145 research outputs found

    Bridging the divide: Making research matter to local government

    Get PDF
    The ‘Freeport Declaration on Improving Local Government: The Commonwealth Vision’, affirmed at the May 2009 Commonwealth Local Government Conference by 550 councillors, mayors, and senior officials from 48 countries, outlined the clear importance of research in public policy development. In the words of the Declaration: “practice oriented research should become more prominent in the work of CLGF,” and this is to be achieved through the Commonwealth Local Government Forum (CLGF) Research Advisory Group, comprised of participants drawn from universities, training organizations and other research-related bodies in about a dozen member countries. These statements should be the basis of a radical change in how researchers engage local governments

    Bio-hydrogen and biomass-supported palladium catalyst for energy production and waste-minimisation

    Get PDF
    The project objective was to advance the development of the H2 economy by improving biological H2 production in a sustainable way. Pseudo-continuous H2 production was achieved with improved efficiency, via the bacterial fermentation of sugars in a dual-bioreactor (‘upstream system’) comprising a dark fermentation coupled to a photofermentation. Excess biomass from the upstream system was used to recover palladium from solution, producing ‘palladised biomass’ (Bio-Pd(0)), which was useful in the construction of bioinorganic catalytic anodes for the electricity generation from bio-H2 using a polymer electrolyte membrane fuel cell (‘downstream system’). Furthermore, the catalytic usefulness of Bio-Pd(0) was confirmed in several reactions in comparison with other palladised biomasses and with Pd(0) made chemically. The upstream modules: Escherichia coli dark fermentation and Rhodobacter sphaeroides photofermentation, were investigated and developed separately, before coupling the two stages by the novel application of electrodialysis (accelerated membrane separation). The biorecovery and testing of palladium bionanocatalyst are described, before the production of fuel cell catalyst using waste biomass. The technical challenges and potential benefits of biohydrogen production are discussed and contrasted with those of competing biofuel technologies

    Late Modern War and the Geos

    Get PDF
    This article works toward an ontology of war centered on the life of the planet, or geos. Noting a disciplinary tendency to focus on the makers of war, we ask: What if our analyses of war begin not with the technologies of killing but with the life that is targeted? Our response proceeds in four sections. We first identify a “militarized ontology” of war that forms through the ways that militaries figure violence as spatially and temporally “precise” and thus distinct from longer-term environmental effects. We then argue that these ontological bounds persist also in critical scholarship on war. Writing against such ontological contingencies, we learn from feminist IR to set out a theoretical path for knowing war on different terms, from the perspective of the geos. From here, our main contribution forms: Attending to war ecologies and non/human health, war appears in a form that critically contrasts with a large part of current work in IR; it is no longer a primarily accelerated, aerial, or remote activity but rather an enduring, terranean, and proximate intervention in the environment and the life it sustains. We close with explication of the significance of geos-centered study of war in IR and beyond.</p

    Electro-extractive fermentation for efficient biohydrogen production

    Get PDF
    Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50–70% maintained over continuous 30-day experiments. Contrary to\ud previous reports, E. coli produced H2 after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy

    Bridging the divide : making research matter to local government

    Get PDF
    Meeting: Commonwealth Local Government Conference, Freeport, Bahamas, May 2009The article provides information about IDRC’s Urban Poverty and Environment programme. Lessons learned from the programme suggest that while evidence-based policy and programs can underpin local government decision making, in practice, the transfer of knowledge from researchers and scientists to governments and service deliverers is problematic and not easily achieved. The need for locally developed and owned data is an important one. The article concludes by proposing some mechanisms to increase the possibilities of researchers’ impact on policy

    Conceptual control across modalities : Graded specialisation for pictures and words in inferior frontal and posterior temporal cortex

    Get PDF
    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings - as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features - however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations

    Enhancement of Photosynthetic Productivity by Quantum Dots Application

    Get PDF
    The challenge of climate change promotes use of carbon neutral fuels. Biofuels are made via fixing carbon dioxide via photosynthesis which is inefficient. Light trapping pigments use restricted light wavelengths. A study using the microalga Botryococcus braunii (which produces bio-oil), the bacterium Rhodobacter sphaeroides (which produces hydrogen), and the cyanobacterium Arthrospira platensis (for bulk biomass) showed that photosynthetic productivity was increased by up to 2.5-fold by upconverting unused wavelengths of sunlight via using quantum dots. For large scale commercial energy processes, a 100-fold cost reduction was calculated as the break-even point for adoption of classical QD technology into large scale photobioreactors (PBRs). As a potential alternative, zinc sulfide nanoparticles (NPs) were made using waste H2S derived from another process that precipitates metals from mine wastewaters. Biogenic ZnS NPs behaved identically to ZnS quantum dots with absorbance and emission maxima of 290 nm (UVB, which is mostly absorbed by the atmosphere) and 410 nm, respectively; the optimal wavelength for chlorophyll a is 430 nm. By using a low concentration of citrate (10 mM) during ZnS synthesis, the excitation wavelength was redshifted to 315 nm (into the UVA, 85% of which reaches the earth’s surface) with an emission peak of 425 nm, i.e., appropriate for photosynthesis. The potential for use in large scale photobioreactors is discussed in the light of current PBR designs, with respect to the need for durable UV-transmitting materials in appropriate QD delivery systems

    Dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers using a hybrid bioinorganic catalyst

    Get PDF
    The environmentally prevalent polybrominated diphenyl ether (PBDE) #47 and polychlorinated biphenyls (PCBs) #28 and #118 were challenged for 24 hours with a novel biomass-supported Pd catalyst (BioPd0). Analysis of the products via GC/MS revealed the BioPd0 to cause the challenged compounds to undergo stepwise dehalogenation with preferential loss of the least sterically hindered halogen atom. A mass balance for PCB #28 showed that it is degraded to three dichlorobiphenyls (33.9 %), two monochlorobiphenyls (12 %), and biphenyl (30.7 %). The remaining mass was starting material. In contrast, while PCB #118 underwent degradation to yield five tetra- and five trichlorinated biphenyls; no less chlorinated products or biphenyl were detected, and the total mass of degraded products was 0.3 %. Although the BioPd0 material was developed for treatment of PCBs, a mass balance for PBDE #47 showed that the biocatalyst could prove a useful method for treatment of PBDEs. Specifically, 10 % of PBDE # 47 was converted to identifiable lower brominated congeners, predominantly the tribrominated BDE 17, and the dibrominated BDE 4, 75 % remained intact, while 15 % of the starting mass was unaccounted for

    Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin β4 knockout mice

    Get PDF
    Sarcomere assembly is a highly orchestrated and dynamic process which adapts, during perinatal development, to accommodate growth of the heart. Sarcomeric components, including titin, undergo an isoform transition to adjust ventricular filling. Many sarcomeric genes have been implicated in congenital cardiomyopathies, such that understanding developmental sarcomere transitions will inform the aetiology and treatment. We sought to determine whether Thymosin β4 (Tβ4), a peptide that regulates the availability of actin monomers for polymerization in non-muscle cells, plays a role in sarcomere assembly during cardiac morphogenesis and influences adult cardiac function. In Tβ4 null mice, immunofluorescence-based sarcomere analyses revealed shortened thin filament, sarcomere and titin spring length in cardiomyocytes, associated with precocious up-regulation of the short titin isoforms during the postnatal splicing transition. By magnetic resonance imaging, this manifested as diminished stroke volume and limited contractile reserve in adult mice. Extrapolating to an in vitro cardiomyocyte model, the altered postnatal splicing was corrected with addition of synthetic Tβ4, whereby normal sarcomere length was restored. Our data suggest that Tβ4 is required for setting correct sarcomere length and for appropriate splicing of titin, not only in the heart but also in skeletal muscle. Distinguishing between thin filament extension and titin splicing as the primary defect is challenging, as these events are intimately linked. The regulation of titin splicing is a previously unrecognised role of Tβ4 and gives preliminary insight into a mechanism by which titin isoforms may be manipulated to correct cardiac dysfunction
    corecore