2,245 research outputs found

    No Thermal Anomalies in the Mantle Transition Zone beneath an Incipient Continental Rift: Evidence from the First Receiver Function Study Across the Okavango Rift Zone, Botswana

    Get PDF
    Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain rift dynamics. Situated atop of the hypothesized African Superplume, the incipient Okavango Rift Zone (ORZ) of northern Botswana is ideal to investigate the role of mantle plumes in rift initiation and development, as well as the interaction between the upper and lower mantle. The ORZ developed within the Neoproterozoic Damara belt between the Congo Craton to the northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status beneath the ORZ are poorly known, mostly due to a complete paucity of broadband seismic stations in the area. As a component of an interdisciplinary project funded by the United States National Science Foundation, a broad-band seismic array was deployed over a 2-yr period between mid-2012 and mid-2014 along a profile 756 km in length. Using P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km discontinuities bordering the mantle transition zone (MTZ) are imaged for the first time. When a standard Earth model is used for the stacking of RFs, the apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km shallower than those beneath the Congo Craton. Using teleseismic Pand S-wave traveltime residuals obtained by this study and lithospheric thickness estimated by previous studies, we conclude that the apparent shallowing is the result of a 100-150 km difference in the thickness of the lithosphere between the two cratons. Relative to the adjacent tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities or in teleseismic P- and S-wave traveltime residuals are found beneath the ORZ. These observations imply an absence of significant thermal anomalies in the MTZ and in the upper mantle beneath the incipient rift, ruling out the role of mantle plumes in the initiation of the ORZ. We propose that the initiation and development of the ORZ were the consequences of relative movements between the South African block and the rest of the African plate along a zone of lithospheric weakness between the Congo and Kalahari cratons. An area of thinner-than-normal MTZ is found at the SW corner of the study area. This anomaly, if confirmed by future studies, could suggest significant transferring of heat from the lower to the upper mantle

    On Petition for a Writ of Certiorari to The United States Court of Appeals for The Eighth Circuit, Brief of Law Professors Paul F. Rothstein, et. al., Office of the President v. Office of Independent Counsel

    Get PDF
    This Court should grant review not only because this is a case of national importance and prominence, but also because the decision below is a conspicuous departure from settled principles of evidence law. The panel majority concluded that communications between government lawyers and government officials are not protected by the attorney-client privilege, at least when those communications are sought by a federal grand jury. That conclusion conflicts with the predominant common-law understanding that the attorney-client privilege applies to government entities and that where the privilege applies, it is absolute (i.e., it protects against disclosure in all types of legal and investigative proceedings). In particular, the Court of Appeals\u27 decision rests on a fundamental misunderstanding of this Court\u27s decisions in Upjohn Co. v. United States, 449 U.S. 383 (1981), and United States v. Nixon, 418 U.s. 683 (1974). Moreover, this case warrants further review because the decision below has profound implications beyond the parties to this dispute. The Court of Appeals\u27 ruling, if allowed to stand, will create widespread uncertainty among federal, state, and local officials concerning the extent to which their communications with their agency lawyers, for the purpose of seeking legal advice in the conduct of governmental affairs, are protected by the attorney-client privilege. Unless this Court grants review and resolves this uncertainty, the decision below will likely have an adverse effect on the current and future operation of not only the Office of the President of the United States, but also government at all levels. At the very least, a decision of such vast implications (as in the present case) should be made by the highest court in the land. We accordingly urge the Court to grant the petition for review

    Differential contribution of Bud6p and Kar9p to microtubule capture and spindle orientation in S. cerevisiae

    Get PDF
    In Saccharomyces cerevisiae, spindle orientation is controlled by a temporal and spatial program of microtubule (MT)–cortex interactions. This program requires Bud6p/Aip3p to direct the old pole to the bud and confine the new pole to the mother cell. Bud6p function has been linked to Kar9p, a protein guiding MTs along actin cables. Here, we show that Kar9p does not mediate Bud6p functions in spindle orientation. Based on live microscopy analysis, kar9Δ cells maintained Bud6p-dependent MT capture. Conversely, bud6Δ cells supported Kar9p-associated MT delivery to the bud. Moreover, additive phenotypes in bud6Δ kar9Δ or bud6Δ dyn1Δ mutants underscored the separate contributions of Bud6p, Kar9p, and dynein to spindle positioning. Finally, tub2C354S, a mutation decreasing MT dynamics, suppressed a kar9Δ mutation in a BUD6-dependent manner. Thus, Kar9p-independent capture at Bud6p sites can effect spindle orientation provided MT turnover is reduced. Together, these results demonstrate Bud6p function in MT capture at the cell cortex, independent of Kar9p-mediated MT delivery along actin cables

    Prediction of landing gear loads using machine learning techniques

    Get PDF
    This article investigates the feasibility of using machine learning algorithms to predict the loads experienced by a landing gear during landing. For this purpose, the results on drop test data and flight test data will be examined. This article will focus on the use of Gaussian process regression for the prediction of loads on the components of a landing gear. For the learning task, comprehensive measurement data from drop tests are available. These include measurements of strains at key locations, such as on the side-stay and torque link, as well as acceleration measurements of the drop carriage and the gear itself, measurements of shock absorber travel, tyre closure, shock absorber pressure and wheel speed. Ground-to-tyre loads are also available through measurements made with a drop test ground reaction platform. The aim is to train the Gaussian process to predict load at a particular location from other available measurements, such as accelerations, or measurements of the shock absorber. If models can be successfully trained, then future load patterns may be predicted using only these measurements. The ultimate aim is to produce an accurate model that can predict the load at a number of locations across the landing gear using measurements that are readily available or may be measured more easily than directly measuring strain on the gear itself (for example, these may be measurements already available on the aircraft, or from a small number of sensors attached to the gear). The drop test data models provide a positive feasibility test which is the basis for moving on to the critical task of prediction on flight test data. For this, a wide range of available flight test measurements are considered for potential model inputs (excluding strain measurements themselves), before attempting to refine the model or use a smaller number of measurements for the prediction

    A Laboratory Model of a Hydrogen/Oxygen Engine for Combustion and Nozzle Studies

    Get PDF
    A small laboratory diagnostic thruster was developed to augment present low thrust chemical rocket optical and heat flux diagnostics at the NASA Lewis Research Center. The objective of this work was to evaluate approaches for the use of temperature and pressure sensors for the investigation of low thrust rocket flow fields. The nominal engine thrust was 110 N. Tests were performed at chamber pressures of about 255 kPa, 370 kPa, and 500 kPa with oxidizer to fuel mixture ratios between 4.0 and 8.0. Two gaseous hydrogen/gaseous oxygen injector designs were tested with 60 percent and 75 percent fuel film cooling. The thruster and instrumentation designs were proven to be effective via hot fire testing. The thruster diagnostics provided inner wall temperature and static pressure measurements which were compared to the thruster global performance data. For several operating conditions, the performance data exhibited unexpected trends which were correlated with changes in the axial wall temperature distribution. Azimuthal temperature distributions were found to be a function of operating conditions and hardware configuration. The static pressure profiles showed that no severe pressure gradients were present in the rocket. The results indicated that small differences in injector design can result in dramatically different thruster performance and wall temperature behavior, but that these injector effects may be overshadowed by operating at a high fuel film cooling rate

    Armed Intervention and Civilian Victimization in Intrastate Conflicts

    Get PDF
    Abstract Research has begun to examine the relationship between changes in the conflict environment and levels of civilian victimization. We extend this work by examining the effect of external armed intervention on the decisions of governments and insurgent organizations to victimize civilians during civil wars. We theorize that changes in the balance of power in an intrastate conflict influence combatant strategies of violence. As a conflict actor weakens relative to its adversary, it employs increasingly violent tactics toward the civilian population as a means of reshaping the strategic landscape to its benefit. The reason for this is twofold. First, declining capabilities increase resource needs at the moment that extractive capacity is in decline. Second, declining capabilities inhibit control and policing, making less violent means of defection deterrence more difficult. As both resource extraction difficulties and internal threats increase, actors' incentives for violence against the population increase. To the extent that biased military interventions shift the balance of power between conflict actors, we argue that they alter actor incentives to victimize civilians. Specifically, intervention should reduce the level of violence employed by the supported faction and increase the level employed by the opposed faction. We test these arguments using data on civilian casualties and armed intervention in intrastate conflicts from 1989 to 2004. Our results support our expectations, suggesting that interventions shift the power balance and affect the levels of violence employed by combatants
    • …
    corecore