range of the spectral projection

P (α,β)(D(n)
t ) of D(n)

t associated with the interval (α,β); we will show that dim Nn � dim Mn which implies the desired
result. If we assume for a contradiction that dim Nn < dim Mn for some n ∈ N, we can find a function v ∈ Mn ∩ N ⊥

n of

norm 1. By the Spectral Theorem, ‖(D(n)
t − E)v‖ � ε. On the other hand, v is a finite linear combination of the ϕk , which

implies ‖(D(n)
t − E)v‖ < ε. �

We will continue the discussion of bulk versus surface states in the companion paper [13] where a corresponding upper
bound of the form N( J , D(n)

t ) � cn logn is provided.

5. Muffin tin potentials

Here we present some simple examples where one can see the behavior of surface states directly. We will deal with
Z

2-periodic muffin tin potentials of infinite height (or depth) on the plane R
2 which can be specified by fixing a radius

0 < r < 1/2 for the discs where the potential vanishes, and the center P0 = (x0, y0) ∈ [0,1)2 for the generic disc. In other
words, we consider the periodic sets

Ωr,P0 :=
⋃

(i, j)∈Z2

Br
(

P0 + (i, j)
)
,

and we let V = Vr,P0 be zero on Ωr,P0 while we assume that V is infinite on R
2 \ Ωr,P0 . If Hij is the Dirichlet Laplacian

of the disc Br(P0 + (i, j)), then the form-sum of −� and Vr,P0 is
⊕

(i, j)∈Z2 Hij . Without loss of generality, we may assume
y0 = 0 henceforth.

5.1. Dislocation in the x-direction

Here muffin tin potentials yield an illustration for some of the phenomena encountered in Section 4. In the simplest
case we would take x0 = 1/2 so that the disks Br(1/2 + i, j), for i ∈ N0 and j ∈ Z, will not intersect or touch the interface
{(x, y) | x = 0}. Defining the dislocation potential Wt as in Section 4, we see that there are bulk states given by the Dirichlet
eigenvalues of all the discs that do not meet the interface, and there may be surface states given as the Dirichlet eigenvalues
of the sets Br(1/2 − t, j) ∩ {x < 0} for j ∈ Z and 1/2 − r < t < 1/2 + r.

More precisely, let μk = μk(r) denote the Dirichlet eigenvalues of the Laplacian on the disc of radius r, ordered by min–
max and repeated according to their respective multiplicities. The Dirichlet eigenvalues of the domains Br(1/2 − t,0) ∩ {x <

0}, 1/2 − r < t < 1/2 + r, are denoted as λk(t) = λk(t, r); they are continuous, monotonically decreasing functions of t and
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Fig. 2. Muffin tins: two cases for dislocation in the y-direction.

converge to μk as t ↑ 1/2 + r and to +∞ as t ↓ 1/2 − r. In this simple model, the eigenvalues μk correspond to the bands
of a periodic operator. We see that the gaps are crossed by surface states as t increases from 0 to 1, in accordance with the
results of Section 4 (Corollary 4.5).

Along the same lines, one can easily analyze examples where x0 is different from 1/2; here more complicated geometric
shapes may come into play. In [13] we will again use muffin tin potentials as examples for the rotation problem. In that
paper, we will also discuss approximations by muffin tin potentials of height n and their limit as n → ∞.

5.2. Dislocation in the y-direction

This problem has not been considered so far. We include a brief discussion of this case for two reasons: on the one
side, we observe a new phenomenon which did not appear so far; on the other hand, one can see from our example that,
presumably, there is no general theorem for translation of the left half-plane in the y-direction.

Let V = Vr denote the muffin tin potential defined above, with x0 = y0 = 0. We then let W̃t coincide with V in the
right half-plane, while we take W̃t(x, y) = V (x, y − t) in the left half-plane. At the interface {x = 0} we see half-discs on
the left and on the right with the half-discs on the right being fixed while the half-discs on the left are shifted by t in the
y-direction. The surface states correspond to the states of the Dirichlet Laplacian on the union Ωt,r;surf of these half-discs.
There are two cases: either Ωt,r;surf is connected and we have a scattering channel along the interface, or Ωt,r;surf is the
disjoint union of a sequence of bounded domains; cf. Fig. 2. In the second case, the eigenvalues on such domains start at
the Dirichlet eigenvalues of the disc of radius r, increase up to the corresponding eigenvalues of a half-disc, and then move
down again to where they started. For 1/4 < r < 1/2, the picture is more complicated: If we let τ0 = 1 − 2r, τ1 = 2r, we
find that the sets Ωt,r;surf are disconnected for 0 � t � τ0 and for τ1 � t � 1; for τ0 < t < τ1, however, Ωt,r;surf is connected
and forms a periodic wave guide with purely a.c. spectrum [23]; cf. also [6]. We therefore observe a dramatic change in
the spectrum of the dislocation operators: for t ∈ [0, τ0] ∪ [τ1,1] the surface states in the gap are given by eigenvalues of
infinite multiplicity while for t ∈ (τ0, τ1) the surface states form bands of a.c. spectrum in the gaps.

Note that, if we had chosen x0 = 1/2, then nothing at all would have happened for translation in the y-direction.
(The authors thank A. Ruschhaupt, Hannover, for asking about translation in the y-direction.)
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Appendix A. Continuity and regularity of eigenvalues

In this appendix, we discuss several basic facts concerning continuity and regularity of the eigenvalue branches for the
one-dimensional dislocation problem. We first consider potentials V from the class P ⊂ L1,loc,unif(R) as in (2.1) where the
eigenvalues are continuous functions of the dislocation parameter t . In the subsequent estimates we will use

‖V ‖1,loc,unif := sup
y∈R

y+1∫
y

∣∣V (x)
∣∣ dx (A.1)

as a natural norm on L1,loc,unif(R). As is well known (cf., e.g., [3]), any potential V ∈ L1,loc,unif(R) is relatively form-bounded
with respect to h0 with relative form-bound zero. More precisely, we have the following lemma.

Lemma A.1. For any ε > 0 there exists a constant Cε � 0 such that for any V ∈ L1,loc,unif(R) we have∫
R

|V ||ϕ|2 dx � ‖V ‖1,loc,unif
(
ε
∥∥ϕ′∥∥2 + Cε‖ϕ‖2), ϕ ∈ H1(R). (A.2)
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Proof. For f ∈ C∞
c (R) with support contained in (0, ε) we have ‖ f ‖∞ �

√
ε‖ f ′‖. Let (ζn)n∈N denote a (locally finite)

partition of unity on the real line with the properties: supp ζ1 ⊂ (0, ε), each ζn is a translate of ζ1, M := supx∈R

∑
n∈N

|ζ ′
n(x)|2

is finite and
∑

n∈N
ζ 2

n (x) = 1 for all x ∈ R. By the IMS localization formula (see [3]), we have for any ϕ ∈ C∞
c (R),

∥∥ϕ′∥∥2 = 〈−ϕ′′,ϕ
〉 = ∞∑

n=1

∥∥(ζnϕ)′
∥∥2 −

∞∑
n=1

∥∥ζ ′
nϕ

∥∥2 �
∞∑

n=1

∥∥(ζnϕ)′
∥∥2 − M‖ϕ‖2,

so that∫ ∣∣V (x)
∣∣∣∣ϕ(x)

∣∣2
dx �

∞∑
n=1

‖ζnϕ‖2∞
∫

supp ζn

∣∣V (x)
∣∣ dx

� ε
(∥∥ϕ′∥∥2 + M‖ϕ‖2)‖V ‖1,loc,unif.

The general case follows by approximation and Fatou’s lemma. �
For V ∈ P , the function

ϑV (s) :=
1∫

0

∣∣V (x + s) − V (x)
∣∣ dx, 0 � s � 1, (A.3)

is continuous and ϑV (s) → 0, as s → 0. Furthermore, for Wt is as in Eq. (1.1), we have ‖Wt − Wt′ ‖1,loc,unif = ϑV (t − t′). This
leads to the following lemma.

Lemma A.2. Let V ∈ P , E0 ∈ R \ σ(Ht0 ), and write ε0 := dist(E0, σ (Ht0 )). Then there is τ0 > 0 such that Ht has no spectrum in
(E0 − ε0/2, E0 + ε0/2) for |t − t0| < τ0 . Furthermore, there exists a constant C � 0 such that for some τ1 ∈ (0, τ0)∥∥(Ht − E0)

−1 − (Ht0 − E0)
−1

∥∥ � CϑV (t − t0), |t − t0| < τ1. (A.4)

Proof. Without loss of generality we may assume that V � 1. Let ht denote the quadratic form associated with Ht . Applying
Lemma A.1 (with ε := 1) we see that∣∣ht0 [u] − ht[u]∣∣ �

∫
R

|Wt − Wt0 ||u|2 dx � C1ϑV (t − t0)ht0 [u], u ∈ H1(R),

with some constant C1. The desired result now follows by [14, Thm. VI-3.9]. �
We therefore see that Htn → Ht0 in the sense of norm resolvent convergence if t0 ∈ [0,1], (tn)n∈N ⊂ [0,1] and tn → t0.

By standard arguments, this implies that the discrete eigenvalues of Ht depend continuously on t . We are now prepared for
the proof of Lemma 2.1.

Proof of Lemma 2.1. We consider t ∈ T, the flat one-dimensional torus, and we denote the spectral gap by (a,b). Let
[a′,b′] ⊂ (a,b).

(1) Let (η, τ ) ∈ (a,b) × T. Since σ(Hτ ) ∩ (a,b) is a discrete set, and since σ(Ht) depends continuously on t , there is
a neighborhood Uη,τ ⊂ (a,b) × T of (η, τ ) of the form Uη,τ = (η1, η2) × (τ1, τ2) belonging to either of the two following
types:

Type (1): For τ1 < t < τ2 we have σ(Ht) ∩ (η1, η2) = ∅, or
Type (2): η is an eigenvalue of Hτ and there is a continuous function f : (τ1, τ2) → (η1, η2) such that f (t) is an eigenvalue

of Ht ; Ht has no further eigenvalues in (η1, η2), for τ1 < t < τ2.

Now the family {Uη,τ | (η, τ ) ∈ (a,b) × T} is an open cover of (a,b) × T and there exists a finite selection {Uηi ,τi }i=1,...,N
such that

[
a′,b′] × T ⊂

N⋃
i=1

Uηi ,τi .

As a first consequence, we see that there is at most a finite number of functions that describe the spectrum of Ht in the
open set

⋃N
i=1 Uηi ,τi ⊃ [a′,b′] × T.

(2) Suppose that (η, τ ) ∈ (a,b) × T is such that η ∈ σ(Hτ ) and let f : (τ1, τ2) → (η1, η2) as above. Consider a sequence
(t j) j∈N ⊂ (τ1, τ2) with t j → τ1. We can find a subsequence (t j )k∈N such that f (t j ) → η̄ for some η̄ ∈ [η1, η2]. It is easy
k k
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to see that η̄ ∈ σ(Hτ1 ). If η̄ ∈ (a,b) the point (η̄, τ1) has a neighborhood U η̄,τ1 of type (2) and we can extend the domain
of definition of f beyond τ1. It follows that there exist a maximal open interval (α,β) ⊂ (0,1) and a (unique) continuous
extension f̃ : (α,β) → (a,b) of f such that f̃ (t) is an eigenvalue of Ht for all t ∈ (α,β).

(3) It remains to show that f̃ (t) converges to a band edge as t ↓ α and as t ↑ β . By the same argument as above,
we find that any sequence (t j) j∈N ⊂ (α,β) satisfying t j → α has a subsequence (t jk )k∈N such that f̃ (t jk ) → η̄ for some

η̄ ∈ [a,b]. Here η̄ /∈ (a,b) because otherwise we could again extend the domain of definition of f̃ beyond α, contradicting
the maximality property of the interval (α,β).

Suppose there are sequences (t j) j∈N, (s j) j∈N ⊂ (α,β) such that t j → α and s j → α and f̃ (t j) → a while f̃ (s j) → b as
j → ∞. Then for any η′ ∈ (a,b) there is a sequence (r j) j∈N ⊂ (α,β) such that r j → α and f̃ (r j) → η′ , whence η′ ∈ σ(Hα).
This would imply that (a,b) ⊂ σ(Hα), which is impossible. �

We next turn our attention to the question of Lipschitz-continuity of the functions f j in Lemma 2.1. With ϑV : [0,1] →
[0,∞) as in (A.3), we study potentials from the classes

Pα := {
V ∈ P

∣∣ ∃C � 0: ϑV (s) � C sα, ∀0 < s � 1
}
, (A.5)

where 0 < α � 1. The class Pα consists of all periodic functions V ∈ P which are (locally) α-Hölder-continuous in the
L1-mean; for α = 1 this is a Lipschitz-condition in the L1-mean. The class P1 is of particular practical importance since it
contains the periodic step functions. It will be shown below that P1 coincides with the class of periodic functions on the
real line which are locally of bounded variation. We first prove Lipschitz-continuity of the eigenvalues of Ht for V ∈ P1.

Proposition A.3. For V ∈ P1 , let (a,b) denote any of the gaps Γk of H and let f j : (α j, β j) → (a,b) be as in Lemma 2.1. Then the
functions f j are uniformly Lipschitz-continuous. More precisely, for each gap Γk there exists a constant Ck � 0 such that for all j∣∣ f j(t) − f j

(
t′)∣∣ � Ck

∣∣t − t′∣∣, α j � t, t′ � β j.

Proof. As in the proof of Lemma 2.6 we can find a finite number of levels E1, . . . , E� ∈ (a,b) and a partition 0 = τ0 <

τ1 < · · · < τ�−1 < τ� = 1 such that E j /∈ σ(Ht) for all t ∈ I j := [τ j−1, τ j] and for j = 1, . . . , �. Now V ∈ P1 implies
‖Wt − Wt′ ‖1,loc,unif = ϑV (t −t′) � C |t −t′| and we conclude with the aid of Lemma A.2 that there are constants c1, . . . , c� � 0
such that∥∥(Ht − E j)

−1 − (Ht′ − E j)
−1

∥∥ � c j
∣∣t − t′∣∣, t, t′ ∈ I j .

This implies that the min–max-values μk(s) of (Hs − E j)
−1 satisfy∣∣μk(t) − μk

(
t′)∣∣ � c j

∣∣t − t′∣∣, t, t′ ∈ I j .

By the spectral mapping theorem, the eigenvalues of Ht in (E j,b) are in bijection with the eigenvalues of (Ht − E j)
−1 in

( 1
b−E j

,∞). We now let C := max{c1, . . . , c�} to finish our proof. �
Remarks A.4. (a) By the same argument, we obtain the following result on Hölder-continuity: If 0 < α < 1 and V ∈ Pα , then
each of the functions f j : (α j, β j) → (a,b) is locally uniformly Hölder-continuous (as defined in [12]), i.e., for any compact
subset [α′

j, β
′
j] ⊂ (α j, β j) there is a constant C = C( j,α′

j, β
′
j) such that | f j(t)− f j(t′)| � C |t − t′|α , for all t, t′ ∈ [α′

j, β
′
j]. Note

that our method does not necessarily yield a uniform constant for the whole interval (α j, β j), much less a constant that
would be uniform for all j.

(b) For analytic potentials V , it is shown in [15] that the eigenvalue branches f j in Lemma 2.1 depend analytically on t .
This is a simple consequence of the fact that, for real analytic V , the Ht form a holomorphic family of self-adjoint operators
in the sense of Kato. In [16], the author proves that the f j are squares of W 1

2 -functions near the gap edges if the potential
is in L2(T).

We finally give a characterization of the class P1.

Proposition A.5. Let B V loc(R) denote the space of real-valued functions which are of bounded variation over any compact subset of
the real line.

Then P1 = P ∩ B V loc(R).

It is easy to see that any V ∈ P ∩ B V loc(R) belongs to P1: certainly, any V ∈ P which is monotonic over [0,1] is an
element of P1 and any function of bounded variation can be written as the difference of two monotonic functions.

The converse direction is established by the following result due to J. Voigt, Dresden; cf. also [9, Chapter 5] for related
material on B V -functions of several variables.
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Lemma A.6. Let f ∈ L1,loc(R,R) be periodic with period 1 and suppose that there are c � 0, ε > 0 such that

1∫
0

∣∣ f (x + t) − f (x)
∣∣dx � ct, ∀0 < t < ε. (A.6)

Consider f as a function in L1(T), with T denoting the one-dimensional torus.
We then have: the distributional derivative ∂ f is a (signed) Borel-measure μ on T and there is a number a ∈ R such that f (x) =

a + μ([0, x)), a.e. in [0,1) � T. In particular, f has a left-continuous representative of bounded variation.

Proof. Defining η : C1(T) → R by

η(ϕ) := −
1∫

0

ϕ′ f dx,

we may compute

−
1∫

0

ϕ′ f dx = lim
t→0

1∫
0

1

t

(
ϕ(x − t) − ϕ(x)

)
f (x)dx

= lim
t→0

1∫
0

ϕ(x)
1

t

(
f (x + t) − f (x)

)
dx,

and the assumption (A.6) yields the estimate |η(ϕ)| � c‖ϕ‖∞ . Since C1(T) is dense in C(T), the functional η has a unique
continuous extension to all of C(T); we denote the extension by the same symbol η. By the Riesz representation theorem
there is a measure μ such that η(ϕ) = ∫

ϕ dμ for all ϕ ∈ C(T). Furthermore, for ϕ ∈ C1(T) we have − ∫ 1
0 ϕ′ f dx = ∫ 1

0 ϕ dμ,

and we see that μ = ∂ f on T in the distributional sense. The choice ϕ := 1 yields
∫

T
dμ = − ∫ 1

0 ϕ′ f dx = 0 and the function

f̃ (x) := μ([0, x)) satisfies ∂ f̃ = μ. This is easy to check: for ϕ ∈ C1(T) we have

∫
f̃ ϕ′ dx =

1∫
0

∫
0�y<x

dμ(y)ϕ′(x)dx

=
∫

0�y<1

1∫
y

ϕ′(x)dx dμ(y) = −
∫

[0,1)

ϕ(y)dμ(y).

We therefore see that ∂( f − f̃ ) = 0; hence there is some a such that f − f̃ = a. �
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