
 

 

 

 

BIO-HYDROGEN AND BIOMASS-
SUPPORTED PALLADIUM CATALYST  
FOR ENERGY PRODUCTION AND WASTE-
MINIMISATION 
 
by  
 
Mark D. Redwood 

 
 

A thesis submitted to 
The University of Birmingham 
For the degree of 
DOCTOR OF PHILOSOPHY 
 
 

 

 

 

 

 

 

 
 

 

 

School of Biosciences 
The University of Birmingham 

September 2007 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Abstract 

 

The project objective was to advance the development of the H2 economy by improving 

biological H2 production in a sustainable way.  Pseudo-continuous H2 production was 

achieved with improved efficiency, via the bacterial fermentation of sugars in a dual-

bioreactor (‘upstream system’) comprising a dark fermentation coupled to a 

photofermentation.  Excess biomass from the upstream system was used to recover palladium 

from solution, producing ‘palladised biomass’ (Bio-Pd(0)), which was useful in the 

construction of bioinorganic catalytic anodes for the electricity generation from bio-H2 using 

a polymer electrolyte membrane fuel cell (‘downstream system’).  Furthermore, the catalytic 

usefulness of Bio-Pd(0) was confirmed in several reactions in comparison with other 

palladised biomasses and with Pd(0) made chemically.   

 

The upstream modules: Escherichia coli dark fermentation and Rhodobacter sphaeroides 

photofermentation, were investigated and developed separately, before coupling the two 

stages by the novel application of electrodialysis (accelerated membrane separation).  The 

biorecovery and testing of palladium bionanocatalyst are described, before the production of 

fuel cell catalyst using waste biomass.  The technical challenges and potential benefits of 

biohydrogen production are discussed and contrasted with those of competing biofuel 

technologies. 
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Figure 1.1-a  Project Concept.  
Hydrogen has potential value as a clean fuel.  Further, if the system were applied using 
carbohydrate-rich wastes from industry, hydrogen could be used immediately on-site in 
industry (via combustion or electricity generation) to offset process and manufacturing costs.  
The development of hydrogen biotechnology is advancing rapidly as hydrogen gains 
recognition as a fuel of increasing importance, in parallel to the demise of fossil fuels.  In this 
context, the concept of this project was to produce both H2 and electricity using linked 
biosystems. Pd, palladium; Bio-Pd(0), biomass supported palladium catalyst; PEM, polymer 
electrolyte membrane. 
 

 

The project is divided between the ‘upstream system’ for biohydrogen (bio-H2) production 

and the ‘downstream system’ for electricity generation from bio-H2 and excess biomass.   

 

1.1.1 Upstream system: Hydrogen fuel from waste by a two-stage bioreactor 

The primary aim of this project was to design and build a biological system capable of 

efficient hydrogen production from glucose.  A dual system is proposed in which Escherichia 

coli first ferments glucose to produce hydrogen and organic acids (chapters 2.1 and 2.2).  The 

organic acids are then consumed by Rhodobacter sphaeroides to produce further hydrogen, 

and to complete the conversion of glucose to hydrogen (chapters 2.3 and 2.4).  A major 

technical constraint was the integration of E. coli and R. sphaeroides fermentations, which 
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was overcome by the application of a novel separation technique (chapters 2.5 and 2.6), which 

formed the subject of a patent application [159] (reproduced in appendix 4.2.1). 

 

1.1.2 Downstream system: Conversion of bio-hydrogen into electricity 

The upstream system (above) produced two types of biomass as co-products, which would be 

rich in high quality protein and B-vitamins, suggesting use as a protein supplement or as a 

fertiliser [138], but there may be a more profitable use for this biomass in the biomanufacture 

of supported palladium catalyst.  Precious metal (PM) catalysts are the most costly 

components of fuel cells, which generate electricity from H2 using PM catalytic electrodes 

(chapters 1.3.3b and 2.8). 

 

Much of the global production of PMs currently supports the manufacture of automotive 

catalytic converters, which are now obligatory for atmospheric protection.  A shift to H2-

fuelled vehicles over the coming decades is likely to increase the demand for fuel cell PM, 

making their recovery from secondary sources increasingly important, while scrapped 

automotive catalysts will become increasingly abundant.  As described in section 1.3, the 

biorecovery of PM from spent automotive catalyst has been demonstrated [214] and catalytic 

activity of biorecovered PM catalyst has been demonstrated [111].  It has also been shown 

that palladised biomass can function in the generation of electricity using a fuel cell using 

Desulfovibrio desulfuricans as a model organism [215,216]. 
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1.2 Integrating dark and light biohydrogen production: towards the 

hydrogen economy 
1.2.0 Summary 
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This chapter comprises a review paper in submission to Reviews in Environmental Science 

and Biotechnology.  The author researched and prepared the manuscript and performed the 

critical assessments (novel synthesis).  Co-authors assisted by editing the manuscript and 

checking calculations.   

 

As several focussed reviews were already available, this review provides a relatively brief 

description and comparison of the available biological approaches to H2 production but 

provides for the first time, an exhaustive description, categorisation and evaluation of reported 

dual systems.  The case is made for combining dark fermentation and photofermentation, and 

for achieving this via a dual bioreactor system rather than in co-culture.  The potential for 

energy generation is evaluated and compared with alternative bioenergy strategies. 

 

1.2.1 Review article  

 

 4



1.2 Dual systems (review article) 

Review article 

 

Title: Integrating dark and light biohydrogen production strategies: towards the hydrogen 

economy 

Running head:  Dual systems for Bio-H2 

Shortened title: Hybrid H2 

Authors: Mark D. Redwood, Marion Paterson-Beedle and Lynne E. Macaskie 

Affiliation: School of Biosciences, University of Birmingham 

Correspondence should be addressed to Prof. Lynne E. Macaskie, School of Biosciences, 

University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Tel: +44 1214145889 ;  

Fax:  +44 1214145925;  e-mail: l.e.macaskie@bham.ac.uk 

Keywords: biohydrogen, bioenergy, renewable energy, hydrogen economy, dark 

fermentation, dual systems, photosynthesis. 

 5



1.2 Dual systems (review article) 

 Integrating dark and light biohydrogen production strategies:  

Towards the hydrogen economy 

 

Mark D. Redwood, Marion Paterson-Beedle and Lynne E. Macaskie*  

Corresponding author.  Tel: +44 1214145434 ;  fax:  +44 1214145925;  e-mail: 

l.e.macaskie@bham.ac.uk 

 

School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. 

 

Abstract  

 

Biological methods of hydrogen production are preferable over chemical methods because of 

the possibility to use sunlight, CO2, and organic wastes as substrates for environmentally 

benign conversions, under moderate conditions.  By uniting different microorganisms with 

individual capabilities, their individual strengths may be exploited and their weaknesses 

overcome, resulting in increased H2 yields over single-organism systems.  Available 

organisms for biohydrogen production are described and strategies to integrate them are 

discussed.  This concept was described some decades ago and a review of progress is timely.  

This review focuses on 2-component H2-producing systems (“dual systems”), in which the 1st 

stage entails the conversion of carbohydrates to organic residua, which are subsequently 

consumed in a light-dependent 2nd stage.  

Dual systems can be divided broadly into wholly light-driven systems (with 

microalgae/cyanobacteria as the 1st stage) and partially light-driven systems (with a dark, 

fermentative initial reaction).  By reviewing published data and evaluating potentials for 

energy generation, it is concluded that the latter type holds greater promise for industrial 

application.  It is calculated that a wholly light-driven dual system has a land-requirement for 

light capture that would be too large for either centralised or decentralised energy generation.  

Partially light-driven dual systems, with a lower photosynthetic requirement and the capacity 

for organic waste utilisation hold greater promise for economic application.  Research into 

partially light driven dual systems has focussed on the fermentative capabilities of strictly 

anaerobic bacteria.  Other microorganisms such as enteric bacteria, lactic acid bacteria and 
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hyperthermophiles have significant potential, which is overviewed alongside other biofuels 

such as bio-methane and bioethanol. 
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Glossary & Abbreviations 

 

Akinete: Vegetative cyanobacterial cell accumulating carbohydrate.  The main component of 

filaments, including heterocysts 

Autotrophy: Metabolism with the synthesis of carbohydrate using light and/or inorganic 

substrates 

Av. :  Average 

Axenic: Pure culture containing only one type of microorganism 

BOD: Biological oxygen demand; the mass of oxygen consumed by microorganisms during 

the oxidation of organic compounds from a sample of water 

COD: Chemical oxygen demand; the mass of oxygen consumed during the chemical 

oxidation of organic compounds from a sample of water 

CSTR: Continuously stirred tank reactor 

Direct Bio-photolysis: H2 production from water; electrons liberated from H2O by PSII 

recombine with H+ to form H2, catalysed by hydrogenase or nitrogenase 

DMFC: Direct methanol fuel cell, a type of PEM-FC using methanol fuel directly without 

reforming as in the indirect methanol fuel cell 

dw: Dry cell weight 

FHL: Formic hydrogen lyase 

Fermentation: Microbial growth mode in which ATP is generated only by substrate level 

phosphorylation in the absence of exogenous electron acceptors (e.g. O2, NO3
2-, NO2

2-, 

SO4
2-) 

HRT: Hydraulic retention time.  The total flow rate though a diluted system over its volume 

Indirect bio-photolysis: H2 production from water via the photosynthesis and fermentation of 

carbohydrates  

Heterocyst: A cyanobacterial cell specialised for N2 fixation 

Heterotrophy: Microbial metabolism utilising organic carbon sources 

HHV: higher heating value  

Hyperthermophilic: (extreme thermophilic) Most active in the temperature range 80 – 110 ºC 

LDH: Fermentative lactate dehydrogenase 

Light conversion efficiency: The percentage of available light energy converted to H2, distinct 

from photosynthetic efficiency (PE) 
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Mesophilic: Most active in the temperature range 20 – 40 ºC 

Net energy ratio: The dimensionless ratio of the energy outputs to primary inputs for the 

entire operational lifetime of a system 

Nitrogenase: Nitrogenase complex (reductase and nitrogenase) 

PE: Photosynthetic efficiency.  The percentage of photosynthetically active light energy 

converted to H2. (includes only those wavelengths which interact with photopigments) 

PEM-FC: Proton exchange membrane fuel cell; a type of low-temperature fuel cell considered 

most suitable for transport applications 

PHB: Poly-β-hydroxybutyrate, a storage polymer 

Photoheterotrophy: light-driven mode of anaerobic metabolism using organic substrates as 

electron donors.  

Pi : inorganic phosphate 

PFL: Pyruvate:formate lyase 

PFOR: Pyruvate:ferredoxin oxidoreductase 

Photopigments: Light harvesting proteins 

PEM-FC: Proton-exchange membrane fuel cell 

Phototrophy: Microbial metabolism using light energy 

Photoautotrophy: Microbial metabolism using light energy for the synthesis of carbon sources 

PNS bacteria: Purple non-sulfur bacteria 

PSI: Photosystem I, possessed by all phototrophs, not powerful enough for photolysis of 

water 

PSII: Photosystem II, possessed by photoautotrophs, responsible for photolysis of water 

RV Missing 

Reserve: The amount of a resource in place (e.g. oil in the ground) that is economically 

recoverable 

SOFC: Solid oxide fuel cell, a high temperature alkaline fuel cell 

SOT medium: Growth medium for cyanobacteria containing salts and trace elements but no 

carbon source 

Thermophilic: Most active in the temperature range 40 – 60 ºC 

UASB: Upstream anaerobic sludge blanket reactor 
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1: Biofuels for sustainable energy production 

 

An estimated 45 % of the identified world oil reserves has been combusted and atmospheric 

CO2 has increased by 20 % since 1900 (Holmes & Jones 2003; Keeling & Whorf 2005).  

Conservative estimates suggest that demand for oil will outstrip supply by 2050 (Holmes & 

Jones 2003), while the Stern Review (Stern 2006) highlights the urgent need for reduction in 

greenhouse gas emissions.  A sustainable energy economy is needed and this will require a 

different fuel; one that is not limited in supply and whose use is environmentally benign.  

Hydrogen is now recognised as a key energy vector in the future energy economy.  H2 storage 

technology and fuel cell efficiency continue to receive urgent attention and have advanced 

sufficiently for transport applications to approach commercial viability.  For example, 

BMW’s fleet of 100 “Hydrogen 7” cars, each having a material value of $500,000 each, is 

now available for promotional purposes (carsguide.com.au, Nov 2006).  A prototype H2-

powered boat is also opening the way to economic transport via inland waterways (A. Bevan, 

University of Birmingham, pers. comm.).  Whereas the use of H2 in transport applications is 

dependent upon such emerging technologies, its use in stationary applications, for electricity 

supply, is limited primarily by H2 availability. 

Biological approaches could contribute to large-scale H2 production as various 

microorganisms can produce H2 under moderate conditions from readily available, renewable 

substrates, making biological strategies potentially competitive with chemical process such as 

reforming and gasification.  Biohydrogen processes are ‘CO2-neutral’, being fuelled by 

carbohydrates originating from photosynthetic fixation of CO2, and bio-H2 is free of catalyst 

poisons (CO and H2S), requiring no treatment before use in fuel cells for electricity generation 

(Macaskie et al. 2005). 

Suitable feeds for biohydrogen generation processes can be found in agricultural 

residues (Banik et al. 2003), food wastes (Franchi et al. 2004) and effluents from industrial 

processes such as refining sugar (Yetis et al. 2000; Ren et al. 2006), distilling alcohol 

(Sasikala et al. 1992), olive processing (Eroğlu et al. 2004), and tofu production (Zhu et al. 

1995; Zhu et al. 2002).  Hence, microbial process could be employed to remediate wastes 

while simultaneously producing H2 with the dual economic benefit of energy production and 

savings in the cost of waste disposal.  In the UK the majority of waste is disposed by land-

filling and the related environmental damage is being recognised in financial terms via landfill 

 10



1.2 Dual systems (review article) 

tax; which is paid on top of normal landfill fees at an increasing rate (GBP 24/tonne for 

2007/2008; www.businesslink.gov.uk/bdotg/action/) (Bartelings et al. 2005).  The avoidance 

of waste disposal costs is, therefore, anticipated to be an important economic driver in the 

start-up of bioenergy processes. 

The capability for H2 formation is widespread among microorganisms, but only a few 

have been the focus of research with the aim of biohydrogen production.  In particular, 

photosynthetic microorganisms such as microalgae, cyanobacteria and purple bacteria, along 

with various bacterial dark fermentations are of interest.  Each of these candidates represents a 

potential method in its own right, but it has long been recognised that to realise the maximum 

potential for biohydrogen production would entail multi-organism systems, combining the 

capabilities of different species (Rocha et al. 2001; Wakayama & Miyake 2001; de Vrije & 

Claassen 2003; Nath et al. 2005; Basak & Das 2007).  Several examples of dual systems are 

illustrated in Table 1.  The purpose of this review is to advance the state of knowledge by 

comparing the successes of diverse strategies, by relating them to the methods employed, by 

evaluating the potentials for energy generation and by highlighting potential problems. 

 

2: The use of microorganisms for H2 production 

 

The capacity for H2 formation is a widespread property of microorganisms.  This work does 

not attempt to review microbial hydrogen metabolism (for reviews see (Vignais et al. 1985; 

Blankenship et al. 1995; Sasikala et al. 1995; Nandi & Sengupta 1998; Das & Veziroglu 

2001; Hallenbeck & Benemann 2002; Nath & Das 2004a, 2004b; Bae et al. 2005; Dutta et al. 

2005; Hawkes et al. 2007; Tsygankov 2007), but provides a summary of those organisms 

which have been studied expressly for the purpose of H2 production.  In order to evaluate 

strategies for combining organisms to exploit the best facets of different metabolic strategies, 

they are first considered individually. 

 

2.1: Photobiological hydrogen production 

 

Many microorganisms have evolved the capacity to harness solar energy for growth, and 

several types of photosynthetic microorganism are potentially useful for biohydrogen 

production.  Artificial light sources are often used as models for future applications with 
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sunlight, but solar biohydrogen projects have been successful despite the diurnal and seasonal 

variations in light intensity. 

 

2.1.1: Photoautotrophic microorganisms 

 

Photoautotrophs produce H2 by two distinct mechanisms: “direct photolysis” and “indirect 

photolysis”, which can both occur in the same organism (Figure 1).  Like higher plants, 

microalgae (green unicellular algae) and cyanobacteria (previously called blue-green algae) 

have two photosystems (Photosystems I and II: PSI and PSII), which produce H2 by “direct 

photolysis” in which water is decomposed to H2 and O2 (oxygenic photosynthesis).  PSII 

splits water, reducing electron carriers and exporting protons to generate a proton gradient for 

ATP generation (Miyake et al. 1999). 

Hydrogenase and nitrogenase enzymes are found in cyanobacteria, but (as in purple 

bacteria, see section 2.1.2) self-sustained H2 formation results from the activity of 

nitrogenase, which consumes ATP and re-oxidises electron carriers, whereas in microalgae a 

hydrogenase performs the reduction of 2H+ to H2 without any ATP requirement.  In “indirect 

photolysis”, CO2 is fixed via the Calvin cycle to synthesise simple sugars and thence 

accumulate carbohydrates (starch in microalgae and glycogen in cyanobacteria).  Stored 

carbohydrates can be subsequently metabolised through fermentative metabolism (section 

2.2) to generate H2 indirectly. 

H2 production by direct photolysis is limited by the inhibition of hydrogenase and 

nitrogenase by oxygen, generated from water, whereas indirect photolysis is sustainable 

because the production of O2 and H2 can be separated spatially (into compartments) or 

temporally (into aerobic and anaerobic phases) (Levin et al. 2004a). 

Cyanobacteria are divided into non nitrogen-fixing varieties (e.g. Synechococcus spp), 

which form only one kind of cell (akinetes), and nitrogen-fixing varieties (e.g. Nostoc, 

Anabaena spp.), which form akinetes and also heterocysts arranged into filaments - chains of 

cells connected by channels for the exchange of nutrients (Tsygankov 2007).  Heterocysts 

differ from akinetes due to the absence of O2 generation by PSII, the increased rate of O2 

consumption by respiration, the presence of a thick envelope to limit the ingress of 

environmental O2, and the expression of nitrogenase to fix N2 as NH4
+, supporting the growth 

of the adjacent akinetes (Tamagnini et al. 2002).  Heterocystous cyanobacteria separate H2 
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production and O2 production spatially (by compartmentalisation), accumulating glycogen in 

the vegetative akinetes and fermenting it to produce H2 in the anaerobic heterocysts, whereas 

non N2-fixing cyanobacteria and microalgae separate H2 production and O2 production 

temporally, producing H2 by the dark anaerobic fermentation of photosynthesised 

carbohydrates.  Upon transition to darkness, the generation of O2 by the photosystem ceases 

and residual O2 is consumed by respiration enabling H2 production (Tsygankov 2007). 

The capacity for sustained aerobic H2 production in the light, is a beneficial property 

of heterocystous cyanobacteria (e.g. Anabaena spp.) achieving maximum H2 production rates 

of ca. 100 µmol H2/mg chlorophyll a/h, with light conversion efficiencies of up to 3.9 % 

(proportion of absorbed light energy converted to H2) (Dutta et al. 2005; Yoon et al. 2006; 

Sakurai & Masukawa 2007).   Rates were increased 3-7 fold in Anabaena mutants deficient 

uptake hydrogenase activity (Borodin et al. 2000; Happe et al. 2000; Masukawa et al. 2002; 

Yoshino et al. 2006), and this strategy was applied in outdoor culture, however the maximum 

light conversion efficiency was only 0.1 %, which has implications for the large scale 

application of this approach (Lindblad et al. 2002; Tsygankov et al. 2002). 

Unicellular cyanobacteria have been studied with a view to dark fermentative H2 

production, being unsuitable for photoproduction of H2 due to their high (competing) uptake 

hydrogenase activity in the light (Troshina et al. 2002).  However, a mutant of Synechocystis 

deficient in uptake hydrogenase activity photoproduced H2 at a rate of 6 μmol H2/mg 

chlorophyll a/h (2 ml/L/h) (Cournac et al. 2004). 

Like unicellular cyanobacteria, microalgae were originally studied for dark H2 

production by indirect photolysis (Miyamoto et al. 1987).  The isolation of Chlamydomonas 

spp MGA161 having a high rate of H2 photoproduction (6 mmol H2/g chlorophyll a/h), high 

starch accumulation (18 % w/w) and unusually rapid and efficient dark fermentation (2 mol 

H2/mol starch-glucose) prompted the study of a dual system (Miura et al. 1986) (Table 1). 

The extent of metabolic engineering success in microalgae lags behind that of 

cyanobacteria due to the greater difficulty of eukaryotic genetic engineering.  Work is 

ongoing to improve light conversion efficiency through the truncation of light-harvesting 

antenna complexes, an approach already proven using PNS bacteria (section 2.1.2) 

(Akkerman et al. 2002; Polle et al. 2002).  Other approaches are to develop O2-tolerant 

hydrogenases (Ghirardi et al. 2005) and to express clostridial hydrogenase in non-

heterocystous cyanobacteria, the aim being to engineer the rapid and ATP-independent 
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(hydrogenase-mediated) H2 production by direct photolysis in a fast-growing host organism, 

possibly overcoming O2-inhibition through strong expression (Miyake et al. 1999). 

A relatively new method to increase rates of H2 production by direct photolysis is 

nutrient deprivation.  Under conditions of sulfate-limitation the iron-sulfur clusters of PSII 

subunits cannot be maintained and PSII activity is selectively inhibited (Wykoff et al. 1998).  

The rate of O2 production decreases, while the respiration rate remains high and establishes 

anoxia, which permits hydrogenase and/or nitrogenase expression.  The result is sustained H2 

production via direct photolysis.  The technique was pioneered using microalgae (Benemann 

1996; Jo et al. 2006; Laurinavichene et al. 2006) and has been recently extended to 

cyanobacteria (Antal & Lindblad 2005).  

 

2.1.2: Photoheterotrophs 

 

Purple non-sulfur (PNS) bacteria are anoxygenic photosynthetic bacteria which, unlike the 

purple and green sulfur bacteria, do not produce H2S (a powerful catalyst poison), and the off-

gas is typically > 90 % H2, hence it is suitable for use in PEM-fuel cells without purification 

(Nakada et al. 1995).   

PNS bacteria produce H2 under photoheterotrophic conditions (light, anaerobiosis, 

organic electron donor) although they are metabolic generalists capable of autotrophic and 

heterotrophic growth.  The best-studied species belong to the genera Rhodobacter, 

Rhodopseudomonas and Rhodospirillum.   

H2 is produced by the nitrogenase enzyme, which is active anaerobically under 

nitrogen limitation (Vignais et al. 1985).  In the absence of N2 the production of H2 occurs 

according to equation 1.  

  

  (1) (Koku et al. 2002). 

 

In this respect the reaction serves to dissipate excess ATP and reducing power where 

growth is nitrogen-limited.  The nitrogenase complex must be saturated with ATP, and also 

NADH for optimal activity, hence H2 photoproduction occurs most rapidly under saturating 

light intensity at the expense of organic electron donors. 
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Nitrogenase activity is strictly an anaerobic facet of metabolism since O2 damages the 

photopigments needed to maintain ATP flux for nitrogenase activity and nitrogenase 

expression is strongly inhibited by oxygen (Koku et al. 2002).  Sustained H2 photoproduction 

is possible as the single photosystem (PSI) of these organisms does not generate O2 (this is 

termed anoxygenic photosynthesis) and continuous H2-producing cultures have been operated 

for up to several months (Liessens & Verstraete 1986; Weetall et al. 1989; Eroğlu et al. 1997; 

Hassan et al. 1997; Fascetti et al. 1998; Tsygankov et al. 1998; Yokoi et al. 2001; Franchi et 

al. 2004; Shi & Yu 2006). 

Rocha et al. (2001) analysed a large number of reports, indicating that the efficiency 

of light conversion to H2 is variable for PNS bacteria, the average value being ca. 4 %.  The 

theoretical maximum photosynthetic efficiency is considered to exceed 10 % (Akkerman et al. 

2002) but the photosystems of PNS bacteria saturate at low light intensity, leading to low light 

conversion efficiency under high light intensity, e.g. in solar photobioreactors (Kondo et al. 

2002).  PNS bacteria are adapted to photosynthesis at low light intensities, requiring large 

light harvesting complexes to capture diffuse light energy and channel it into the reaction 

centre.  Light conversion efficiency may be improved beyond 10 % by genetic manipulation 

to reduce the size of light-harvesting antennae, thereby increasing the saturating light intensity 

(Table 2).  This would allow efficient H2 production at higher light intensities, by deeper or 

denser cultures (Miyake et al. 1999; Vasilyeva et al. 1999; Kondo et al. 2002; Kim et al. 

2004; Kim et al. 2006a) (Table 2). 

Nitrogenase-mediated H2 formation is irreversible (Hillmer & Gest 1977b), which is 

an advantageous property in relation to reversible hydrogenase-mediated H2 production, 

which is inhibited under high partial pressure of H2 (Valdez-Vazquez et al. 2006). However, 

in PNS bacteria, uptake hydrogenase activity can detract from H2 yields (Sasikala et al. 1990), 

prompting the development of uptake hydrogenase deficient mutants with up to 70 % 

increased H2 production efficiency (Willison et al. 1984; Jahn et al. 1994; Worin et al. 1996; 

Ozturk et al. 2006) (Table 2). 

Nitrogenase re-oxidises electron carriers to reduce 2H+ to H2, and any other reductive 

processes (‘electron sinks’) can compete with, and detract from H2 production.  The formation 

of storage polymer poly-β-hydroxybutyrate (PHB) from acetate is such a competing reductive 

reaction (equation 2) (Vincenzini et al. 1997; Khatipov et al. 1998). 
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  (2) (Tabita 1995). 

 

Mutagenesis of the PHB synthase gene yielded PHB deficient mutants, which were 

capable of H2 production under conditions that would normally favour PHB synthesis 

(Hustede et al. 1993) (Table 2).  In recent studies, double mutants lacking uptake hydrogenase 

and also PHB synthase produced H2 at up to 2.5-fold higher rates compared to the parent 

strain (Lee et al. 2002; Kim et al. 2006b), while in a separate study a similar double mutant 

sustained H2 production for over 45 days, while the wild-type ceased H2 production after 10 

days (Franchi et al. 2004). 

Numerous simple organic molecules serve as suitable electron donors for PNS 

bacteria, including common fermentation products such lactate, acetate, butyrate, propionate, 

and succinate (Hillmer & Gest 1977a, 1977b), alcohols such as ethanol and propanol (Fuji et 

al. 1987) and other substrates such as aromatic acids (e.g. cinnamate, benzoate) (Sasikala et 

al. 1994b; Fissler et al. 1995).  The biochemical pathways of assimilation are uncertain for 

many of these substrates, with the exception of acetate (a common fermentation product).  In 

most bacteria acetate is assimilated using the glyoxylate cycle, but a diverse group of 

microorganisms (including Rhodobacter sphaeroides and Rhodospirillum rubrum) lack the 

key glyoxylate cycle enzyme, isocitrate lyase, while rapidly assimilating acetate.  An 

alternative citramalate cycle is now thought to operate in these species (Ivanovskii et al. 1997; 

Filatova et al. 2005a; 2005b).  The distinction is important in the context of H2 production as 

species lacking the glyoxylate shunt generally require the availability (not the addition) of 

CO2 during H2 production from acetate, with the exception of R. sphaeroides which has a 

high capacity for acetate consumption (and hence CO2 production) compared to other PNS 

bacteria and also has a thick capsule obstructing the diffusion of produced CO2 (Table 2).  

Some uncertainty remains over the suitability of ethanol, a common fermentation product, as 

an electron donor for photoproduction of H2.  A Rhodopseudomonas species produced H2 at 

the expense of various alcohols (Fuji et al. 1987) and ethanol was consumed simultaneously 

with acetate by Rhodobium marinum at ca. 50 % the rate of acetate, although the initial 

concentration of ethanol was ca. 25 % that of acetate (Ike et al. 2001).  Ethanol was rapidly 

removed from an Escherichia coli fermentation effluent by R. sphaeroides O.U.001 after a 

delay of 96 h, although the induction of ethanol-utilising enzymes was not monitored 
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(Redwood & Macaskie 2006).  Hence, it is plausible that other PNS bacteria would be capable 

of ethanol utilisation after an adaptation period. 

PNS bacteria have significant potential for industrial application as mixed cultures can 

be maintained for extended periods (Liessens & Verstraete 1986; Ko & Noike 2002; Fang et 

al. 2005), industrial waste streams can make suitable feeds for the photoproduction of H2 

(Thangaraj & Kulandaivelu 1994; Fascetti et al. 1998; Yigit et al. 1999; Zhu et al. 1999a; 

Yetis et al. 2000), larger scale photobioreactors are under development (Hoekema et al. 2002; 

Claassen & de Vrije 2007) and outdoor projects using sunlight have been successful 

(Wakayama et al. 2000; Kondo et al. 2002). 

The foremost limitation with PNS bacteria is the incompatibility of nitrogenase 

activity and the presence of NH4
+.  Waste streams can only be used for H2 production if they 

are of high C/N ratio, and many reports of this application are available (Sasikala et al. 1992; 

Turkarslan et al. 1997; Tsygankov et al. 1998; Yigit et al. 1999; Yetis et al. 2000; Eroğlu et al. 

2004; Fang et al. 2005).  Low C/N waste streams have been applied successfully for the 

purposes of biomass production and effluent remediation (Ensign 1977; Hassan et al. 1997; 

Cornet et al. 2003; Yun & Ohta 2005).  H2 production using low C/N feeds has been 

accomplished by the use of immobilisation matrices which exclude cations such as NH4
+ (Zhu 

et al. 1999b; Zhu et al. 2001) and the development of nitrogenase-derepressed strains (Wall & 

Gest 1979; Zinchenko et al. 1991; Yagi et al. 1994; Zinchenko et al. 1997) (Table 2).  These 

approaches were not, however, tested at pilot-scale or in continuous culture and issues such as 

the economic viability of immobilisation and the long-term stability of nitrogenase-

derepressed strains remain to be addressed. 

PNS bacteria are capable, therefore, of efficient conversion of organic acids to H2, 

providing a potentially applicable method for the remediation of wastes rich in organic acids, 

alcohols or aromatics.  Excepting usual strains (Macler et al. 1979; Macler & Bassham 1988; 

Oh et al. 2004), PNS bacteria lack the capacity for the efficient conversion of sugars to H2, 

and for this application a dark fermentation is the method of choice. 

 

2.2 Dark Hydrogen fermentation 

 

Large quantities of simple and complex carbohydrates are available as agricultural and food 

processing residues (Easterly & Burnham 1996; Filho & Badr 2004; Haq & Easterly 2006; 
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Mabee et al. 2006; Levin et al. 2007).  Fermentative bacteria represent a promising means not 

only to reclaim energy from these wastes in the form of hydrogen but also to utilise the wastes 

as resources, a particularly valuable attribute given the escalating cost of landfill (Bartelings 

et al. 2005).  Indeed, it was calculated that the savings in landfill tax would be the main 

economic driver, outweighing the value of the energy produced via dark-fermentative 

production of H2 from confectionery waste (Macaskie 2004). 

The anaerobic degradation of organic matter by heterotrophic microorganisms can 

liberate H2 at high rates, depending on the particular organisms and conditions.  Fermentation 

generates energy solely through substrate level phosphorylation.   Substrates are converted to 

reduced compounds, which are excreted as waste products and the ATP yield is low, in 

comparison to respiration.  The formation of relatively reduced organic molecules is an 

integral part of all dark fermentations, and some of these molecules (e.g. acetate) can inhibit 

H2 production if allowed to accumulate (Roe et al. 1998; Kirkpatrick et al. 2001; Van Ginkel 

& Logan 2005).   

In a minority of fermentative microorganisms (e.g. Klebsiella spp.) H2 production is 

primarily mediated by nitrogenase (Vignais et al. 2001) but due to the high ATP requirement 

and low turnover rate of nitrogenase, the theretical H2 yield is only 0.5 mol H2/mol hexose 

(Wakayama & Miyake 2001).  Without the contribution of light energy through 

photosynthesis, hydrogenase is preferred for H2 production due to its higher rate of turnover 

and lower metabolic cost.  The highest fermentative H2 yields have been achieved using 

clostridia, other enteric bacteria and hyperthermophiles (see reviews: (Hallenbeck 2005; 

Davila-Vazquez et al. 2007).   

H2 fermentations are restricted by the Thauer limit.  Thermodynamically, no more 

than 4 mol H2 can be produced from 1 mol hexose, because substrate level phosphorylation 

must produce whole numbers of ATP, and the yield of ATP from glucose must be at least 1 

mol/mol for the cell to survive (Thauer 1977).  However, microbial fermentation typically 

generates more than 1 mol ATP and less than 4 mol H2/mol hexose, quantities that vary 

according to the metabolic system and conditions. 

 

 18



1.2 Dual systems (review article) 

2.2.1 Axenic dark fermentations 

 

Axenic cultures (pure cultures containing clonal microbial populations) have been used in the 

majority of fermentation research, creating a wealth of information regarding model 

organisms, and the understanding of their fermentative metabolism has facilitated and 

rationalised the optimisation of conditions for H2 production.  

Dark fermentations are united by the initial glycolytic generation of ATP, NADH and 

pyruvate.  Three enzymes compete for pyruvate: pyruvate:ferredoxin oxidoreductase (PFOR), 

pyruvate formate lyase (PFL) and the fermentative lactate dehydrogenase (LDH).  The 

realised H2 yield is dependent upon the fate of pyruvate, which differs among species due to 

varying activities of PFL, PFOR and LDH, of which one or more may be present (Figure 2). 

Mixed-acid fermentation, in which the key enzymes are PFL and the formic hydrogen 

lyase (FHL) complex (comprising a specific formate dehydrogenase and hydrogenase) 

(Figure 2B), is performed by facultative anaerobes such as E. coli.  PFL converts pyruvate to 

acetyl-CoA and formate, which is cleaved to H2 and CO2 by FHL, while acetyl-CoA is 

divided between the formation of acetate (which generates ATP) and the formation of ethanol 

(which oxidises NADH to regenerate NAD).  PFOR is expressed constitutively to a low level 

(Knappe 1987), but since H2 is entirely formate-derived (Ordal & Halvorson 1939) PFOR is 

not thought to be involved in H2 production in E. coli.  

Ideally, mixed-acid fermentation yields 2 mol H2/mol glucose (Figure 2B), but in 

batch mode a yield of ca. 50 % of this is usually obtained due to diversion of pyruvate into 

lactate formation.  The latter can be suppressed by control of culture conditions or through 

metabolic engineering (Sode et al. 1999).  While the cleavage of formate is irreversible, H2 

recycling is an issue, as suggested by the observation of 37 % increased H2 yield in Hyd-2 

mutants of E. coli (Redwood et al. 2007c).  The rate of H2 formation was also increased 

through the increased expression of FHL (Penfold et al. 2003; Yoshida et al. 2005). 

Facultative anaerobes of the related genus Enterobacter also produce H2 from formate 

but analysis of the fermentation balance implicated the simultaneous activity of the NADH 

pathway (Tanisho & Ishiwata 1995; Tanisho et al. 1998; Kurokawa & Shigeharu 2005), in 

which the regeneration of NAD+ is coupled to the reduction of ferredoxin by 

NADH:ferredoxin oxidoreductase (NFOR).  Reduced ferredoxin subsequently transfers 

electrons onto H+ to produce additional H2.  The NADH pathway (operating simultaneously 
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with PFL/FHL) could theoretically achieve the Thauer limit (4 mol H2/mol glucose).  

However, both electron transfer reactions, (from NADH onto oxidised ferredoxin and from 

reduced ferredoxin onto H+) are reversible and neither would be considered electrochemically 

feasible under standard conditions:  i.e. the standard electrode potentials of the NAD and 

ferredoxin half-cells (-320 mV and -400 mV, respectively) are more positive than that of the 

H+ half-cell (-414 mV) (McCormick 1998).  A very low H2 partial pressure (pH2) 

(theoretically <60 Pa or <0.0006 bar) is required to drive this reaction forwards and H2 yields 

exceeding 2 mol H2/mol glucose were obtained only under vacuum or with continuous gas 

purging to strip away H2 (Park et al. 2005).  Indeed, a maximum yield of 3.9 mol H2/mol 

glucose was reported using E. cloacae under a vacuum of 330 torr (equivalent to 0.44 bar or 

44 kPa) (Mandal et al. 2006).   

Clostridia also use the NADH pathway.  In this case PFOR cleaves pyruvate to acetyl-

CoA and CO2, transferring electrons to ferredoxin, which is coupled to a reversible 

hydrogenase to produce H2.  In this situation, all H2 is produced by a single reversible reaction 

and it is even more important to maintain a low pH2 (Kataoka et al. 1997; Mizuno et al. 2000).  

Advances in gas separation technology may permit a purge-gas recycle system to remove the 

need for large quantities of inert, anaerobic purge gas for H2 removal (Nielsen et al. 2001; 

Liang et al. 2002; Teplyakov et al. 2002). 

A positive pressure (ca. 1-1.5 bar at 25 °C) is needed for H2 uptake by metal hydride 

H2-stores (Züttel 2004).  Therefore, to charge a H2 store directly from a fermentation culture 

(without intermediary gas-pressurisation) would require an organism capable of sustaining H2 

production under high pH2.  This would require the absence of biological H2 recycling and 

would preclude a reversible H2-producing system, such as the NADH pathway occurring in 

enteric bacteria and clostridia, but may be possible using an uptake hydrogenase mutant of E. 

coli in which the FHL complex (involving hydrogenase-3) performs the irreversible oxidation 

of formate to form H2 (and CO2).  However, a degree of reversibility is a common property of 

hydrogenases (van Haaster et al. 2005) and although hydrogenase-3 has no uptake role during 

fermentation (Redwood et al. 2007c), it is known to operate reversibly when coupled to redox 

dyes (e.g. Sauter et al. 1992).  Therefore, the latter strategy may tolerate a higher pH2, but 

regardless of the organism employed, a pressurisation step would be advantageous between 

the fermentation and the H2-store.   
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Various Clostridium spp. have been investigated for biohydrogen production (Collet et 

al. 2004), of which C. butyricum is perhaps the best known.  Like E. coli and E. aerogenes, 

this organism is mesophilic but unlike them, it is a strict anaerobe.  Hence, clostridial growth 

media are usually supplemented with a reducing agent to ensure anaerobiosis.  Alternatively, 

a facultative aerobe, added to the H2-production culture, was effective as an O2-scavenger 

(Yokoi et al. 2001). 

The H2 yield from C. butyricum could in theory reach 4 mol H2/mol hexose (Figure 

2C) although a detailed metabolic analysis of C. butyricum calculated a maximum of 3.26 mol 

H2/mol hexose (Chen et al. 2006) and practical yields obtained using clostridia rarely exceed 

2 mol H2/mol hexose (Collet et al. 2004; Ferchichi et al. 2005).  

The clostridial species selected for H2 production produce acetate and butyrate rather 

than propionate but they sporulate in response to environmental stresses such as heat or 

nutrient depletion, hence, the feeding regimes used in continuous culture are designed to 

maintain excessive nutrient concentrations to minimise sporulation (Hawkes et al. 2002).  

Asporogenic mutants have proved advantageous in ethanol production from cellulose, but 

have not yet been applied to H2 production (Taillez et al. 1983).  Whereas mesophilic 

clostridia sporulate as temperature increases, certain clostridial species are moderately 

thermophilic.  For example, C. thermolacticum prefers to grow at 54 °C (Collet et al. 2004).  

Recently, hyperthermophiles  (normally archaea), which live and produce H2 at temperatures 

above 60 °C have been studied.  Little biochemical information is yet available (e.g. de Vrije 

et al. 2007) but it seems that hyperthermophiles are capable of H2 production with higher 

yields than mesophiles (Hallenbeck 2005).  For example, a yield of 2.8 mol H2/mol glucose 

was reported for Thermotoga elfii and 3.2-3.7 mol/mol for Caldicellulosiruptor 

saccharolyticus (Van Niel et al. 2002; Kadar et al. 2004; de Vrije et al. 2007).  Observations 

support the connection of H2 production with the hydrogenase-linked oxidation of electron 

carriers (as in clostridia), rather than the decomposition of formate (as in enteric bacteria).  A 

pH2 of 10-20 kPa (0.1-0.2 bar) induced a metabolic shift to inhibit H2 production in C. 

saccharolyticus (Van Niel et al. 2003) and a limiting H2 pressure of 20 kPa (0.2 bar) was 

reported for a mixed hyperthermophilic culture (Van Groenestijn et al. 2002), while formate 

was not decomposed by Thermotoga neapolitana (Van Ooteghem et al. 2004). 

Due to the necessity of growth on solid media for molecular work (i.e. at temperatures 

lower then the melting point of agar), hyperthermophiles are not readily amenable to genetic 
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engineering (Van Ooteghem et al. 2004).  Thermophilic cultures are resistant to overgrowth 

by mesophilic contaminants, and although an economic analysis is not available, the energetic 

costs associated with maintaining 70 ºC may mitigate against large-scale application.  

Several mesophilic and thermophilic clostridia and hyperthermophiles have the 

capacity to utilise complex carbohydrates such as cellulose and starch, a valuable property 

widening the potential for the use of industrial waste streams and agricultural residues as 

feeds.  For example, T. neopolitana can utilise dextrins (Van Ooteghem et al. 2004), and C. 

thermocellum produced 1.6 mol H2/mol hexose from cellulosic substrate (Levin et al. 2006).  

Enteric bacteria generally lack the ability to metabolise complex carbohydrates although the 

necessary genes can be introduced in the case of E. coli (Dien et al. 2000). 

 

2.2.2 Mixed dark fermentations 

 

The use of mixed cultures offers real practical advantages over the use of pure cultures, such 

as the use of feedstocks without pre-treatment or sterilisation, and is already a proven, 

commercially available technology (Kyazze et al. 2007).  Inocula for H2 production can be 

obtained from soil, compost or anaerobic digestion sludge (Hawkes et al. 2002; Hawkes et al. 

2007).  H2 was produced from sucrose using sewage sludge microflora with a yield of 1.7 mol 

H2/mol hexose (Lin & Lay 2005) and from food processing effluent using a heat-treated (2 h, 

104 °C) sludge inoculum with typical yields of 0.2-0.87 mol H2/mol hexose (Oh & Logan 

2005).  Rice slurry was fermented by a heat-treated (30 min, 100 °C) clostridial community to 

produce up to 2.5 mol H2/mol hexose (Fang et al. 2006).  Paper sludge and cellulose powder 

were rapidly degraded by mesophilic anaerobic consortia, producing mixtures of CH4 and H2 

(Ueno et al. 1995; Valdez-Vazquez et al. 2005). 

For mixed cultures there is a tendency towards lower rates and yields of H2 

production, because non H2-producing organisms (e.g. methanogens and sulfate-reducers) 

consume a proportion of the substrate and perform H2 uptake using H2 as an electron donor.  

Furthermore, H2S (the product of dissimilatory sulfate reduction) is a potent catalyst poison 

requiring removal if the biohydrogen is intended for use in a fuel cell.  Hence, for the efficient 

production of clean H2, the microbial population must be controlled to some degree in order 

to select for H2-producers.  Methanogens can be suppressed by the addition of chemical 

inhibitors or by operating continuous cultures at low pH or HRT (Mizuno et al. 2000).  The 
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microbial population is often manipulated by inoculating with a mixed population having 

been subject to some pre-selection (Valdez-Vazquez et al. 2005).  A widely adopted strategy 

is to select for spore-forming clostridia using a heat-treated inoculum, and where this can be 

achieved the properties of clostridial fermentation are predominantly applicable (Kim et al. 

2004; Van Ginkel & Logan 2005).  However, heat treatment also eliminates non-sporulating 

H2-producers (e.g. Enterobacter spp.) and selects for spore-forming H2-consumers (e.g. some 

acetogens) (Kraemer & Bagley 2007).  The metabolic switch from H2 production to 

solventogenesis was avoided by the intermittent release of headspace pressure and N2 purging 

(Valdez-Vazquez et al. 2006).  

 

3: Hybrid hydrogen 

 

As reviewed above, no single-stage system has been shown to produce H2 beyond 4 mol 

H2/mol hexose.  Current research focuses on the possible use of two-component systems via a 

variety of strategies (Table 1).  These dual systems are united by the conversion of 

carbohydrates into organic acids in the 1st stage (which may be mesophilic or thermophilic 

and may not necessarily produce H2), followed by the conversion of fermentation products 

into H2 in the 2nd stage (Figure 3).  In some examples, algae or cyanobacteria initially 

photosynthesise carbohydrates, which are then fermented by the same organisms, while other 

systems use carbohydrates as the primary feed, either as artificial solutions or in the form of 

wastes or algal biomass. 

   

3.1 Techniques for connecting the components of a dual system 

 

Alongside the choice of organisms, dual systems have been implemented through a variety of 

strategies.  The nature of the bridge connecting these two stages is a key part of the 

operational strategy affecting the overall productivity of the system.  The simplest approach 

constitutes a co-culture in which different organisms are in direct contact and act 

simultaneously, under the same conditions (Figure 3A).  However, it is necessary to seek a 

compromise between the optimal requirements of each microbial component.  While 

increasing the complexity and cost, sequential reactors permit the operator to maintain 

different conditions in separate parts of the dual system, allowing a combination of 
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organisms, which may not be compatible in co-culture (Figure 3B).  For example, (wild-type) 

microalgae/cyanobacteria and PNS bacteria were not compatible in co-culture since the 

photosynthetic generation of oxygen inhibited nitrogenase-mediated H2 production by the 

PNS bacteria (Miyamoto et al. 1987; Weetall et al. 1989).  Further, sequential reactor systems 

can be potentially more effective as either component can be optimised without compromise 

to the other, and may be preferred even for ‘compatible’ combinations of organisms. 

Sequential reactors require some method to transport fermentation products from the 

1st reactor to the 2nd (while retaining biomass), which presents an engineering challenge for 

future scale-up operations.  The simplest and most common method is ‘batch-transfer’ in 

which spent medium is transferred between reactors in batches.  Centrifugation followed by 

filtration or autoclaving is usually performed to generate a clear, sterile feed for the 2nd stage 

(e.g. Yokoi et al. 2002; Redwood & Macaskie 2006).  For large-scale application, continuous 

processes are generally preferred over batch systems.  Fermentation products could 

potentially be transferred continuously through the use of bi-phasic solvent extraction, by 

continuous centrifugation or by membrane systems (Banik et al. 2003; Emanuelsson et al. 

2003; Splendiani et al. 2003), but these techniques have yet to be applied in a H2-producing 

system. 

 

3.2 Comparing diverse strategies 

 

As explained above, the two components of a dual system may be bridged in several ways.  

To add to the difficulty of comparison, either part of the dual system may use free or 

immobilised cells and may operate in batch, fed-batch, repeated fed-batch, or continuous 

mode, and the two components may be linked continuously or discontinuously in an open 

(exit flow to waste) or recycling system. 

In order to reach some conclusions about the efficacy of different strategies, a 

common comparator is needed.  Rates of H2 production are not always meaningful in this 

kind of comparison due to number of contributory factors and variables.  A common 

parameter taking into account many factors can be useful, (e.g. H2 volume / reactor volume / 

dry cell weight / mol substrate consumed / time) but it is rarely possible to interpret accurately 

so many factors from published accounts.  The molar yield of H2 from hexose (or 

monosaccharide) is the most appropriate measure for the comparison of dual systems, as it 
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can be applied regardless of organisms, scale, means of integration, and the chemical natures 

of substrates (Table 1).  This factor can be misleading, however, in the case of complex feeds 

(e.g. algal biomass, tofu wastewater) containing organic acids or non-hexose substrates such 

as fats and proteins from the outset, which contribute to the fermentative yield of organic 

acids (Ike et al. 1997; Ike et al. 2001).  

 

3.3 Selection of organisms for the 2nd stage 

 

In a dual H2 producing system, the 2nd stage functions to clean up the effluent from the 1st 

stage (i.e. to decrease its BOD) and to produce a secondary H2 stream at the expense of stage 

1 products (e.g. reduced organic molecules).  An algal-PNS bacterial symbiosis was proposed 

but no experimental data is yet available (Melis & Melnicki 2006).  Fermentation products 

(e.g. acetate) could be used as C-source for the growth of microalgae, cyanobacteria or PNS 

bacteria.  While acetate is regularly used in algal growth media (Kim et al. 2006c), the authors 

are not aware of any published attempts to cultivate algae or cyanobacteria on fermentation 

effluents.  PNS bacteria, conversely, have been cultivated to produce biomass, single-cell 

protein, or PHB (poly-β-hydroxybutyrate), using primary fermentation waste streams (Ensign 

1977; Hassan et al. 1997).  Reduced organic molecules are the preferred carbon source for 

PNS bacteria (Biebl & Pfennig 1981), suggesting that these species may be ecologically 

associated with fermentative, organic acid-producing organisms.  There are many examples of 

the use of PNS bacteria for H2 production from wastes (e.g. Thangaraj & Kulandaivelu 1994), 

many of which have similar characteristics to fermentation effluents. 

Using PNS bacteria in the 2nd stage, organic fermentation products can be converted to 

H2 with high efficiency (50-100 % of stoichiometric yield) (Rocha et al. 2001) and light 

conversion efficiencies could reach 10 % (Akkerman et al. 2002).  Using both dairy and 

sugarcane wastewaters the PNS bacterium Rhodopseudomonas capsulata produced H2 at a 

10-fold higher rate than the cyanobacterium Anacystis nidulans (Thangaraj & Kulandaivelu 

1994). 

PNS bacteria are the popular choice for the conversion of organic fermentation 

products to H2 in the 2nd stage of a dual system.  Of the 36 reports summarised in Table 1, 

only one employed a purple sulfur bacterium for this purpose (Akano et al. 1996; Ikuta et al. 

1997) and none employed microalgae or cyanobacteria. 
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3.4: Selection of organisms for the 1st stage 

 

In this overview, dual systems are grouped broadly according to whether both 1st and 2nd 

stages or only the 2nd stage are light-driven. 

 

3.4.1: Dual systems with photoautotrophic 1st stage 

 

In this approach, the 1st stage entails the photoautotrophic production of H2 and accumulation 

of carbohydrate during a light phase.  The photoautotroph switches to fermentative 

metabolism during a dark phase, converting starch or glycogen to organic fermentation 

products, which are utilised by PNS bacteria to generate H2 in the next light phase.  

Alternatively, the phototroph cell mass may be harvested to supply the feed for a dual system 

with dark fermentative 1st stage (section 3.4.2).   

1st and 2nd stages may be joined in co-culture or sequentially with transfer of spent 

broth between stages.  Co-culture was until recently unsuitable for this combination because 

the O2 produced by microalgae/cyanobacteria would prevent photoproduction of H2 by PNS 

bacteria.  Microalgal strains exhibiting a decreased rate of photolysis relative to respiration 

(P/R ratio; i.e. decreased rate of O2 production) have recently become available and work is 

ongoing to characterise H2 production in co-cultures of attenuated microalgae and PNS 

bacteria (Melis & Happe 2004).   

In this type of system, there is the possibility for H2 production in 3 stages because 

microalgae/cyanobacteria can produce H2 both at night and by day.  While the production of 

H2 through photolysis (or nitrogenase) is widely reported, there are no accounts of 3-stage 

systems in which H2 production occurred in all 3 stages.  In all cases, the accumulated 

biomass was the sole substrate from which H2 was generated, by dark algal/cyanobacterial 

fermentation followed by photofermentation. 

In most cases, algal fermentation produced no H2.  In the most successful example 

(Miura et al. 1992), the yield of microalgal fermentation from accumulated starch was ca. 1.3 

mol H2/mol hexose and the overall yield was maintained at a steady 10.5 mol H2/mol hexose 

for 5 days under continuous illumination (8 mol/mol under diurnal illumination).  

Chlamydomonas spp. were found to accumulate higher levels of starch than other microalgae 
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(Ike et al. 2001) and strain MGA161 with a high fermentative H2 yield was highlighted 

(Miura et al. 1986).  Although the microalgal-based dual system achieved excellent H2 yields 

based on the accumulated carbohydrate, the rate of carbohydrate accumulation limits the 

application of this strategy. 

 

3.4.1.1: Energy generation potential with a photoautotrophic 1st stage 

 

In the case of a dark-fermentative 1st stage fed by wastes or synthetic solutions, the feeding 

rate can easily be adjusted to control the overall rate of H2 production, whereas an 

algal/cyanobacterial-driven system (dependent on light) is limited by the yield of 

photoautotrophic carbohydrate production (e.g. mol hexose/m2 light capture area/day).  

Combined with the molar yield of H2 per hexose in the dual system, this can indicate the 

potential rate of H2 production from a given light capture area (Table 3).  Using an 800 L 

pond-type pilot plant with CO2 as the carbon source for cultivation of Chlamydomonas spp., 

Ikuta et al. (1997) achieved a maximum productivity of 92.6 mmol hexose/m2/d, and an 

average productivity of 24.4 mmol hexose/m2/d over 23 days.  Using a closed 

photobioreactor, Chlamydomonas reinhardtii was grown under outdoor light conditions using 

CO2 in addition to acetate as carbon sources, yielding 158 mmol starch-hexose/m2/d (Kim et 

al. 2006c).  Assuming cultivation conditions can be optimised to maintain the highest rate of 

starch accumulation this value was used to calculate the potential productivities of 

algal/cyanobacterial-driven dual systems (Table 3).  

Using the data provided by Levin et al. (2004a) (see legend to Table 3), it can be 

calculated that at least 436 m2 of light capture area would be needed to generate sufficient H2 

to power one home with modest energy requirements (1 kW), discounting the energy costs of 

the process (e.g. mixing, pumping, medium supplements, pH control and maintenance).  

Thus, significant improvements in the rate and efficiency of light conversion to carbohydrate 

would be required to permit biological energy generation by a dual system reliant upon 

microalgal or cyanobacterial starch accumulation, which is rather overshadowed by the 

availability of significant quantities of starch and cellulose wastes (Yokoi et al. 2002; Haq & 

Easterly 2006). 

As a best-case scenario, metabolic engineering will lead to significant improvements 

in the efficacy of direct photolysis, allowing significant H2 production coupled to 
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carbohydrate accumulation.  If productivity could be increased 20-fold and the required area 

compacted to 20 m2, decentralised domestic energy generation might become spatially 

feasible (assuming parallel developments in process automation, and not accounting for 

operational energy costs).  Large centralised hydrogen farms might be more efficiently run, 

but such an industry would be in direct competition with conventional agriculture, which 

currently accounts for 77 % of land in the UK (Anon 2005).  However, H2 farms would not 

require fertile soil and might be operated in inhospitable environments such as deserts or on 

contaminated land where remediation might not be economically attractive (Aldhous 2006).  

The cultivation of ‘energy crops’, is currently receiving widespread attention (de Vrije & 

Claassen 2003; Aldhous 2006; Schnoor 2006).  For example, Jatropha sp. are proposed as 

energy crops suitable for cultivation on sparse, non-arable land for the production of seed oil, 

which can be esterified to produce biodiesel fuel with the co-production of ‘press-cake’ 

residues which are suitable substrates for bioconversion e.g. to H2 (Staubmann et al. 1997; 

Gübitz et al. 1999; Martínez-Herrera et al. 2006; Tiwari et al. 2007).  A comparison of the 

potential energy yields per hectare for crop farms and photo-energy farms would repay study. 

As the most plentiful energy source, solar energy must be part of any vision of future 

energy generation.  This is the case either in a wholly light-driven system (e.g. microalgae + 

PNS bacteria) or in a partially light driven system (fermentation + PNS bacteria) where the 

fermentation is fed on biomass residues.  As world population and food-demand grow, the 

limited availability of non-agricultural land may discourage algal or cyanobacterial 

cultivation.  While ‘green roofs’ are established as a means of improved insulation and storm 

water retention, the potential of rooftop agriculture remains to be widely exploited (Nowak 

2004).  At the same time, the availability of residues is set to increase from both food and 

energy crops.  Therefore, with the current state of knowledge and technology development, a 

dual system with dark fermentative 1st stage has a greater potential for near-term application. 

On a broader scale, the use of microbial photosynthesis will have to compete with 

photovoltaic (PV) technology, which although as yet economically unattractive, is also under 

parallel development (Avi 2007).  Data are as yet unavailable to compare the energy yields 

from optimised PV and bio-systems as industrial-scale photobioreactors for H2 production are 

still under development.  The estimated net energy ratio (NER) was ca. 2 for a 

photobioreactor lasting 20 years, constructed using tubes of flexible polyethylene film 

(thickness 0.18 mm), under the assumptions of film replacement every 3 years, 80 % time on-
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line, 20 % loss of H2, and discounting the costs of nutrients, temperature control and water 

(Burgess & Fernandez-Velasco 2007). 

 

3.4.2: Dual systems with a dark fermentative 1st stage 

 

Dark fermentation represents a rapid and relatively simple method for the conversion of 

carbohydrates into hydrogen, but the accumulation of organic fermentation products can exert 

stress upon the fermenting microorganisms and generates a secondary waste, requiring 

disposal (Eiteman & Altman 2006).  Concurrently, fermentation products are preferred 

substrates for PNS bacteria, which oxidise reduced organic molecules and dispose of the 

reducing power as H2.  It has long been recognised that dark fermentation and photo-

fermentation should be coupled to create an efficient scheme for waste-free hydrogen 

production (Odom & Wall 1983; Miyake et al. 1984).  In practice, the maximum yield 

reported was 8.3 mol H2/mol hexose (Kim et al. 2006c), and indeed several independent 

results of ca. 7 mol H2/mol hexose were generated by different methods (Table 1).   

The dark fermentation-photofermentation (DF-PF) dual system can be operated in 

continuous mode over extended periods.  The longest experiment reported sustained H2 

evolution for 45 days by coupling lactic acid fermentation and a continuous 

photofermentation, but the yield of H2/mol hexose cannot be calculated from the available 

data (Franchi et al. 2004).  Yokoi et al. (2001 and 2002) reported sustainable operation of a 

dual system for 30 days, maintaining a steady overall yield of 7 mol H2/mol hexose, using 

sweet potato starch residue.  This system was used in repeated-batch culture, the fermenter 

being partially drained daily, and the photobioreactor every 5 days.  A fully continuous 

system is currently under development (Redwood & Macaskie 2007a, 2007b).  A continuous 

E. coli CSTR and a continuous R. sphaeroides photobioreactor were integrated by anion-

selective electrodialysis, simultaneously transferring anionic fermentation products, while 

retaining repressive ammonium ion, E. coli cells and suspended solids.  This approach 

resulted in sustained H2 production by E. coli with a yield of 1.6 mol H2/mol hexose and 

sustained H2 photoproduction by R. sphaeroides despite the presence of 15 mM ammonium 

ion in the initial feed.  The overall yield was 2.4 mol H2/mol glucose, attributable to a low 

efficiency in the PBR (38 %) and a proportion of E. coli products being uncharged species 

(ethanol), not transported by electrodialysis.  An overall yield of 10.1 mol H2/mol glucose 
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could be predicted based on a substrate conversion efficiency of 75 % in the photobioreactor 

and optimisation of the latter is in progress. 

Therefore, with present approaches, a dual system can be sustained continuously, and 

achieves on average ca. 60 % of the hypothetical maximum, 12 mol H2/mol hexose (Figure 

2D).  As a priority, research is needed to investigate techniques for the integration and rate-

balancing of inter-dependent bioreactors, alongside further study of the conditions needed to 

sustain high H2 production continuously in either component of DF-PF dual systems. 

 

3.4.2.1 Selection of organism for dual systems with dark fermentative 1st stage 

 

An ideal fermentation, coupled to an ideal photo-fermentation could approach the maximum 

stoichiometry of 12 mol H2/mol hexose (Figure 2D).  As different fermentations can 

theoretically be coupled to a photofermentation to achieve the same maximum yield (Figure 

2), differences in practicality and experimental yields must be examined.  

The distinction is made between the use of obligate anaerobes in stage 1 and 

facultative aerobes/anaerobes, because there are distinct differences between the biochemical 

mechanisms of H2 production of these classes (section 2.2, Figure 2).  

In the case described by Yokoi et al. (2001 and 2002), the facultative anaerobe 

Enterobacter aerogenes was included in the 1st stage in co-fermentation with the strict 

anaerobe C. butyricum (Table 1).  This example is classed among the strict anaerobic dual 

systems because Enterobacter, being unable to utilise starch, did not contribute to the 

fermentation but provided a cheaper alternative to reducing agents to ensure anaerobiosis by 

scavenging O2 (Yokoi et al. 2001; Yokoi et al. 2002). 

Facultative anaerobes (e.g. E. coli) can be rapidly pre-cultured, are very amenable to 

metabolic engineering, and do not require the addition of a reducing agent to ‘poise’ the redox 

potential, while the biochemistry of mixed-acid fermentation has been well-studied 

(Stephenson & Stickland 1932; Knappe 1987; Alam & Clark 1989; Clark 1989; Bock & 

Sawers 1992).  Nevertheless, obligate anaerobes have been preferred in the study of dual 

systems, perhaps due to the potentially higher H2 yield.  Table 1 shows 14 examples of strict 

anaerobe-driven dual systems, with an average overall yield (where given) of 5.73 mol 

H2/mol hexose (or 47.8 %).  Conversely only eight examples of dual systems could be found 

using other types of fermentation in the 1st stage, of which, systems based on lactic acid 
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fermentation were the most effective, producing (overall) up to 7.3 mol H2/mol hexose 

entirely from the 2nd stage (Kawaguchi et al. 2001).  High overall yield is, therefore, possible 

without H2 production in the 1st stage.  This can be explained by the fact that lactic acid 

fermentation has been optimised for the industrial production of lactic acid (Li et al. 2004) 

and because lactate is theoretically converted to 6 H2 in the 2nd stage, which typically operates 

with high efficiency (section 2.1.2).   

It is possible that researchers have disregarded mixed-acid fermentation for use in the 

1st stage because of its theoretically lower H2 yield (Figure 2).  The fermentative yield of H2 

from hexose by living organisms is thermodynamically limited to 4 mol H2/mol hexose 

(Thauer 1977).  The metabolic pathways of strict anaerobes (e.g. C. butyricum) allow this to 

be achieved only under very low H2 partial pressure, otherwise the reaction is 

stoichiometrically similar to mixed-acid fermentation, producing a maximum of 2 mol H2/mol 

hexose (Figure 2).  The yield from strict anaerobic fermentation in a dual system has not 

exceeded 2.6 mol/mol (Table 1), and the use of a non-sporulating facultative anaerobe would 

cause no theoretical sacrifice of yield and a certain increase in practicality (Figure 2D, section 

3.4.2.1). 

Hyperthermophilic fermentations may yield up to 3.8 mol H2/mol hexose in practice 

(section 2.2.1), but no accounts describe dual systems using hyperthermophiles.  Furthermore, 

they would not be compatible with PNS bacteria in co-culture, which produce H2 optimally at 

ca. 30 ºC and live at temperatures below 47 ºC (Castenholz 1995).  A hypothetical industrial-

scale facility based on the sequential combination of a thermobioreactor and a photobioreactor 

was estimated to produce H2 at a cost of €2.74 /kg H2 (de Vrije & Claassen 2003).  If the bio-

H2 were used to generate electricity in a fuel cell operating at 50 % efficiency and 95 % 

utilisation, the cost of the energy production would be €0.145 /kWh.  The price of domestic 

electricity is ca. €0.15 /kWh (2006, DTI file 36184, www.dti.gov.uk). However a more 

extensive economic analysis of the bioprocess, suggested a cost of €4/kg H2 (Davila-Vazquez 

et al. 2007).  Continued research and development of biohydrogen systems is required 

preceding a reliable economic assessment. 

Some information is available regarding the use of non-axenic fermentations in the 1st 

stage of a dual system (Table 1).  This strategy takes advantage of the presence of suitable 

microorganisms in the feedstock, thus eliminating the need to sterilise inputs and to pre-

culture specific organisms.  However, in undefined mixtures of microorganisms it is more 
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difficult to repress unwanted reactions (section 2.2.2), H2 yields are generally lower than in 

axenic dual systems (Table 1), and it would be difficult to ensure reproducibility between 

feedstock sources and locations. 

 

3.4.2.2: Distribution of H2 production among stages of a dual system 

 

Ike et al. (1997) compared 3 different ways to generate H2 from algal biomass rich in starch, 

of which the most effective (in terms of H2 yield) utilised a lactic acid fermentation 

(producing no H2) followed by photo-fermentation with PNS bacteria, showing that it is not 

essential to produce H2 in both phases of the dual system. 

Figure 2 illustrates that various different stage 1 fermentations (e.g. lactic acid, mixed-

acid and clostridial-type fermentations) can be applied with different H2 yields but with equal 

potential for H2 production overall (12 mol H2/mol hexose).  The type of fermentation 

employed affects the theoretical distribution of H2 between the 1st and 2nd stages.  If lactic 

acid fermentation were used, all 12 moles of H2 would arise from the 2nd stage; 10 for mixed-

acid fermentation and 8-10 for C. butyricum.  

It is possible that C. butyricum-based dual systems have been favoured by researchers 

in order to skew the distribution of H2 production towards the 1st stage and thus to minimise 

the required transfer of organic fermentation products and the light capture area.  Conversely, 

H2 is generally produced by fermentations at ca. 50 % of the theoretical maximum, while the 

photo-fermentation typically operates at ca. 70 % efficiency, so a higher overall yield could 

be expected using lactic acid or mixed-acid fermentation in which more H2 is produced in the 

more efficient 2nd stage.  The gain in productivity would need to be offset against the 

increased costs of light capture area and transfer of fermentation products. 

 

3.4.2.3 Energy generation potential with a dark fermentative 1st stage. 

 

The increased productivity of a dual system over a single-stage system is significant.  For 

example, a molasses-fed pilot fermentation plant generated 8240 L H2 (342.5 mol H2) and 

3000 L effluent per day (Ren et al. 2006).  The effluent contained primarily acetate and 

ethanol with a hydrogen production potential of 246.35 mmol H2/L (authors’ calculations).  
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Therefore the addition of a photoheterotrophic 2nd stage could maximally increase 

productivity by 317 %.   

As a best-case scenario, a dual system capable of generating 12 mol H2/mol hexose 

might be developed.  Work is underway to meet a target of 10 mol H2/mol hexose, which 

would make bio-H2 economically viable, given low feedstock costs (Davila-Vazquez et al. 

2007).  Using reported values for the productivity of dual systems, the potential for energy 

generation can be estimated. 

With the same assumptions as used in Table 3, a household might consume H2 at a 

minimum rate of 573.6 mol/d (Levin et al. 2004a; Levin 2004b).  The feasibility of the 

decentralised application of a sequential dual system was evaluated (in this study) by 

calculating the necessary reactor sizes and the feed requirements to meet this demand.  The 

energy requirements of the process were not taken into account.  

If the potential H2 yield (12 mol H2/mol hexose) were to be distributed 4:8 between 

the 1st and 2nd stages, respectively, then the dark fermentation would be required to produce 

191.2 mol H2/d and the photobioreactor 382.4 mol H2/day (of which only ca. 12 h is light).  

Using published volumetric productivities (Levin et al. 2004a; Levin 2004b), it was calculated 

that a 79.6 L fermenter (containing an undefined mesophilic culture, ca. 0.1 mol H2/L/h) 

would be needed.  The productivity of the photobioreactor (PBR) would be constrained by 

several parameters: light conversion efficiency (up to 10 % energy basis (Akkerman et al. 

2002)), light availability (1 kW/m2 for 12 h/d(Miyake et al. 1999), specific rate of H2 

production (ca. 0.1 L H2/g dw/h, (Rocha et al. 2001), culture depth (5 cm), culture density 

(ca.1 g dry wt./L : OD ca. 2.5).  To operate within these constraints a PBR volume of 7648 L 

would be required.  The corresponding square panel PBR would be 5 cm deep and 12.4 m 

wide with a light capture area of 153.0 m2.  This area could potentially harvest 6.6 GJ per 12 h 

light period, indicating a comfortable light conversion efficiency of 1.65 % to meet the H2 

demand (Figure 4). 

It is noteworthy that the limiting factor is the specific rate of H2 production 

(necessitating a dense culture and limiting the PBR depth) rather than the light conversion 

efficiency even at the reasonable light intensity of 1 kW/m2.  Were specific rates to be 

increased (e.g. through improved strains or bioreactors), the light intensity and conversion 

efficiency would limit the productivity of the photobioreactor.  At a light intensity of 1 kW/m2 

for 12 h per day, with 65.8 % of useful solar energy and 10 % a photosynthetic efficiency a 
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light capture area of 38.44 m2 (6.2 m x 6.2 m) would be needed to produce 382.4 mol H2 in 12 

hours.  A house might barely accommodate an 80 L fermenter and a 40 m2 photobioreactor, 

along with H2 storage, regulatory equipment and fuel cell (Figure 4), but even with a 

conversion efficiency of 12 mol H2/mol hexose, the feed-demand would be 7.74 kg 

cellulose/d or 8.17 kg sucrose/d, which could be supplemented with organic household wastes 

for disposal, although the additional sugar would be negligible.  Sugar production is an 

agricultural industry, so this option could not be applied in the long-term due to competition 

for farmland (as 3.4.1.1) but sugar-processing wastes could be exploited as feed substrates. 

Whereas the use of energy crops would incur costs, it could be economically realistic 

to co-locate H2 production with feed sources such as food processing plants.  The UK food 

industry produces ca. 5.3 million ton biodegradable waste annually (UK food & drink 

processing mass balance, C-tech Innovation, 2004), a large fraction of which is  disposed of 

by land-filling, which incurs a cost (Bartelings et al. 2005).  Co-locating food-waste 

generation and conversion to H2 would remove transport costs, while minimising spoilage of 

the residues to maintain their value.  Bio-H2 production could be optimised for the use of 

residues having relatively consistent composition and little H2 storage or distribution would 

be required as produced energy could be used on-site to meet predictable energy demands and 

any excess production could be sold to the national grid to alleviate the demand for fossil fuel. 

There are many accounts of biohydrogen production from non-synthetic substrates 

(i.e. wastes), and dual systems have been applied in several cases (Table 1) (Zhu et al. 1995; 

Fascetti et al. 1998; Kim et al. 2001; Zhu et al. 2002; Franchi et al. 2004).  De Vrije and 

Claassen (2003) described a hypothetical process fed by lignocellulosic biomass, and 

calculated that 9 % of the domestic energy demand could be met using available biomass 

residues in the Netherlands. 

 

3.4.2.4 Bio-H2, bio-methane or bio-ethanol? 

 

Biomass residues are available in significant quantities for use as feedstocks for bioenergy 

production (Easterly & Burnham 1996; Filho & Badr 2004; Haq & Easterly 2006; Mabee et 

al. 2006; Dawson & Boopathy 2007; Levin et al. 2007).  Bioprocesses for the production of 

H2, methane and ethanol can all utilise biomass residues as feeds, although currently, bio-

ethanol and bio-methane processes are commercially more advanced than bio-H2 processes. 
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Levin et al. (2007) calculated the energy potential of Canada’s biomass residues for 

methane production by anaerobic digestion and H2 production by anaerobic bacterial 

fermentation.  The potential H2 energy equated to only 41.4 % of the potential methane 

energy.  However, this calculation was based on a H2 yield of 1.3 mol H2/mol hexose from a 

single-stage bacterial fermentation.  Several authors report multi-organism systems for H2 

production producing in excess of 7 mol H2/mol hexose (Weetall et al. 1989; Miura et al. 

1992; Ike et al. 2001; Kawaguchi et al. 2001; Yokoi et al. 2001; Asada et al. 2006; Kim et al. 

2006c).  Therefore, bio-H2 production could be more economically attractive than bio-

methane production, if dual H2-producing systems can be implemented. 

Bio-ethanol is a major energy vector in Brazil, with a production of 16 billion L of 

ethanol per year, requiring ca. 3 million hectares of land.  The total sugarcane crop area (for 

sugar and ethanol) is 5.6 million hectares (Goldemberg 2007). The average industrial yield 

during the crop 2004/2005 was 144.35 kg sucrose/tonne sugarcane, equivalent to 79.39 L 

anhydrous ethanol/tonne sugarcane or 82.86 L hydrous ethanol/tonne sugarcane (Nastari et al. 

2005). Therefore, the process efficiency of bio-ethanol production is 80.5 % (of a biochemical 

maximum of 2 mol ethanol/mol hexose). Considering the higher heating value (HHV) of 

ethanol of 29.840 MJ/kg (http://hydrogen.pnl.gov/cocoon/morf/hydrogen/article/401), the bio-

ethanol process produces 2,212 kJ energy/mol hexose (from sugar cane).  To equal this 

energy yield a biohydrogen process must achieve ca. 7.8 mol H2/mol hexose (HHV of H2 = 

141.88 MJ/kg, hydrogen.pnl.gov/cocoon/morf/hydrogen/article/ 401).  This could not be 

achieved by a single-organism system, and a dual system would be required. 

 

4: Conclusions and future perspectives 

 

Biological hydrogen production is a promising avenue that should be pursued urgently as the 

world energy demand increases, fossil fuel resources dwindle and the need for greenhouse gas 

minimisation becomes increasingly pressing.  Hydrogen biotechnology is poised to become 

increasingly prominent alongside, and eventually emerging as competitive with other 

sustainable biofuel processes and/or as an adjunct to them. 

This review shows that (unlike with bioethanol production) no single microorganism 

can produce competitive yields of H2.  Multiple-organism systems offer increased H2 yields 

over single organisms and would be mandatory for realistic future energy generation.  
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Examination of the properties of photosynthetic microorganisms revealed that purple 

non-sulfur (PNS) bacteria are the most suitable organisms for the 2nd stage of a dual system, 

while for the 1st stage dark fermentation, clostridia have been the most widely used but 

facultative aerobes may increase the ease of operation while detracting little from the overall 

H2 yield.  Advances in membrane separation technology (e.g. anion-selective electrodialysis) 

can overcome rate-limitations of substrate transfer between the 1st and 2nd stages (Redwood & 

Macaskie 2007a), which precludes the need for biomass immobilization and would allow high 

density, well mixed cultures.  However the potential limitations of membrane fouling and the 

expense of membranes would need to be addressed.   

A dual system combining anaerobic fermentation and photoheterotrophy could 

potentially result in high energy yields from industrial wastes or biomass residues, although it 

is unlikely that a domestic household would produce sufficient fermentable waste to make a 

significant contribution to its energy budget.  For example, a molasses-fed pilot fermentation 

plant operated with a yield of 26.1 mol H2/kg COD removed, generating 342.5 mol H2/day 

(Ren et al. 2006), sufficient to produce an electrical power of 0.6 kW using a realistic PEM-

FC (operating at 50 % efficiency and 95 % utilisation) (Levin et al. 2004a). 

Even by increasing the output by several-fold by addition of the second stage PBR it is 

unlikely that a light-driven dual system would repay investment for single household 

domestic electricity generation.  Furthermore, it can be calculated that for domestic self-

sufficiency several tonnes of sugary waste would be required annually, therefore, substrate 

supply would be the limiting factor rather than spatial considerations.  Hence, industrial, retail 

and agricultural waste producers would be the likely initial users of bio-H2 systems.  

In addition to food processing and retailing wastes, biomass residues are available in 

significant quantities for use as feedstocks for bioenergy production (Easterly & Burnham 

1996; Filho & Badr 2004; Haq & Easterly 2006; Mabee et al. 2006; Levin et al. 2007).  

Bioprocesses for the production of H2, methane and ethanol can all utilise biomass residues as 

feedstocks although, currently, bio-ethanol and bio-methane processes are commercially more 

advanced than bio-H2 processes. 

It was argued above (section 3.4.2.4) that a dual bio-H2 system could be more 

productive than bio-methane and equally productive to bio-ethanol in terms of energy 

production.  This calculation used values of combustion enthalpy for bio-CH4 and bio-H2 in 

both cases, making the assumption that energy can be recovered from H2 and CH4 with equal 
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efficiency, e.g. by coupling of the biogas-producing generation reactor to a fuel cell for 

electricity generation assuming a pure gas stream (e.g. see Macaskie et al., 2005).  The most 

efficient type, proton exchange membrane (PEM; also called polymer electrolyte membrane) 

fuel cells, achieve the highest power densities when H2 is used as a fuel, whereas solid oxide 

fuel cells (SOFCs) are more suitable for the use of hydrocarbons such as methane (Larminie 

& Dicks 2003).  However SOFCs use an oxide ion-conducting ceramic material as the 

electrolyte and require an operating temperature of 600-1100 °C and hence the necessary heat 

input detracts from the overall energy balance.  In addition, any contamination of bio-methane 

with H2S, the end product of dissimilatory sulfate metabolism by the sulfate-reducing bacteria 

present in anaerobic mixed cultures, would necessitate gas filtration, since sulphur compounds 

are powerful catalyst poisons affecting all types of fuel cells.  The direct methanol fuel cell 

(DMFC) is a type of PEM-FC in which methanol reacts (slowly) at the anode according to: 

CH3OH + H2O → 6H+ + 6e- + CO2 (Larminie & Dicks 2003).  For DMFC, the power density 

is relatively low compared to PEM-FC and SOFC, but this would not prevent application in 

portable devices such as laptop computers, where the power storage exceeds 25 Wh and the 

required DMFC unit would be significantly smaller in volume than the equivalent lithium-ion 

battery (see Larminie & Dicks, 2003).  

The formation of methanol from methane via methane monooxygenase is very well 

established (Grosse et al. 1999; Dalton 2005) and a comparative study of the various biogas 

and fuel cell-coupling options would be worthwhile. 

Fuels which are liquid at room temperature (e.g. methanol and ethanol) have higher 

volumetric energy densities than gaseous H2.  Apart from the consideration of land use the 

long-term economics of bioethanol production need to be considered (Rogers et al. 2005).  

Ethanol cannot be used efficiently in fuel cells (Larminie & Dicks 2003) and a major problem 

is the higher cost of bioethanol production (from cellulosic biomass) as compared to diesel or 

petrol; this cost is projected to become comparable to that of petrol by 2015, based on an oil 

price of $35-$40 a barrel (Chandel et al. 2007).  The distillation cost is significantly higher at 

low ethanol concentrations (Zacchi & Axelsson 1989), and a membrane distillation process 

can be used as an efficient and cost effective option (see Chandel et al. 2007); molecular sieve 

techniques are now widely used in the industry (Rogers et al. 2005).  A net energy balance 

(NEB) calculated by Hill et al. (2006) suggests that corn grain ethanol provides ca. 25 % 
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more energy than that consumed in its production; however almost all of the NEB can be 

attributed to the ‘energy credit’ for the animal feed co-product.   

Brazil has certain comparative advantages in ethanol production. Unlike American or 

European processes based on crops (e.g. barley, corn or wheat) that must first be converted at 

significant expense into sugars, Brazilian processes are based on sugarcane, which its climate 

favours, obviating any need for conversion.  Ethanol produced from sugarcane in Brazil has a 

net positive energy balance (renewable energy output versus fossil fuel input) of 10.2, whilst 

the energy balance for ethanol from corn (US) is 1.4 (Goldemberg 2007).  Also, the 

production cost of ethanol from sugarcane (Brazil) (US$ 0.81 per gallon, in 2006) is lower 

compared to ethanol from corn (US) (US$ 1.03 per gallon, in 2006) and is competitive with 

gasoline in the US, even considering the import duty of US$0.54 per gallon and energy-

efficiency penalties (30 % or less with modern flexible fuel vehicle technologies) 

(Goldemberg 2007).  Ethanol produced in Brazil has remained fully competitive with gasoline 

on the international markets, without government intervention, since 2004, i.e. subsidising 

ethanol production is a thing of the past.  In addition to the production of ethanol, the 

industrial processing of sugarcane generates bagasse, another valuable product which adds to 

the industry’s positive environmental differential because it has been used to replace fossil 

fuels in the production of industrial heat and electricity in the sugar mills and distilleries, 

thereby boosting the abatement potential of greenhouse gases emission (Macedo et al. 2004).  

Moreover, the competition for land use between food and fuel has not been substantial: 

sugarcane covers 10 % of total cultivated land and 1 % of total land available for agriculture 

in the country (Goldemberg 2007). 

A recent review (Hill et al. 2006) has evaluated critically the long-term potential for 

bioethanol against emerging biodiesel technology.  While ethanol is made by the fermentation 

of biomass substrates (cane sugar is ideal because no further processing is required), biodiesel 

is made via processing of plant material from ‘energy crops’.  For example, soybean biodiesel 

is sourced directly from long-chain triglycerides obtained from the seeds; in comparison corn-

starch requires pre-enzymatic conversion into fermentable sugars for ethanol production.  

Critically, biodiesel yields 93 % more energy than that invested in its production and relative 

to the fossil fuels they displace, greenhouse gas emissions are reduced by 12 % and by 41 % 

by bioethanol and biodiesel, respectively.  However, Hill et al. (2006) point out that ‘even 

dedicating all U.S. corn and soybean production to biofuels would meet only 12 % of gasoline 
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demand and 6 % of diesel demand’.  Lin & Tanaka (2006) suggest that any country with a 

significant agronomic-based economy could use technology for ethanol fuel production.  

However, this and many other critiques overlook the difficulty of achieving a positive energy 

balance for the production of bio-ethanol from crops such as corn and wheat rather than from 

sugarcane.  An early analysis (Pimentel 2001) reported a negative energy balance for corn 

ethanol in the US, whereas the result of recent studies was a more favourable energy balance 

of 1.4 (Goldemberg 2007).  Nevertheless, the cultivation area needed to support a US fuel 

economy based on corn-ethanol would equate to most of the nation’s land area (Pimentel 

2001), and the same argument applies to all ‘energy crops’ that compete for agricultural land 

with food supply, a very major factor, which is acknowledged but understated by Hill et al. 

(2006).  These authors suggest the use of agriculturally marginal land or the use of waste 

biomass for bioethanol production; both are potentially more sustainable than outright energy 

crop cultivation.  Assuming that the cost of ethanol recovery can be lowered by effective 

recovery technology, the use of large global reserves of lignocellulosic waste biomass as 

potentially fermentable feedstock is receiving widespread attention with respect to bioethanol 

production and also with respect to bio-H2 production (de Vrije & Claassen 2003; Aldhous 

2006; Schnoor 2006).  The main problem lies in converting the recalcitrant woody material 

into readily fermentable substrate.  This requires pre-treatment, which may be physico-

chemical, enzymatic or combinations of these.  An overview of upstream treatments is outside 

the scope of this review and the reader is referred to recent example reviews in this area 

(Rogers et al. 2005; Lin & Tanaka 2006; Chandel et al. 2007).  Once a fermentable feedstock 

is generated there are several options for the downstream energy production process and the 

hydrolysate could be equally well used for biohydrogen production as for bioethanol 

production, without the attendant processing costs. 

The use of energy crops for biodiesel production is particularly promising and the 

technological limitations have been reviewed by Abdullah et al. (2007).  Chemically, 

‘biodiesel’ is fatty acid methyl esters, produced by the transesterification of oils and fats with 

methanol in the presence of suitable catalysts.  Here bio-methanol could find a large-scale 

application as an alternative to the niche market for fuel cell use.  The disadvantages of 

biodiesel production are that large volumes of contaminated wastewater are produced and that 

homogeneous catalysis is employed for maximum processing efficiency; the catalyst is 

currently not retained and major research efforts are directed towards the development of 
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solid phase catalysts (Abdullah et al. 2007).  Glycerol is produced in tonnage quantities as a 

by-product, which could be a suitable substrate for microbial fermentation to produce ethanol 

or H2 as additional energy products.  However the glycerol is obtained as an aqueous impure 

NaCl-solution which requires purification and its use as a fermentation substrate would 

compete with other potential uses in the pharmaceutical, cosmetic and food industries, and as 

animal feeds, polymers, surfactants and lubricants (Ma & Hanna 1999).  Assuming that 

microorganisms resistant to the contaminants are developed, biohydrogen production could be 

attractive in this context since a gaseous product is easily separated from the fermentation 

liquor and hence the purity or otherwise of the starting material is largely irrelevant, assuming 

the product gas stream is free of volatile agents.  

Biodiesel is made by pressing plant material (e.g. seeds) to extract the oils and hence 

plant residua could be a useful waste for fermentation to make a secondary ethanol or 

hydrogen fuel stream; however the problems of upstream treatment of the wastes are similar 

to those of other fibrous materials.  However in at least one example waste from oil 

production (in this case olive oil) has been used as the substrate for biohydrogen production 

(Eroğlu et al. 2004).  Clearly the use of edible oils from food-crops such as Olea sp. (olive) 

for biofuel production would be impractical, whereas attention has recently focused on the use 

of inedible oil for biodiesel production, obtained from the tropical oil seed plant Jatropha 

curcas, which is drought resistant and can grow on marginal, sub-arable or even waste land 

(Srivastava & Prasad 2000) in Central and South America, Mexico, South-East Asia, India 

and Africa.  J. curcas is not suitable as animal feed without detoxification (Martínez-Herrera 

et al. 2006) but has many other applications and a transesterification process of the seed oil as 

a biofuel has been evaluated on an industrial scale (1500 tonnes per annum) (Gübitz et al. 

1999).  Due to its high free fatty acid content (ca. 14 % w/w) Jatropha oil requires pre-

esterification using methanol before conventional transesterification to produce biodiesel, 

which was shown to give a high yield of biodiesel with satisfactory fuel properties (Tiwari et 

al. 2007).  Bio-methane production from anaerobic digestion is a potential source of bio-

methanol, which could find use in the pre-esterification reaction.  Crushing Jatropha seeds to 

release the oil results in an equal mass of press-cake, which can be used as a substrate for 

further bioprocessing, e.g. methane production by anaerobic digestion (Staubmann et al. 

1997).   
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In conclusion, the production of biofuels (biodiesel, bioethanol or biogases) from 

energy-dedicated crops appears to be unsustainable unless the plant occupies a niche other 

than agricultural land or provides a high yield of energy per area of cultivation.  Agricultural 

residues (lignocellulosic biomass) are available as sources of fermentable substrate for biofuel 

production but these wastes form a common bottleneck in the conversion of wastes into 

fermentable feedstock.  Biogases and bioethanol can both be made by the fermentation of 

sugars and sugary wastes but the processing costs of ethanol limit the energy output of this 

method.  

The hydrogen economy per se is still some decades away but combination and hybrid 

technologies are appealing in the shorter term.  Production of H2 from food waste sources or 

from the wastes from biodiesel production is potentially a clean, and sustainable route to clean 

energy production.  

Although the maximum yields of H2 from sugar are being approached by fermentation 

this is only possible by the application of more than one microorganism.  This review has 

attempted to identify the two-stage approaches by which maximum yields (and rates) of 

conversion can be obtained and it identifies that, as with energy crops, available land area for 

light capture is likely to be a major limiting factor in operation.  Under-used, waste ground in 

sunny regions (as for Jatropha) could provide one solution but for most of the developed 

world arable land takes priority for food production.  Process intensification is required to 

overcome the problem of light delivery to the second stage photofermentations, which would 

push bio-H2 production to competitive levels.  A review of photobioreactor designs to achieve 

effective light transfer into high-activity cultures is outside the scope of this overview; the 

reader is referred to recent reviews (Tsygankov 2001; Hoekema et al. 2002; Kondo et al. 

2002; Claassen & de Vrije 2007). 
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Table 1 : Summary of dual systems employed for biohydrogen production 

1st stage 2nd stage Feeds, 
substrates, 

supplements 
Inoculum  
and mode Productivity 

Integration 
strategy Organism 

and mode Productivity 

Overall 
productivity 

 

Notes, limitations, 
caveats Source 

Microalgae – Anoxygenic photosynthetic bacteria 

ca. 6.7 mol H2 / 
mol hexose 

8 mol H2 / mol 
hexose for (7 d) 

a 
12 h day/night cycle 

CO2 (sole C 
source) 

Chlamydomonas  
MGA161 

Batch 

ca. 1.3 mol H2 / 
hexose + acetate 

and ethanol 

Sequential, 
Batch-
transfer 

Photosynthetic 
bacterium W-1S 

Fed-batch ca. 9.2 mol H2 / 
mol hexose 

10.5 mol H2 / 
mol hexose (7 

d) a 

Continuous 
illumination 

(Miura et al. 
1992) 

CO2, 
NG 

Chlamydomonas 
sp. strain MGA161 

Repeated batch, 
30 °C 

Av. 24.4 mmol 
hexose/d 

80% conversion 
to glycerol, 

acetate, ethanol  

Sequential, 
Batch-
transfer 

Rhodovulum 
sulfidophilum 
Purple sulfur 

bacteria 
Fed-batch 

Average: 
 3.4 L H2 / d 

5.8 mol H2 / mol 
hexose b 

23 d operation 

Pilot scale. 
Difficulty with 

contamination of the 
2nd stage 

(Akano et al. 
1996; Ikuta 
et al. 1997) 

NG C. reinhardtii, 
batch  NG Co-culture 

ratio NG 

Rhodospirillum 
rubrum 

PNS bacteria 
Batch 

NG NG Qualitative success, 
data NG 

 (Melis & 
Melnicki 

2006) 

Cyanobacteria – Anoxygenic photosynthetic bacteria 

Glucose 
Synechoccus 

cedrorum 
Batch 

mol H2 / mol 
hexose 

free: 0.013 
immob. : 0.01 

Co-culture 
1:1 (vol) 

Rhodobacter 
sphaeroides 

O.U.001 
PNS bacteria 

Batch 

mol H2 / mol 
hexose 

free: 0.186 
immob. : 3.82 

Mol H2 / mol 
hexose 

free: 0.702 a 
immob. : 0 

Continuous 
illumination 
(2.4 klux) 

(Sasikala et 
al. 1994a) 
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SOT medium 
lacking nitrate 

Spirulina platensis 
Batch 

N-starvation 

Light phase: 1.03 
mmol 

hexose/L/d 
Dark phase: 1 
hexose  0.68 
H2 + 0.4 acetate 
+ 0.15 formate 

Sequential, 
Batch-
transfer 

R. sphaeroides RV 
PNS bacteria 

batch 

Nearly 
stoichiometric 

ca. 2 mol H2 / 
mol hexose b 

 
2 mmol 

H2/day/L 

Light-dark cycle 
(72 h light, 24 h dark) 

(Aoyama et 
al. 1997)  

Obligate anaerobic fermenters  – Anoxygenic photosynthetic bacteria 

glucose 
Clostridium 
butyricum 

Batch 

16 % of total H2 
1.1 mol H2/mol 

hexose a 

Immobilised 
co-culture 
1:5 (mass) 

R. sphaeroides RV 
PNS bacteria 

batch 

84 % of total H2
a 

est. 70.4 % 
efficiency b 

7.0 mol H2 / 
mol hexose a 

Continuous 
illumination, 

> 300 h 

(Miyake et 
al. 1984) 

Tofu or 
alcohol 

wastewater 

C. paraputrificum 
Batch, 30 ºC 

mL/h/L 
10 % Tofu: 68 
50 % Alcohol: 

90 

Sequential, 
batch-

transfer 

R. sphaeroides RV 
PNS bacteria 

batch 

μmol/h 
10 % Tofu: 2 

50 % Alcohol: 4 

Pre-treatment by fermentation improved 
photosynthetic H2 production 

(Zhu et al. 
1995) 

Glucose 
C. butyricum SC-

E1 
Continuous 

2.0-2.3 mol 
H2/mol hexose 

Sequential, 
Continuous Rhodobacter - 

1.4-5.6 mol 
H2/mol hexose 
(predicted) a 

Hypothetical study (Kataoka et 
al. 1997);  

1.9 mol H2/mol 
hexose a 

Sequential, 
batch-

transfer 

1.7 mol H2/mol 
hexose  
32.4 % 

efficiency b 

mol H2/mol 
hexose 
3.6 a 

Medium included 
glutamate Starch 

+ yeast extract 
+ glutamate 

C. butyricum 
Batch 

- Co-culture 
1:10 (mass) 

Rhodobacter  
sp. M-19 

PNS bacteria 
- 

Batch:  4.5 a 
Repeated fed-

batch: 6.4 a 

Fed-batch performed 
for 30 days 

(Yokoi et al. 
1998)  

glucose 1.29 mol H2 / 
mol hexose b 

0.36 mol H2 / 
mol hexose b 

1.64 mol 
H2/mol hexose b - 

Rice-wine 
wastewater 

1 L H2/L 
wastewater/18h a 

0.44 L H2/L 
broth/ day for 10 

days a 

1.44 H2/L broth/ 
day a - 

Tofu 
wastewater 

C. butyricum  
NCIB 9576 

semi-continuous 
0.9 L H2/L 

wastewater/26h a 

Sequential, 
batch-

transfer 

R. sphaeroides E151 
Immobilised in 
hollow fibres 

Fed-batch 0.2 L H2/L 
broth/day for 30 

days a 

1.1 L H2/L 
broth/day a - 

(Kim et al. 
2001) 
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Glucose NG 
62% of H2 

NG 
38% of H2 

NG H2 produced for for 
ca. 24h 

(Zhu et al. 
2001)  

Tofu 
wastewater 

C. butyricum 
batch, immobilised 

- 

Immobilised 
co-culture 

ca. 1:1 
(mass) 

R. sphaeroides RV 
batch, immobilised 

- 2.2 L H2/L 
wastewater 

H2 produced for for 
ca. 48h 

(Zhu et al. 
2002)  

Sweet potato 
starch residue 
+ polypepton 
or corn steep 

liquor 

C. butyricum &   
Enterobacter 

aerogenes 
co-culture initially 

ca. 2:1 (w:w) b 
Repeated-batch 

HRT: 2 d 

2.7 mol H2/mol 
hexose a 

Sequential, 
batch-

transfer 

Rhodobacter sp. 
 M-19 

+ 20μg/l Na2MoO4 
+ 10 mg/l EDTA 
Repeated-batch 

HRT: 6.25 d 

4.5 mol H2/mol 
hexose a 

7.2 mol H2/mol 
hexose a 

Performed for >30 
days 

(Yokoi et al. 
2001; Yokoi 
et al. 2002) 

hydrolysed 
lignocellulosic 

biomass 

Extreme 
thermophiles* 

Continuous 

80 % efficiency a 
i.e. 

3.2 mol H2 and 
1.6 mol acetate/ 

mol hexose 

sequential 
continuous 
(planned) 

PNS bacteria 

80 % efficiency a 
i.e. 

3.2 mol H2/mol 
acetate 

8.32 mol 
H2/mol hexose 
(hypothetical) b 

Hypothetical study, 
estimate cost of H2: 

0.93 Euro/kg 

(de Vrije & 
Claassen 

2003) 

algal biomass 
(starch) 

C. reinhardtii 

C. butyricum 
Batch 

2.6 mol H2/mol 
hexose a 

Sequential 
Batch-
transfer 

R. sphaeroides 
KD131 

PNS bacteria 
+ glutamate, batch 

88 %  
efficiency b 

8.3 mol H2/mol 
hexose a 

Starch was not the 
sole substrate in algal 

biomass 

(Kim et al. 
2006c) 

Glucose Anaerobic bacteria 
Continuous, 37 °C 

1.36 mol H2/mol 
hexose , + 

acetate, 
propionate, 
butyrate a 

Sequential 
Batch-
transfer 

Rhodopseudomonas 
capsulata 

35 °C, continuous 

3.2 mol H2/mol 
hexose a 

40 % efficiency 

4.56 mol 
H2/mol hexose a 

Glutamate added to 
stage-1 effluent.  1st  
stage maintained for 

over 6 months, 2nd for 
over 10 days. 

(Shi & Yu 
2006) 

Facultative aerobes/anaerobes  – Anoxygenic photosynthetic bacteria 

Dextrose Streptococcus 
faecalis 

lactate (0.35 M) 
No H2 

Sequential 
Batch-
transfer 

Rhodospirillum 
rubrum S-1 

Fed-batch, 30 °C 

99 % efficiency 
16-24 ml H2/g/h NG 1st stage was industrial 

yoghurt production 

(Zurrer & 
Bachofen 

1979)  
Rhodopseudomonas. 

capsulata B100 
(WT) batch 

- 1.2-4.3 mol 
H2/mol hexose a 

Cellulose Cellulomonas sp. 
Batch 

Hexose  
organic acids 

(no H2) 

Co-culture 
1:1 (vol) R. capsulata ST410 

batch - 4.6-6.2 mol 
H2/mol hexose a 

20 ml scale. 
All H2 from 2nd stage. 
ST410 is a H2 uptake 

deficient mutant 

(Odom & 
Wall 1983) 
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Glucose 
1.3-5.3 mol 

H2/mol hexose b 
10 days 

Sawdust 
hydrolysate 

6.6-8.4 mol 
H2/mol hexose b 

30 days 
Cellulose 

hydrolysate 

Klebsiella 
pneumoniae 
Continuous 

18-19 ºC 

NG 
Immobilised 
co-culture 
(ratio NG) 

Rhodospirillum 
rubrum 

Continuous 
18-19 ºC 

NG 

NG 
46 days 

K. pneumoniae was a 
contaminant 

(Weetall et 
al. 1989)  

Molasses 
NG 

Industrial lactic 
acid production 

No H2 
3.4 mM lactate 
in wastewater 

Sequential 
Batch-
transfer 

Rhodobacter 
sphaeroides 

O.U.001 
Batch, 30 ºC 

> 100% based 
on lactate 
content of 
wastewater 

4480 ml H2/L 
wastewater  

Wastewater contained 
non-lactate substrates 

and was  
diluted 10-fold 

(Sasikala et 
al. 1991) 

Mixed bacterial 
community 
enriched on 
succinate 

- Co-culture 

Consortium:  
Rhodobium 

marinum, Vibrio 
fluvialis and Proteus 

vulgaris 

- 1.13 mol H2/ 
mol hexose a algal biomass 

(starch) 
C. reinhardtii Lactobacillus 

amylovorus 
Batch 

Hexose  lactic 
acid 70-80% 

(no H2) 

Sequential, 
batch-

transfer 

Rhodobacter 
sphaeroides RV 

batch 
+ 10 mM glutamate 

41.7 % 
efficiency b 

4.6 mol H2/mol 
hexose a 

Algal biomass may 
contain substrates 
other than starch 

(Ike et al. 
1997)  

Starch Vibrio fluvialis 
Batch 

Acetate & 
ethanol (no H2) 

100 % of H2  
95 % efficiency 

2.4 mol H2/mol 
hexose b - 

L. amylovorus 
batch Lactate (no H2) 

Sequential, 
batch-

transfer 100 % of H2 
7.9 mol H2/mol 

hexose a algal biomass 
(starch) 

C. reinhardtii V. fluvialis No H2 
Co-culture 

ca. 1:2 
(mass) 

Rhodobium 
marinum A-501 

(halophile) 
100% of H2 

6.2 mol H2/mol 
hexose a 

Starch was not the 
sole substrate in algal 

biomass 

(Ike et al. 
2001)  

Co-culture 
ca. 5:6 
(mass) 

100% of H2 
7.3 mol H2/mol 
hexose, 60.8 % a stable pH, 13 days algal biomass 

(starch) 
C. reinhardtii 
& Dunaleilla 

tertiolecta 

Lactobacillus 
amylovorus 
batch, 30 ºC 

No H2 
1.6 mol 

lactate/mol 
starch-hexose 

Sequential 
batch- 

transfer 

R. marinum 
PNS bacteria  
batch, 30 ºC 

+ 1.5 g/L NaHCO3 
3.4 mol H2/mol 
lactose (57 %) 

5.4 mol H2/mol 
hexose, 45.3 % a - 

(Kawaguchi 
et al. 2001)  
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Glucose 
Rhodopseudomonas 

palustris P4 
Dark-adapted 

0.041 mol H2 
and 5.7 mol 

organic 
carbon/mol 

hexose b 

Sequential, 
batch-

transfer 

Rhodopseudomonas 
palustris P4 

Light-adapted 

10 % efficiency 
on fermentation 

broth 

2-fold increase 
over dark 

fermentation 
alone a 

Rate of H2 
photoproduction too 

low to be 
economically practical 

(Oh et al. 
2004) 

Glucose 
Enterobacter 

cloacae DM11 
Batch, 37 ºC 

1.86 mol H2/mol 
hexose a 

Sequential, 
batch-

transfer 

Rhodobacter 
sphaeroides 

O.U.001 
Batch, 30 ºC 

37.5-43.0 % 
efficiency a NG est: 0.63 Euro/kg H2

 a (Nath et al. 
2005) 

Glucose 
Lactobacillus 
delbrueckii 

Batch, 30 ºC 

Lactate, acetate 
No H2 

Immobilised 
co-culture 

4:11 (mass) 

R. sphaeroides RV 
Batch, 30 ºC 100 % of H2 

7.1 mol H2/mol 
hexose a - (Asada et al. 

2006) 

Glucose E. coli HD701 
Batch, 30 ºC 

0.4 mol H2/mol 
hexose 

Sequential, 
batch-

transfer 

R.. sphaeroides 
O.U.001 

Batch, 30 ºC 

Acetate and 
ethanol 

consumed 
No H2 

0.4 mol H2/mol 
hexose a 

Inhibitory N-source in 
primary substrate 

(Redwood & 
Macaskie 

2006) 

Glucose 
(60 mmol/day) 

E. coli HD701 
Continuous, 30 ºC 

HRT=30 days 

1.6 mol H2/mol 
hexose a 

Sequential, 
Continuous 
transfer by 

Electro-
dialysis 

R.  sphaeroides 
O.U.001 

Continuous, 30 ºC 
HRT=3 days 

0.83 mol H2/mol 
hexose 

38 % efficiency 

2.4 mol H2/mol 
hexose a 

Predicted yield: 10.1 
mol H2/mol hexose 

2 stages not balanced 

(Redwood & 
Macaskie 

2007a, 
2007b)  

Non-axenic dark fermentation  – Anoxygenic photosynthetic bacteria 

Cow manure 
Mixed bacterial 

culture from 
digestor 

H2, CH4, acetate, 
propionate, 

butyrate 

10 g dry 
biomass/L 

Poultry 
manure 

Extant feed 
microbes 

acetate, 
propionate, 

butyrate 

Sequential, 
batch-

transfer 

Mixed, 
predominantly 

Rhodopseudomonas 
spp. 11 g dry 

biomass/L 

Disposal of 
wastes & 

generation of 
biomass 

Biomass produced 
rather than H2 

(Ensign 
1977) 

Palm oil mill 
effluent Palm oil sludge 

Main products: 
Acetate and 

propionate, no 
H2, no NH4

+ 

Sequential, 
batch-

transfer 

Rhodobacter 
sphaeroides 

+ NH4Cl 
to 0.25 g/l 
continuous 

No H2 
PHB 1 g PHB/l feed Valuable alternative 

product 
(Hassan et 
al. 1997) 
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Rhodobacter 
sphaeroides RV 

+ Mo,  30 ºC 
cont. chemostat 

100 ml H2/g dry 
weight/h for 10 

days 
NG 

2nd stage produced H2 
for 10 days, then 
switched to PHB 

(Fascetti et 
al. 1998)  

R. sphaeroides RV 
WT,  30 ºC 

cont. chemostat 
NG 10 days H2, then PHB 

Fruit & 
vegetable 

waste 

Extant feed 
microorganisms, 
batch, ambient 

temperature 

Main product: 
lactate, no H2 

Sequential, 
batch-

transfer 

Strain SMV087  
PHB-, H2 uptake- 
cont. chemostat 

Max. 100 mL H2 
g dry weight/h 

(1st 24 h) NG > 45 days H2 

(Franchi et 
al. 2004) 

Glucose 
UASB 

Headspace gas 
7 % H2 

4 % CH4 
NG 

Glucose 
CSTR 

ca. 14 % H2 
ca. 2 % CH4 

NG 

Glucose & 
beef extract 

CSTR 

NG 
anaerobic bacteria 

Batch, > 43 ºC 

Main product: 
butyrate, no H2 

Sequential, 
batch-

transfer 

Contents of 1st stage 
+ 

Rhodopseudomonas 
palustris 

Batch, 35 ºC ca. 55 % H2 
0 % CH4 

NG 

 
toxic products from 1st 
stage: H2S and ethanol 

 

(Lee et al. 
2002)  

Olive Mill 
Wastewater 

(Diluted 50 %) 

Acclimated sludge 
Batch, 30 ºC No H2 

Sequential, 
batch-

transfer 

Rhodobacter 
sphaeroides 

O.U.001 
Batch, 30 ºC 

100 % of H2 29 L H2/L feed 
Pre-treatment of the 

feed lessened the need 
for dilution 

(Ozturk et 
al. 2006)  

Sucrose Cattle dung 
Batch, 38 ºC 

1.285 mol 
H2/mol hexose 

Sequential, 
batch-

transfer 

Rhodobacter 
sphaeroides SH2C 

Batch, 30 ºC 

63-70 % 
efficiency a 

3.315 mol 
H2/mol hexose a - (Tao et al. 

2007) 

Non-biological  – Anoxygenic photosynthetic bacteria 
algal biomass 

(starch) 
C. reinhardtii 

Heat-HCl treatment Glucose, fatty 
acids and NH4

+ 

Sequential, 
batch-

transfer 

R. sphaeroides RV 
batch 

+ 10 mM glutamate 

0.02 mol H2 / 
mol hexose a 

0.02 mol 
H2/mol hexose a - (Ike et al. 

1997) 

Free cells (and not immobilised) were used unless otherwise stated.  NG: not given in source and/or cannot be calculated from given data.  a Value 
given in original cited source; b Authors calculations from source data *Thermophiles are classed tentatively as strict anaerobes; Thermotoga spp. 
may in fact be microaerophiles (Van Ooteghem et al. 2004).  Accounts are sorted according to the type of organism used in the 1st stage and then by 
date, grouping work by the same authors).  Some accounts have been omitted due to insufficient data. 
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Table 2 : Bottlenecks to the application of anoxygenic photosynthetic bacteria in H2 
production. 

Limitation Effect Solutions Progress Source 
Develop strains with 
truncated light 
harvesting antenna 

Proven at lab-
scale 

(Miyake et al. 1999; Vasilyeva et 
al. 1999; Kondo et al. 2002; Kim et 
al. 2004; Kim et al. 2006a) 

Improved 
photobioreactor 
design 

Ongoing 

 
(Tsygankov 2001; Hoekema et al. 
2002; Kondo et al. 2002; Claassen 
& de Vrije 2007) 

Low light 
conversion 
efficiency due 
to unsuitable 
light intensity 

Large land 
area needed 
due to low 
intensity of 
solar 
illumination 
and shallow 
cultures 

Immobilisation; 
adaptation to a more 
constant light 
intensity 

Proven at lab-
scale (Zhu et al. 2002; Gosse et al. 2007) 

Sub-optimal 
conversion of 
substrates to 
H2 

Diversion of 
carbon, 
reductant and 
ATP into PHB 
synthesis 
detracts from 
H2 production 

Develop PHB 
deficient strains 

Proven at 
pilot-scale 

(Hustede et al. 1993; Lee et al. 
2002; Franchi et al. 2004; Kim et 
al. 2006b) 

Recirculation of 
headspace gas 

Proven at 
pilot-scale (Hoekema et al. 2002) Requirement 

for CO2 
(species- and 
substrate-
dependent, see 
text) 

Limited 
substrate 
uptake; 
continuous gas 
purging 
prevents 
cycling of 
produced CO2  

Use of species not 
requiring CO2 e.g. R. 
sphaeroides, R. 
capsulatus 

Proven at lab-
scale 

(Ivanovskii et al. 1997; Filatova et 
al. 2005a; Filatova et al. 2005b) 

Develop strains 
deficient in uptake 
Hydrogenases 

Proven at 
pilot-scale 

(Willison et al. 1984; Jahn et al. 
1994; Worin et al. 1996; Lee et al. 
2002; Ozturk et al. 2006; Kim et 
al. 2006b) H2 uptake 

detracts from 
net H2 
production 

Decreased net 
H2 production Metal limitation (e.g. 

using EDTA) to 
prevent synthesis of 
active uptake 
hydrogenases 

Proven at lab-
scale (Kern et al. 1992) 

Selective chemical 
inhibitors 

Proven at lab-
scale (Liessens & Verstraete 1986) Culture 

contamination 

Loss of PNS 
bacteria due to 
overgrowth of 
contaminants 

Blue light-filters 
prevent algal growth 

Proven at lab-
scale (Ko & Noike 2002) 

Use of NH4
+-

insensitive strains 
(derepression of 
nitrogenase) 

Proven at lab-
scale 

(Wall & Gest 1979; Zinchenko et 
al. 1991; Yagi et al. 1994; 
Zinchenko et al. 1997) 

Anion-selective 
immobilisation 
matrices 

Proven at lab-
scale (Zhu et al. 1999b; Zhu et al. 2001) 

Nitrogenase 
‘switch-off’ in 
response to 
fixed sources 
of N (esp. 
NH4

+) 

Limited to 
using 
substrates with 
high C/N ratio 

Electroseparation of 
NH4

+ 
Proven at lab--
scale (Redwood & Macaskie 2007a) 
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Table 3 : Potential productivities of algal/cyanobacterial-driven dual systems 
1st stage 

Organism 

Photoautotrophic 
productivity 

(mol 
hexose/m2/day)* 

Dual system 
yield 

(mol H2/mol 
hexose) 

Theoretical rate 
of H2 production
(mol H2/m2/day) 

* 

Light capture 
area needed 
to power 1 

home (m2) ** 

Source 

Chlamydomonas 
sp. 

NG 
Assume 0.158 8 1.27 451.7 (Miura et al. 

1992) 

Chlamydomonas 
sp. 

Av. : 0.0244 
Max. : 0.0926 5.8 Av. : 0.142 

Max. : 0.537 
Av. : 4039.4 
min. : 1068.2 

(Akano et al. 
1996; Ikuta et 

al. 1997) 

Synechoccus 
cedrorum 

NG 
Assume 0.158 

0.702 
(free cells) 0.111 5167.6  (Sasikala et 

al. 1994a) 

Spirulina platensis NG 
Assume 0.158 2 0.317 1809.5 (Aoyama et al. 

1997) 

Clostridium 
butyricum 

0.158 
microalgal starch 8.3 1.315 436.2 (Kim et al. 

2006c) 

Lactobacillus 
amylovorus 

NG 
Assume 0.158 
cyanobacterial 

glycogen 

4.6 0.729 786.8 (Shi & Yu 
2006) 

7.3 
(co-culture) 1.157 495.8 

Lactobacillus 
amylovorus 

NG 
Assume 0.158 

microalgal starch 5.4 
(sequential) 0.856 670.1 

(Ike et al. 
2001) 

NG: The productivity of carbohydrate accumulation was not given and could not be 
calculated from given data.  The assumed value of 0.158 mol hexose/m2/day was calculated 
from published data (Kim et al. 2006c).  Photoautotrophic productivity was assumed to be 
similar after scale-up and under dual system conditions but may be less e.g. due to light 
limitation in co-culture. 
* by multiplying the photoautotrophic productivity with the dual system yield. 
** Assuming a home can be powered by a 1 kW PEM fuel cell demanding 23.9 mol H2/h and 
operating at 50 % efficiency and 95 % H2 utilisation (Levin et al. 2004a). 
Values are authors’ calculations from data given in the published sources shown. 
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Figure 1: Direct and indirect photolysis.  Through direct photolysis, the H2 evolving enzyme is hydrogenase in microalgae and nitrogenase in 
cyanobacteria (see text).  The dotted line represents the avoided inhibition of dark fermentation by O2 via indirect photolysis.  
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A: Lactic acid fermentation e.g. Lactobacillus amylovorus B: Mixed-acid fermentation e.g. Escherichia coli

D: Effect of fermentation-type on hypothetical dual systems

Ideal fermentations Ideal photo-fermentations

A: L. amylovorus
1 glucose 2 lactate        2 lactate 12 H2

0 H2 + 12 H2 = 12 H2

B: E. coli
1 glucose 2 H2 + 1 ethanol + 1 acetate 1 ethanol + 1 acetate 10 H2

2 H2 + 10 H2 = 12 H2

C: C. butyricum (a mixture of two reactions)
1 glucose 4 H2 + 2 acetate 2 acetate  8 H2

4 H2 +  8 H2 = 12 H2
1 glucose 2 H2 + 1 butyrate 1 butyrate 10 H2

2 H2 + 10 H2 = 12 H2

C: Anaerobic fermentation e.g. Clostridium butyricum
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Figure 2: Suitable dark fermentations for dual systems. Pathways are abridged to highlight the overall balances.  Dotted lines indicate 
alternative/competing pathways.  Abbreviations: LDH lactate dehydrogenase, PFL pyruvate:formate lyase, ACK acetate kinase,  FHL formic 
hydrogen lyase, PTA phosphotransacetylase, ADH alcohol dehydrogenase, NFOR NADH:ferredoxin oxidoreductase, TL thiolase, BHBD 
hydroxybutyryl-CoA dehydrogenase, EH enoyl-CoA hydratase, BDH butyryl-CoA dehydrogenase.  Compiled from (Sode et al. 2001; Chen et al. 
2006). 

 62



 

B

1st stage
fermentation

2nd stage
photo-

fermentation
organic 

fermentation 
products

Light 
energy

separator

Stage 1 
biomass

H2H2

feed wasteseparator

Stage 2 
biomass

A

fermentation

organic fermentation
Products

photo-fermentation

Light 
energy H2

H2

feed separator

biomass

waste

B

1st stage
fermentation

2nd stage
photo-

fermentation
organic 

fermentation 
products

Light 
energy

separator

Stage 1 
biomass

H2H2

feed wasteseparator

Stage 2 
biomass

A

B

1st stage
fermentation

2nd stage
photo-

fermentation
organic 

fermentation 
products

Light 
energy

separator

Stage 1 
biomass

H2H2

feed wasteseparator

Stage 2 
biomass

1st stage
fermentation

2nd stage
photo-

fermentation
organic 

fermentation 
products

Light 
energy

separator

Stage 1 
biomass

H2H2

feed wasteseparator

Stage 2 
biomass

A

fermentation

organic fermentation
Products

photo-fermentation

Light 
energy H2

H2

feed separator

biomass

waste

fermentation

organic fermentation
Products

photo-fermentation

Light 
energy H2

H2

feed separator

biomass

waste

 

 

Figure 3: Dual systems in co-culture and in sequential reactors. 
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Light conversion efficiency : 1.65 %
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Figure 4: Spatial feasibility of de-centralized energy generation. The cartoon depicts one possible configuration of a sequential dual system 
combining dark fermentation and PNS bacteria.  Detailed explanation is given in section 3.4.2.3. 
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1.3 Downstream system: Biomass-supported palladium catalysts 
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This section overviews the state of knowledge surrounding biomass-supported metallic 

catalysts, focussing on palladium, and discusses the potential for catalyst production using 

Rhodobacter sphaeroides.  Chapter 2.7 describes the production of such a catalyst and the 

comparison of its activity to the previously-characterised Desulfovibrio desulfuricans-

supported catalyst using a simple test reaction.  In chapter 2.8, it is shown that R. sphaeroides-

supported catalyst can be used in the fabrication of effective fuel cell anodes. 

 

1.3.1 Biomass-supported catalyst 

A dual system for H2 production incorporating Escherichia coli and Rhodobacter sphaeroides 

would produce significant quantities of biomass as a consequence of culture growth (see 

chapter 2.8.4b).  Simultaneously, the fuel cell envisioned to generate electricity from the bio-

H2 would require platinum group metal (PGM) catalyst.  Potentially, excess biomass from the 

bioreactors could be used to reclaim PGM from waste leachates to generate a useful fuel-cell 

catalyst. 

 

It was shown previously that E. coli and Desulfovibrio spp. can reclaim PGM from dilute 

solution, facilitating the reduction of soluble oxidised PGM (e.g. Pd(II)) to the insoluble 

metallic state (e.g. Pd(0)).  Due to the involvement of cellular hydrogenases in initiating metal 
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reduction the resultant PGM particles are located at the cell surface creating a material with 

high catalytic activity (e.g. palladised biomass; bio-Pd(0)) [123].  Further, Pd(0) biorecovered 

from wastes can be used to make an effective catalyst without need for further processing 

[111]. 

 

There is significant interest in bio-Pd(0) because its catalytic activity is comparable to 

conventional chemically produced palladium catalyst, because it could be produced 

economically from palladium-containing waste streams, and because it has been shown to 

function in a PEM fuel cell [215,216].  Bio-Pd(0) consists of bacterial cells coated in a layer 

of small palladium particles.  Desulfovibrio desulfuricans, D. fructosovorans, Ralstonia 

metallireducans, Arthrobacter oxydans, Micrococcus luteus, Shewanella oneidensis, Proteus 

vulgaris, Serratia marscecens and E. coli have been investigated in this context (K. 

Deplanche, personal communication).  Other species may offer improvements and R. 

sphaeroides is a promising candidate because of its high-level intrinsic resistance to many 

toxic metal compounds, and because of its metal-reducing capabilities (section 1.3.4) and 

because, unlike Desulfovibrio, R. sphaeroides produces no H2S, a potent catalyst poison.  

Further, the genetic manipulation of hydrogenase expression in D. fructosovorans and E. coli 

can affect the properties of the resultant catalysts and there is significant potential for similar 

work using R. sphaeroides as its hydrogenases are well-characterised [199]. 

 

1.3.2 Palladium 

Palladium metal (Pd(0)) occurs naturally in mixed ores with other PGM (platinum, rhodium, 

iridium, ruthenium and osmium) and nickel.  Demand for palladium is linked primarily with 

the chemical industry, where it has various applications as catalyst, from the automotive 

industry, where it is used in automotive catalytic converters and from the jewellery sector 

[82]. 
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Figure 1.3-a  Changes in the supply of palladium over the past decade. 
Taken from [82]. 
 

Recently, the demand for PGM has stabilised and supply and demand are in balance.  

However, continued growth in the fuel cell industry (20 % in 2006 [1]) is likely to create new 

demand.  In the past, increases in the price of palladium (currently ca. US$ 11.5/g) and 

recognition of its role as a strategic metal and limited ore resources prompted research into 

reclamation from scrap catalytic converters and circuit boards [214].  For example, 22.7 tonne 

Pd and 24.2 tonne Pt were recovered from scrapped autocatalyst in 2006, equivalent to ca. 10 

% of the supply for Pd (Figure 1.3-a) [82].  Recovery involves a leaching process using aqua 

regia (a 3:1 mixture of concentrated hydrochloric acid and nitric acid) to oxidise PGM to 

soluble forms, (e.g. [PdCl4]2-).  In order to recover metals from the leachate, a reducing 

mechanism is required.  After partial neutralization of the leachate, microorganisms can 

promote reduction, depositing metallic nanoparticles on their surfaces.  
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1.3.3 Desulfovibrio bio-Pd(0) 

1.3.3a Bio-Pd in bioremediation 

The high catalytic activity of palladium coated (palladized) cells of Desulfovibrio species was 

demonstrated previously [9,10,107].  An important factor affecting catalytic activity is the 

available catalytic surface, rather than the total mass of catalyst (i.e. the number and size of 

palladium particles).   

 

 
Figure 1.3-b  Palladised cells of Desulfovibrio desulfuricans. 
In this example the biomass is loaded at 25 % Pd (w/w).  The dark black areas are Pd(0) 
particles as identified by X-ray diffraction [114]. 
 

Palladization is initiated as [PdCl4]2- ions adsorb onto protonated ligand groups (on the 

bacterial cell surface), forming nucleation sites [38], where an initial reduction to Pd(II) may 

be facilitated by a bacterial enzyme such as a hydrogenase.  Subsequently, the autocatalytic 

properties of Pd(0) permit further reduction and crystal growth at the expense of exogenous 

reductant [123,212,213].  This process is abiotic after the initial nucleation and initial crystal 

growth. 

 

A study using X-ray photoelectron spectroscopy (XPS) was unable to identify conclusively 

the endogenous reduction of Pd(II) but reduction of Pt(IV) and Pt(0) species was clearly 

observed [39].  
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The examination of D. desulfuricans bio-Pd(0), by transmission electron microscopy (TEM), 

revealed that the periplasm was the primary site of nucleation [123].  It was hypothesised that 

periplasmic (or periplasmic-orientated) hydrogenase could govern nucleation and the XPS 

study also suggested metal coordination to biomass amino groups.  A hydrogenase deletion 

mutant of D. fructosovorans showed a loss of reducing capacity for technetium (VII), which 

was regained after complementation with hydrogenase genes.  This confirmed the 

involvement of hydrogenases in Tc (VII) reduction [37].  A similar conclusion was reached 

for Pd(II) reduction as Pd(0) particle formation was restricted to the cytoplasmic membrane in 

mutants of D. fructosovorans containing only cytoplasmic membrane-bound hydrogenase 

with no soluble periplasmic hydrogenase [124].  This evidence indicates a key role for D. 

fructosovorans hydrogenases in the initial formation of Pd(0). 

 
1.3.3b Bio-Pd(0) and fuel cells 

Fuel cells are widely regarded as the most promising technology for the release of energy 

stored in H2 and, therefore, represent a key consumer-operated device in the future H2 

economy.  H2 combustion engines could also be used but fuel cell technology offer 

advantages in terms of energy efficiency, while the absence of moving parts (Figure 1.3-c) 

permits silent operation and potentially extended lifespan [154].  Demonstrator projects have 

shown fuel cells to be ready for stationary applications such as lighthouses or road signs 

[163], but H2 storage and fuel cell volume currently limit transport applications [188].  

Several types of fuel cell are under development but the proton exchange membrane fuel cells 

(also called polymer electrolyte membrane fuel cells; PEM-FC) may be the most suitable for 

small-scale and mobile applications.  As PEM-FC work at low temperatures (ca. 80 °C) they 

require little ‘warming up’ and offer relatively high convenience to the user [98]. 
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Figure 1.3-c  Functioning of a polymer electrolyte membrane fuel cell (PEM-FC). 
At the anode, which is typically platinum-coated carbon, H2 is oxidized to H+ ions (protons), 
which pass through a PEM (proton-exchange membrane) to the cathode, where combination 
with O2 from the air produces H2O.  The impermeability of the PEM to electrons is the key 
feature of the system.  A voltage is generated across the PEM, which can create a current to 
power a load.  Multiple cells are stacked in series to increase power.  Diagram provided by D. 
Brook, University of Birmingham. 
 

The original fuel cell, Grove’s ‘gas voltaic battery’, used platinum electrodes and catalysis by 

platinum-group metals (PGM) remains a fundamental aspect of modern PEM-FC [58].  The 

catalyst electrodes remain among the most costly components of fuel cells [180] and although 

supply and demand are currently in balance [81], PGM resources are limited.  Therefore, the 

advent of a fuel cell-based ‘hydrogen economy’ could significantly affect the price of fuel cell 

construction and alternative sources of PGM are sought. 

 

The functional unit of a PEM-FC is the membrane electrode assembly (MEA), which consists 

of a proton-conductive polymer electrolyte (e.g. Nafion®) flanked by catalytic electrode 

layers (PGM particles fixed in supporting matrices e.g. carbon), in turn flanked by conductive 

gas diffusion layers (e.g. carbon paper or cloth) (Figure 2.8-a) [105].  
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The performance of the MEA depends on the optimisation of each component.  For example, 

the PGM catalyst support of choice was PTFE, but is now Nafion, and the best results are 

achieved by casting catalyst slurry onto the Nafion membrane instead of onto the gas 

diffusion layer [105].  PEM-FC electrode preparation methods are subject to intensive 

development, and tend to be proprietary.  Catalyst slurries may be applied manually onto 

supports, by painting (this study, section 2.8.2b), spraying, screen-printing or transfer-

printing.  While manual-methods lack speed and reproducibility, advanced methods such as 

cold-rolling, electrodeposition, and vacuum deposition are under development [105,155,207].  

Research has focussed on improving the efficiency of catalyst use.  Early PEM-FC used 4 mg 

Pt/cm2 [105] (which is unsustainable), while advanced ‘sputtering’ techniques reportedly 

produced functional electrodes using as little as 0.027 mg Pt/cm2 [204]. 

 

In early studies on the use of bio-Pd(0) as a fuel cell catalyst [215,216] painting bio-Pd(0) 

slurry onto the gas diffusion layer resulted in an electrically resistant and ineffective MEA.  

High electrical conductivity is an important property of fuel cell electrode materials, but dried 

and compressed bio-Pd(0) was found (as expected) to have a high electrical resistance (ca. 2 

Ohm-cm), due to the propensity of organic material.  Incinerating bio-Pd at 700 ºC was found 

to be effective in oxidising the organic matter to leave a material with a Pd content above 90 

% (w/w), which was effective as a fuel cell catalyst due to its increased electrical 

conductivity.   

 

However, incineration also affected the size-distribution of the Pd particles.  Bulk palladium 

(like platinum) is paramagnetic; it becomes magnetised when exposed to a magnetic field, and 

the magnetism disappears when the field is removed.  Ferromagnetism (permanent 

magnetism) would be a desirable property in heterogeneous catalysis as it could facilitate the 

manipulation of catalyst within a reactor or the downstream recovery and recycling of 

catalyst, while in an experimental context, the observed ferromagnetism of D. desulfuricans 

bio-Pd(0) was interpreted as indicative of particles of Pd in the range of 4-12 nm in diameter 

(nanoparticles) [122,185].  For magnetism to be exploited practically it must be retained at 

useful temperatures.  Ferromagnetic substances have an associated Curie temperature; the 

temperature above which a ferromagnetic material loses its permanent magnetism.  Although 

inconsistent, the Curie temperatures of preparations of Desulfovibrio bio-Pd(0) have been 
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comparable with temperatures used in catalytic reactions (up to ~500 K) [123].  However, 

incineration at 700 °C resulted in a significantly decreased ferromagnetic component, 

indicating the agglomeration of Pd(0) nanoparticles.  Nevertheless, incinerated bio-Pd(0) 

catalyst was effective as a fuel cell anode catalyst (see section 2.8.3a). 

 

1.3.4 Use of Rhodobacter sphaeroides in metal reduction and remediation technology 

The chemical properties of cell surfaces have been shown to influence nucleation of Pd(II), 

which depends upon the initial biosorption to a large extent [213].  Variations among bacterial 

species may render one species a more effective matrix than another, according to the 

nanoparticles ‘patterning’ they promote.  The investigation of this process in a variety of 

species and strains may, therefore, repay study.  R. sphaeroides represents a particularly 

interesting organism for study, because of its known metal interactions and potential 

availability from a H2 producing dual system. 

 

Moore and Kaplan (1992) [130] first suggested photosynthetic bacteria (including R. 

sphaeroides) as promising candidates for remediation technology.  These bacteria have high-

level intrinsic resistance to various metal-containing pollutants such as tellurite/tellurate 

[20,130,209], selenite/selenate [83,130,197], rhodium sesquioxide [130] and chromate [135]. 

 

Bacterial metal reduction can function in energy conservation to support growth, and metals 

can act as the primary or sole terminal electron acceptor in a form of anaerobic respiration 

called dissimilatory metal reduction, requiring the oxidation of simple organics, aromatics or 

H2.  For example, Geobacter metallireducens can oxidise various simple organics and 

alcohols (e.g. acetate) to reduce Fe(III) to Fe(II) or U(VI) to U(IV) as principal if not sole 

terminal electron acceptors [108]. 

 

Where PNS (purple non-sulphur) bacteria have been studied, there is a consensus that metal 

reduction is not primarily involved in energy metabolism, but serves to detoxify compounds 

containing metals in an oxidised state.  However, the mechanisms of metal reduction are not 

well understood and the roles are speculative.  The reduction of chromate, for example, is 

clearly a mechanism of detoxification, as an extended lag-period was observed relative to 

chromate-free controls, during which the cells detoxified their environment in order to permit 
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growth [108].  Detoxification was achieved by the reduction of the highly soluble Cr(VI) to 

the relatively insoluble Cr(III), which was then exported from the cells.  Nepple et al. (2000) 

[108] reported a MIC (minimum inhibitory concentration) of 43 μM Cr(VI) for R. 

sphaeroides grown under either light/anaerobic or dark/aerobic conditions.   

 

The situation is more complex in the cases of tellurite and selenite.  Tellurium and Selenium 

are semi-metallic elements, periodically grouped with oxygen and sulphur, which are key 

respiratory electron acceptors.  The oxyanions of selenium and tellurium are distributed 

widely in nature at trace concentrations, but may reach toxic concentrations as a result of 

industry or volcanic activity.  Due to their increased solubility, the most toxic forms of these 

elements are the oxyanions selenite (SeO3
2-) and tellurite (TeO3

2-), and detoxification is 

achieved via reduction to the insoluble elemental state [197].  Borsetti et al. (2003) [20] 

reported reduction of tellurite to elemental tellurium by R. capsulatus, with the formation of 

needle-like black inclusions associated with the intracytoplasmic membrane (Figure 1.3-d).  

 

 
Figure 1.3-d  Rhodobacter capsulatus grown in the presence of tellurite, showing 
needlelike granules of tellurium under electron microscopy.   
Scalebar shows 0.2 μm.  Adapted from [20]. 
 

Borsetti et al. (2003) also observed a 30-50% decrease in the levels of c-type cytochromes as 

a result of growth under photoheterotrophic conditions with 50 mg/l potassium tellurite, and 

hypothesised that this played a functional role in resistance to tellurite.  However, the level of 

resistance was also shown to be directly proportional to the incident light intensity [130].  
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Differences could, therefore, relate to shading by the black tellurium intrusions, or to direct 

influences of the oxyanion or element on gene expression.  Moore and Kaplan (1992) [130] 

reported normal growth by R. sphaeroides 2.4.1 and WS8 in Sistrom’s succinate medium 

supplemented with 600 mg/l K2TeO3
2-.  Other PNS (purple non-sulfur) bacteria (Rhodobacter 

capsulatus and Rhodopseudomonas palustris) showed similar resistance.  Interestingly, an 

increased rate of tellurite reduction was observed during growth in the presence of more 

reduced carbon sources such as succinate or butyrate and toxicity was severely increased in 

the presence of cysteine.  Similar results were found when testing selenium- and rhodium-

containing compounds, although selenite was found to be slightly less toxic to R. sphaeroides 

than tellurite.   

 

There are several accounts of bacterial selenite reduction, but reports concerning the location 

of reduced elemental Se(0) differ, as do the suggested mechanisms.  Macy et al. (1989) [115] 

reported reduction of selenate to selenite as a new mode of anaerobic respiration in 

Pseudomonas species.  Elemental selenium was released but was unclear whether this was a 

detoxification response or an energetic mechanism.  Van Praag et al. (2002) [197] reported 

selenite resistance in the PNS bacterium Rhodospirillum rubrum.  Selenite was reduced to 

elemental selenium concomitantly with growth at initial selenite concentrations of up to 2 

mM.  A distinct increase in the rate of selenite reduction occurred after the onset of stationary 

phase.  Were reduction simply a mechanism of detoxification, reduction would be expected to 

occur as a prerequisite to growth, as was observed with chromate.  The observed association 

with stationary phase suggests that selenite may act as a non-preferential terminal electron 

acceptor under these conditions. 

 

Given the apparent robustness of R. sphaeroides (and PNS bacteria in general) in challenging 

chemical environments, it is reasonable to expect some resistance to palladium compounds.  

Remediation of palladium-containing wastes is important for environmental reasons, and the 

high value of palladium and limited ore resources prompts research into economical methods 

of reclamation and catalyst preparation. 

 

R. sphaeroides is hypothetically capable of palladium reduction during growth on reduced 

substrates (see above).  This may occur as a detoxification mechanism as Pd(II) is highly 
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soluble whereas elemental Pd(0) is insoluble.  However, the catalytic properties of palladium, 

which give it its value, could affect the mechanism of reduction in a biological context, 

making the process very different from previous observations of metal/metalloid reduction 

(see above).  Soluble Pd(II) readily undergoes chemical reduction to Pd(0) in the presence of 

a suitable electron donor such as formate or hydrogen (although this occurs much more 

rapidly in the presence of bacterial cells).  In photoheterotrophic cultures of R. sphaeroides, 

hydrogen formation occurs at the expense of reduced electron carriers (such as ferredoxin, 

NADH, and FADH).  Palladium reduction could take the place of H2 evolution, using reduced 

electron carriers as electron donors.  Alternatively the evolved H2 could act as an exogenous 

reductant.  

 

A dual bioreactor system for H2 production would produce significant quantities of biomass 

as a by-product (quantities estimated in chapter 2.8.4b), which could provide a suitable matrix 

for reductive precipitation of Pd(0) in an application with two aims: the remediation of Pd(II) 

containing waste, and the production of valuable bioinorganic catalyst, which could be used 

as fuel cell catalyst.  Utilising the spent biomass within the energy generating system would 

be an important step towards a closed, ‘zero emission’ system for energy generation from 

wastes. 
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2.1 Dissecting the roles of Escherichia coli hydrogenases in biohydrogen 

production 
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This chapter is presented in the form of a published research letter, which discusses the effects 

of culture conditions and deletions of HycA and hydrogenases on H2 formation in 100 ml-

scale E. coli batch fermentations.  Pre-growth in the presence of formate caused pre-

adaptation to anaerobic H2 production (by inducing the expression of formate hydrogen 

lyase), since formate-grown cultures were able to produce H2 without a lag phase under N-

limitation.  Conversely, broth-grown cultures failed to produce H2 under N-limitation 

(author’s observations) while in a rich medium broth-grown cultures produced H2 after a lag 

of 5 h [148,182].  

 

Nitrogen limitation is preferred for two reasons: 

(i) Limitation of overgrowth by extraneous microorganisms introduced via non-sterile waste 

feedstocks (commercial substrates for H2 production). 

(ii) Minimisation of carry-over of inhibitory nitrogenous material into the secondary 

photobioreactor (see chapter 2.5) 
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E. coli strains (see Table 1) were provided by Dr. F. Sargent (formerly University of East 

Anglia and currently University of Dundee) except for strains HD701 and MC4100, which 

were provided by Prof. A. Böck (Lehrstuhl für Mikrobiologie der Universitat, Munich, 

Germany).  Experimental work was performed under the guidance of Dr. I.P. Mikheenko, 

while data analysis and preparation of the manuscript were undertaken by the author. 

 

The deletion of hydrogenase-2 (uptake hydrogenase) caused a 37 % increase in H2 yield, 

while the deletion of hydrogenase-1 had no effect, whether alone or in addition to the 

hydrogenase-2 deletion.  Hydrogen uptake was absent in strains lacking hydrogenases 1 and 

2.  The theoretical maximum (2 mol H2/mol glucose) was not reached in the uptake 

hydrogenase mutants because of the activity of competing pathways.  In particular, lactate and 

succinate formation detracted from H2 production and this was addressed by the control of pH 

in 3 L cultures, while lactate formation was completely suppressed due to a switch to 

butyrate-type fermentation in continuous culture (chapters 2.2 and 2.6). 

 

This study showed that there is significant potential to increase H2 production by E. coli 

through molecular techniques.  Further work is needed to evaluate hydrogenase-deficient 

strains under conditions representative of industrial-scale application.  Therefore, the 

development studies on E. coli fermentation (chapter 2.2) and dual system experiments 

(chapter 2.6) proceeded to focus on E. coli strain HD701 despite the activity of H2 uptake in 

this strain, as it had already been tested at 5-L scale. 

 

2.1.1 Research letter published in FEMS Microbiology Letters 
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2.1.2 Supplementary figure 

The supplementary figure was removed from the publication at the request of the editor and it 

is included here for clarity. 

 

The figure illustrates that the sum of H2 formed and H2 uptake was reasonably constant, 

whereas Hyd-2 activity affected the distribution of potential H2 between these two fates, 

whereas the effects on other aspects of fermentation balance were relatively minor. 

 

 
Figure 2.1-a  Fates of potential H2 in Escherichia coli strains deficient in HycA (A), and 
uptake hydrogenases (B).  
In accordance with the scheme of mixed acid fermentation (Fig. 1), one mole of lactate, 
succinate, formate or ‘H2 uptake’ represents one mole of potential H2 production, whereas 
acetate and ethanol are produced concomitantly with H2.  Data are the normalised means of at 
least four replicate experiments.  Means and standard errors (pre-normalisation) are given in 
Table 1 (section 2.1.1).  For each strain the sums of potential H2 and measured H2 were not 
significantly different from 2 mol H2/mol glucose and did not vary significantly between 
strains. 
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2.2 Development of H2 production by Escherichia coli 
2.2.0 Summary 
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This chapter describes the development of fermentation using E. coli HD701 from batch 

mode to continuously fed-batch (‘pseudo-continuous’) mode with pH control and integrated 

product and fluid extraction by electrodialysis.  Overall the E. coli fermentation was 

developed from a batch culture achieving 16 % efficiency for 20 h, to a stable and pseudo-

continuous culture achieving 80 % efficiency, generating a feedstock for a linked R. 

sphaeroides culture. 

 

The H2-overproducing E. coli strain HD701 was employed in pilot-scale studies of H2 

production via fermentation of glucose.  Methods were developed through 4 phases: 

phase 1: Batch mode with phosphate buffer 

phase 2: Batch mode, un-buffered with pH control 

phase 3: Fed-batch mode, with pH control 

phase 4: Fed-batch (semi-continuous), with pH control and electrodialysis 

 

In phase 1 H2 was produced for ~20 h with a yield of 0.32 mol H2/mol glucose (16 % of the 

maximum) and the fermentation was limited by acidic pH, necessitating pH control.  In phase 

2 the optimum pH of 5.5 was found and the H2 yield was increased to 0.57 mol H2/mol 

glucose (over 48 h), due to the suppression of lactate formation (a competing pathway to H2 

formation) and the promotion of formate hydrogenlyase (FHL) activity.  With pH control, H2 
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production was limited by substrate availability, which was overcome by the continuous 

addition of glucose in phase 3, where H2 was produced for ~5 days with a yield of 1.65 mol 

H2/mol glucose (82.5 %), but was ultimately limited due to the accumulation of inhibitory 

end-products.  In phase 4 in situ product removal (ISPR) was incorporated via electrodialysis 

to relieve organic acid toxicity, resulting in stable H2 production sustained for 20 days with a 

yield of 1.6 mol H2/mol glucose (80 %).  Instead of a ‘fill-and-draw’ fed-batch fermentation, a 

pseudo-chemostat mode of operation occurred due to continuous fluid removal via 

electrodialysis (ED).  A butyrate-type fermentation occurred in long-term cultures, which 

although noted previously has been little-studied.  The biochemistry and fermentation balance 

of butyrate-type fermentation are discussed.  Butyrate is especially favoured with respect to 

its high ratio of potential H2 production by R. sphaeroides to its charge (calculated in section 

2.5.2g). 

 

Phase 1 refers to fermentations performed by DW Penfold, while the analysis of samples 

from phase 1 and all other work were carried out independently by the author.  The author 

would like to thank D Browning and C Redwood for their advice on sequence analysis. 

 

2.2.1 Introduction 

E. coli produces H2 during mixed acid fermentation of sugars such as glucose.  H2 is derived 

entirely from formate through the action of the formate hydrogenlyase system (FHL) 

[141,174].  FHL is a membrane-associated complex containing hydrogenase-3, formate 

dehydrogenase-H, and several electron transporters in unknown stoichiometry.   

 

FHL expression is induced in response to the intracellular concentration of formate [168] and 

repressed by HycA by an unknown mechanism [177].  E. coli strains devoid of HycA showed 

increased FHL expression and increased rates of H2 production in comparison to parent 

strains [146,172,179,217].  The HycA-deficient H2-overproducing strain HD701 was used 

throughout this study, in which the effects of pH on H2 production were observed. 

 

E. coli is neutrophilic; it is able to maintain cytoplasmic pH in the range 7.5–8.0, while 

growing in media with pH in the range 5.0-9.0 [72].  The effect of pH on E. coli has been 

studied under aerobic and anaerobic conditions and three primary acid-resistance mechanisms 
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are known [161].  Anaerobically, the effect of pH on H2 production by whole-cell E. coli 

cultures has not been subjected to detailed examination previously, however the seminal study 

of FHL [182] showed that extracts containing FHL from E. coli (at that time termed “Bact. 

coli (Escherich)”) dissimilated formate with an optimum pH of 7.0.  Hyc operon expression 

increased with decreasing pH, but was absolutely dependent upon the presence of formate 

[168].  H2 production from glucose was studied in batch mode at controlled pH values of 6.0 

and 7.8.  The accumulation of acetate, ethanol and lactate were not affected by pH, while H2 

was produced at pH 6.0 but formate and butyrate accumulated at pH 7.8 [17]. 

 

E. coli performs mixed acid fermentation with a maximum theoretical  yield of 2 mol H2/mol 

glucose, dependent upon the activity of competing pathways such as H2 uptake and the 

production of lactate, succinate and butyrate (see Figure 1, section 2.1.1) [179]. 

 

In this study, the optimum pH for H2 production from glucose by E. coli HD701 was 

determined and the rate and yield of H2 production were improved in continuously fed-batch 

operation.  The pH affected both H2 production not only though its effects on FHL activity 

but also through its effects on the fermentation balance.  The development of fermentative H2 

production by E. coli HD701 from glucose, from batch mode to continuously fed-batch mode 

is described.  The continuous operation of an anaerobic, H2 producing E. coli fermentation is 

a novel aspect of this study.  This method may be preferable over batch-fermentation in a 

future scale up operation.   

 

2.2.2 Methods 

2.2.2a Bacterial strains and growth conditions 

The H2-overproducing strain Escherichia coli HD701 was cultured as described in section 

2.1.1 unless otherwise indicated.  

 

2.2.2b Phase 1 

Media were autoclaved before use.  2.5 L late-logarithmic phase pre-culture was added to 2.5 

L pre-warmed (30 °C) phosphate buffered saline (PBS: 1.43 g Na2HPO4, 0.2 g KH2PO4, 0.8 g 

NaCl, 0.2g KCl per L, pH 7.0) and 0.55 L glucose solution (1 M autoclaved separately) in a 

non-sterile vessel (5.5 L, Fermac200-series, Electrolab UK).  The initial glucose concentration 
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was 100 mM and the initial biomass concentration was ca. 0.4 g/l.  The mixture was stirred 

continuously at 300 rpm and made anaerobic by purging with argon for 1 hour.  H2 was 

measured by displacement of 1 M NaOH (which trapped CO2) from a graduated cylinder.  

Other than CO2, H2 was the only gas found the in the off-gas from the culture (Gas 

chromatographic analysis, see appendix 4.1.1e).  Phase 1 fermentations were performed by 

DW Penfold, providing samples for analysis in this study.  Results were obtained from three 

replicate experiments. 

 

2.2.2c Phase 2 

The procedure was as Phase 1 except that 1.5 L E. coli HD701 culture was added to 1.5 L 

pre-warmed saline-glucose solution (36.07 g glucose, 0.8 g NaCl, 0.2 g KCl per L, pH 7.0).  

The initial glucose concentration was 100 mM.  The culture was purged with oxygen-free 

nitrogen (OFN) for 30 min, and the pH was adjusted immediately.  Produced gas was bubbled 

through a scrubbing solution of 2 M NaOH containing universal indicator (Sigma) before 

measurement by displacement of water from a graduated cylinder.  The pH was controlled 

automatically by the addition of 1 M NaOH (FerMac 260 pH controller, Electrolab UK).  At 

each pH, two replicate experiments were carried out.  H2 production was monitored 

automatically by time-lapse photography. 

 

2.2.2d Phase 3 

The procedure was as Phase 2 except that E. coli HD701 was pre-grown in nutrient broth with 

added sodium formate (to 0.5 % w/v).  1.5 L cultures were harvested (4435 x g, 20 ºC, 10 

min), washed twice in PBS and pellets were resuspended to 0.2 L in sterile PBS.  For 

prolonged operation, the fermentation vessel was autoclaved containing 2.8 l aqueous 

fermentation medium (42.6 g Na2SO4, 10.456g K2HPO4, 0.204 g KH2PO4, 0.297 g 

(NH4)2SO4, and 0.5 ml polyethylene glycol pH 5.5).  Subsequently, the following were added 

aseptically: 6 ml 1 M MgSO4, 30 ml 2 M glucose, 9 ml trace elements solution [64].  The 

solution was warmed to 30 °C before 0.2 L cell suspension was added to give a final volume 

of 3 L, and a final concentration of 20 mM glucose.  The pH was immediately adjusted to 5.5 

and maintained automatically (as phase 2). 
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Feeding began after 24 h operation.  The feed (0.6 M glucose, 0.3 M NH4Cl, pH 5.5) was 

autoclaved and rendered anaerobic by purging with OFN before being pumped into the 

reactor at a constant rate of 100 ml/d to provide 60 mmol glucose/d and 30 mmol NH4Cl/d.  

The feed-bottle and vessel headspaces were connected so that the feed input would not affect 

the measurement of H2 production. 

 

At intervals, the culture was checked for contamination by dilution plating.  As a derivative of 

strain MC4100, E. coli HD701 cannot utilise lactose [150] and produced white colonies on 

MacConkey agar (Sigma). 

 

2.2.2e Phase 4 

For experiments using electrodialysis, the fermentation was performed as phase 3 except that 

0.3 M NH4Cl in the feed solution was replaced by 0.15 M (NH4)2SO4 to minimise the 

formation of hypochlorite from chloride during ED.  The fermentation culture was circulated 

continuously through the M chamber of a thin-cell electrodialysis stack (EKB Technology) at 

a rate of 450 ml/min.  The specification and operation of the ED system are given in chapters 

2.2, 2.5 and 2.6 and in [89].  A constant current of 400 mA was applied over a membrane area 

of 200 cm2.  The stack resistance was typically 10 Ω. 

 

2.2.2f Analyses 

Samples were filtered (32 mm Acrodisc, 0.2 μm pore) and stored at –20 °C before analysis.  

Organic acids were measured by anion HPLC using a Dionex-600 series system as described 

in chapter 2.4 [158].  The identification of organic acids was validated using a 

Waters/Micromass ZMD mass spectrometer using electrospray ionisation (operated by N. 

May, University of Birmingham and analysed by the author).  The samples were run in 

negative ion using HPLC grade methanol as the mobile phase (source 130 °C, desolvation gas 

300 °C).  Analysis of glucose, ethanol and biomass concentrations are described in 

appendices 4.1.5c, 4.1.5f and 4.1.3 respectively.  
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2.2.3 Results 

2.2.3a Phase 1: Batch mode with phosphate buffer 

60 % of the glucose supplied was consumed while 3 L H2 was produced over the first 10 h 

(Figure 2.2-a).   
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Figure 2.2-a  Phase 1: Batch mode with phosphate buffer. 
Values are means of three replicate experiments.  Bars represent standard errors. 

 
 

H2 was produced at a high rate (54.5 ml/h/L) but at a low yield (0.32 mol/mol glucose: 16 %).  

The low yield is attributed primarily to the production of lactate (0.25 mol/mol glucose, equal 

to acetate) and to H2 recycling by uptake hydrogenases (0.35 mol/mol glucose, calculated 

from fermentation products in chapter 2.1).  The duration of H2 production was ca. 20 h 

overall and H2 production ceased with 40 % of glucose remaining unused.  Given an observed 

rapid decrease in pH over the first few hours (Figure 2.2-a, part C) it was suggested that the 

main limiting factor was acidic pH, therefore pH control was incorporated in phase 2. 
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2.2.3b Phase 2: Batch mode, un-buffered with pH control 

2.2.3b-I Optimisation of pH (Phase 2) 

Fermentations were sustained for 24 h at constant pH to investigate the effect of pH in the 

range 5.0-7.0.  The rates of growth and glucose consumption were generally lowest at pH 5.0, 

increasing with increasing pH (Table 2.2-1).   

 

Table 2.2-1  The effect of pH on rates of growth and glucose consumption 
Specific growth rate, µ (/h)a pH Glucose consumption (mmol/h) 

5.0 -0.0030 0.438 
5.5 0.0341 1.157 
6.0 0.0725 1.522 
6.5 0.0292 1.616 
7.0 0.0591 2.595 

Data represent the initial 6 h of fermentation.  aSpecific rate (µ) was determined using linear 
regression from plots of the natural logarithm of biomass concentration against time.  R2 
values were greater than 0.9 in all cases other than pH 5.0. 
 

The rate and yield of H2 production decreased below pH 5.5 and above pH 6.5; and varied 

little in the range pH 5.5-6.5 (Figure 2.2-b).  Examination of the fermentation products lactate 

and formate provided explanations for the pattern of H2 production.  Lactate accumulation, 

which detracts from H2 production, was only significant below pH 5.5, while formate 

accumulation, which indicates decreased FHL activity, increased with increasing pH in the 

range 5.5-7.0.  The rate and yield of H2 production were lowest at pH 7.0, corresponding to an 

accumulation of formate in the medium.  It is likely that the toxicity of formate is not 

perceived until significant undissociated acid forms and re-enters the cell, which occurs at pH 

< 6.8 [173].  As the pKa of formate is 3.75, the acid would be more than 99.95 % dissociated 

at pH 7.0, in which form it is unable to freely cross lipid bi-layers [166].  Although little 

variation in the rate and yield of H2 production was observed between pH 5.5 and pH 6.5, a 

pH of 5.5 was chosen for further experiments, because of the low concentration of formate in 

the medium.  In batch culture, the extracellular formate has the potential to re-enter the cell 

and contribute to H2 production whereas in a dual system employing electrodialysis (see 

chapter 2.6), extracellular formate would be transported out of the E. coli culture 

preferentially over larger organic acids (Figure 2.5-h) detracting from the overall H2 yield in a 

dual system. 
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Figure 2.2-b  Phase 2: Effect of pH on mixed-acid fermentation. 
Datapoints represent individual experiments.  Rates (A) and yields (B) of metabolite 
accumulation were calculated over the initial 6 h to mediate against the potential effects of 
end-product accumulation. 
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2.2.3b-II H2 production with controlled pH  (Phase 2) 

In batch mode, with pH controlled at 5.5, the initial rate of H2 production was higher than that 

in phase 1 (110.7 ml/h/L over the first 3 h), but the rate gradually decreased as glucose was 

depleted.  Over the first 48 hours the H2 yield was almost twice that in phase 1 (0.57 mol 

H2/mol glucose).  After 48 hours, the rate of H2 production was almost zero and the 

concentration of glucose was below the limit of assay sensitivity (<1 mM).  Glucose was 

added (to 100 mM) and the rate of H2 production increased to 36.9 ml/h/L (i.e. 30 % of the 

initial rate) and was sustained for a further 24 hours with a yield of 0.12 mol H2/mol glucose.  

This prompted the investigation of H2 production in continuously fed-batch mode (phase 3). 

 

2.2.3c Phase 3: Fed-batch mode with pH control 

Feeding was started at 24 h post-inoculation at a constant rate of 60 mmol glucose/day and, 

for the following 5 days of fed-batch operation, cultures consumed all added glucose and 

produced H2 with an average yield of 1.6 mol H2/mol glucose, 80 % of the theoretical 

maximum for mixed acid fermentation (2 mol H2/mol glucose).  The progress of the 

fermentation was divided into 4 distinct stages (Figure 2.2-c, part C):- 

 

1. During the initial 24 h > 95 % of glucose was consumed in a standard mixed-acid 

fermentation producing lactate, succinate, acetate and H2 with a yield of < 2 mol 

H2/mol glucose. 

2. Following the introduction of glucose 24 h post-inoculation, there was a change of 

fermentation type.  Acetate and succinate accumulated at decreased rates and butyrate 

accumulated rapidly, coinciding with the depletion of the initially formed lactate.  For 

a brief period, H2 was produced at rates of up to 320 ml/h.  Since glucose was supplied 

at a rate of 60 mmol/day, the maximum H2 production rate (corresponding to 2 mol 

H2/mol glucose) would be 120.3 ml/h.  The additional H2 was attributed to the re-

assimilation of lactate and its metabolism into a H2 producing pathway (see section 

2.2.4b). 

3. Following the depletion of lactate (after 2 days), the rate of H2 production stabilised at 

ca. 100 ml/h, equivalent to a yield of 1.6 mol H2/mol glucose (80 %). 

4. Finally, the fermentation products accumulated to high concentrations (39.3 mM 

butyrate, 25.1 mM acetate, 15.1 mM succinate) and the fermentation reached 
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completion.  The accumulation of organic acids and H2 ceased and glucose was 

detected increasingly in the medium.  It is known that ethanol is also produced during 

E. coli fermentation but the concentration was not monitored and therefore a mass 

balance analysis was not possible in this study. 

 

2.2.3d Phase 4: Fed-batch (semi-continuous), with pH control and electrodialysis 

With the incorporation of electrodialysis, the fermentation progressed through stages 1, 2 and 

3 as phase 3 but stage 4 was not reached within 20 days.  This was attributed to the removal 

of fermentation products from the culture, resulting in the relief of organic acid toxicity, as 

shown and discussed in chapter 2.6. 

 

2.2.3e Butyrate-type fermentation in Escherichia coli HD701 

The shift from mixed acid fermentation to butyrate-type fermentation occurring in phase 3 

and phase 4 was unexpected as butyrate formation by E. coli is scarcely reported [17], but 

analysis confirmed that the novel product was butyrate and that it was produced by E. coli 

HD701.  Butyrate formation was confirmed by HPLC-MS (Figure 2.2-d).  HPLC analysis (as 

chapter 2.4) showed the presence of an anion with a retention-time identical to a butyrate 

standard and distinctly different from pyruvate (Figure 2.2-d, part A).  Conclusive qualitative 

analysis cannot be based on retention time alone as different anions may hypothetically elute 

with equal speed.  Therefore the ‘butyrate’ fraction was collected from the HPLC outlet and 

analysed by MS, which detected an anion with a mass of 87, corresponding to butyrate, 

making an alternative conclusion highly unlikely (Figure 2.2-d, part C). 
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Figure 2.2-c  H2 production (A) and traces of organic acids and glucose (B) in phase 3 
fermentations and division of the experiments into 4 stages (C). 
Phase 3 fermentations were fed-batch mode, unbuffered with pH control.  Data from 5 
replicate experiments are shown in A, whereas typical data is shown in B.  For reproducibility 
see Figure 2.2-e.  Arrows indicate the introduction of glucose 24 h post-inoculation.  The 
dotted line (A) indicates a rate of 120.3 ml H2/h, corresponding to a yield of 2 mol H2/mol 
glucose (100 %).   
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It may be suggested that contaminants such as clostridia were responsible for the butyrate 

formation.  As strict anaerobes, clostridia would not be detected by dilution plating.  

However, the fermentation medium was autoclaved before inoculation with a concentrate of 

aerobically grown E. coli and the onset of rapid butyrate formation occurred consistently 24 h 

post-inoculation, and always corresponding to lactate depletion.  The following calculation 

shows that without a substantial inoculum (significantly beyond contamination), a clostridial 

culture capable of producing butyrate at the observed rate could not become established.  Data 

produced using Clostridium butyricum ZJUCB were considered maximal as this strain was 

selected for its high capacity for butyrate production.  C. butyricum produced 5.7 mmol 

butyrate/h/g bacterial dry weight under optimal conditions, with a specific growth rate (µ) of 

up to 0.2/h [63].  Assuming that this activity could be achieved under the conditions of the E. 

coli fermentation, 0.34 g clostridial dry cell weight would be required to produce butyrate at 

the observed rate (1.9 mmol butyrate/h; Figure 2.2-c, part B).  Assuming clostridial spores 

were destroyed by autoclaving [116], the growth of the required cell mass in 24 h (µ = 0.2 /h) 

would require an initial inoculum of 2.8 mg clostridial dry weight, which equates to ca. 7  ml 

of a rich culture (OD=1).  Accidental contamination would be unlikely to introduce more than 

a few thousand cells/spores, leading to a µ-value several orders of magnitude higher than the 

reported rate for optimal conditions.  Therefore, the formation of butyrate is not easily 

attributed to clostridial contamination although further investigation is required to rule it out 

completely.  Also, the culture was only fed with glucose/NH4
+ solution, and no additional 

sources of amino acids, P or micronutrients.  Therefore, a contaminant would have to compete 

with E. coli for traces of these nutrients in order to persist in long-term culture. 
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Figure 2.2-d  HPLC-MS analysis of butyrate.  
A, HPLC chromatogram showing the spiking of an E. coli sample with butyrate and pyruvate 
standards.  Nitrite was added as an internal standard (1 mM); B, Mass spectrum of butyrate 
standard.  Mass=87.5 corresponds to butyrate anion; C, Mass spectrum of “butyrate” fraction 
collected from RT 9.5-10.5 min (part A).  Mass=59.7 corresponds to acetate anion; D, Mass 
spectrum of the E. coli sample (part A).  Mass=89.6 corresponds to lactate anion. 
 

 

Butyrate-type fermentation is under-reported in the context of E. coli, although in the current 

work it formed the major product in long-term fermentations (Figure 2.2-c, part B and Figure 

2.2-e).  Butyrate was identified as a product previously [17], and this study provides the 

impetus for a preliminary analysis of butyrate-type fermentation in E. coli (Figure 2.2-e). 
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Figure 2.2-e  Elements of fermentation balance during mixed-acid fermentation (MAF) 
and butyrate-type fermentation, occurring in the 1st and subsequent stages, respectively, 
of phase 3 fermentations. 
Mixed acid fermentation (MAF) occurred during the initial 24 h and was followed by 
butyrate-type fermentation (Figure 2.2-c, part C).  Values are means ± SEM from at least 8 
experiments.  The yield of ATP was estimated as sum of the molar yields of acetate and 
butyrate, plus the yield of glycolysis (2).  Ethanol was estimated on the basis of NADH 
balance, confirmed by analysis in chapter 2.1. 
 

The environmental stimuli to butyrate production are unclear as small quantities of butyrate 

were detected in the fermentation medium slightly earlier than t-24h (Figure 2.2-c, part B).  

This is interpreted as evidence against the introduction of glucose as a stimulatory factor.  

Rather it is speculated that butyrate-synthetic machinery was up-regulated ca. t-20 h, with the 

onset of glucose depletion, and the subsequent addition of glucose was permissive to 

increased activity.  

 

Given the scarcely precedent observation of a novel mode of fermentation in biochemistry’s 

most extensively studied model organism, some consideration is given (section 2.2.4b) to the 

possible biochemical mechanisms of butyrate-type fermentation and its consequences on the 

fermentation balance. 
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2.2.4 Discussion 

2.2.4a The effect of pH on mixed-acid fermentation (MAF) 

The optimum pH for H2 production by E. coli was found to be ca. 5.5.  The rate, yield and 

duration of H2 production were significantly improved by the incorporation of pH control.  As 

an additional advantage, buffering was not required under these conditions.  The addition of 

buffers would add a significant cost upon scale up and would introduce an unacceptable 

environmental contaminant into the waste-stream. 

 

Organic acid toxicity is the product of three mechanisms by which organic acids can cause 

stress.  Firstly, at low pH organic acids exist in their protonated forms (the proportion of 

which depends on the dissociation constant, pKa), which are membrane-permeable [173].  

Organic acids can cross the cell envelope and dissociate in the neutral cytoplasm, releasing H+ 

and causing acid stress.  Secondly, organic anions may exert specific inhibition on the activity 

of cytoplasmic enzymes [88,120,166,200,202].  Finally, organic acids cause osmotic stress.  

Organic anions accumulate in the cytoplasm due to the concentration gradient and the pH 

gradient (membrane potential) between the cytoplasm and the external medium.  For example, 

with an external pH (pHo) of 6.0 and an external acetate concentration of 8 mM, acetate 

accumulated in the cytoplasm to at least 240 mM causing the cell to export useful molecules 

(e.g. glutamate) in order to maintain osmotic balance, resulting in a 50 % decrease in specific 

growth rate [165,166].  It is the active maintenance of internal pH (pHi) within a narrow range 

that prevents equilibrium and drives the continual accumulation of organic acids.  Decreasing 

pHo results in lesser but proportional decrease in pHi.  In the case of E. coli, growth cannot 

occur when the pHi is forced below 6.6-6.8 [18,72].   

 

E. coli cells respond to unfavourable pH and osmolarity through well-characterised 

mechanisms [120,161].  Lactate production and formate breakdown can both be interpreted as 

additional mechanisms of acid resistance, which are active during anaerobic fermentation.  

Formic acid can be eliminated by FHL activity (with the co-incidence of H2 production) and 

lactate can be produced instead of acetate, which is advantageous because lactic acid has a 

lower dissociation constant than acetic acid (3.86 and 4.76 respectively) [32].  
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Lactic acid fermentation would produce no H2 (Figure 1, section 2.1.1) so in a H2 producing 

system the pH must be maintained above the threshold for the induction of lactic acid 

production, which was between pH 5.0 and pH 5.5 (Figure 2.2-b) in accordance with previous 

reports [77,119,183].  FHL activity increased progressively with decreasing pH (Figure 2.2-

b).  Thus, for efficient H2 production, the pH was maintained as low as possible without 

inducing significant lactate production (ca. pH 5.5). 

 

A proportional increase in the yield of lactate with decreasing pH was reported previously 

[183], whereas the results of this study (Figure 2.2-b) suggest a threshold for the induction of 

lactate production in the region of pH 5.0-5.5.  This discordance is attributed to 

methodological differences.  In the previous work the initial pH was controlled (with 

phosphate buffer) and pH decreased over the course of fermentation, whereas in this work, the 

pH was controlled accurately and constantly. 

 

The response of FHL activity to external pH may result from the direct effect of cytoplasmic 

pH on FHL activity [182], or from the increasing cytoplasmic concentration of formate with 

decreasing medium pH, which could affect both the rate of formate breakdown and the 

regulated expression of FHL components [168]. 

 

Organic acid toxicity is known to inhibit bacterial growth [28,41,88,96] and would be 

expected to inhibit H2 production.  An experiment was performed to confirm this.  In batch-

mode with excess glucose and controlled pH (6.0) (as phase 2), H2 was produced at a steady 

rate of 44.5 ml/h after 48 h of operation.  The concentration of organic acids in the 3 L culture 

was artificially increased by adding of a mixture of lactate, acetate and succinate (45:45:10 

mol proportions respectively, 0.1 L, 0.3 mol total).  The concentration of organic acids in the 

medium increased from 81.9 mM to 181.9 mM (~2-fold), and over the subsequent 10 h, the 

rate of H2 production was constant at 25.0 ml/h, half of the earlier value.  Organic acid 

toxicity may affect H2 production proportionally, although further experiments would be 

required to confirm this.  The reduction in rate can be attributed to the added organic acids 

and not to the possible introduction of O2.  As a control, the same method of addition was 

used in phase 2 for the addition of glucose with no marked reduction in rate. 
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2.2.4b Butyrate formation during the anaerobic fermentation of E. coli 
2.2.4b-I The pathway of butyrate formation in Escherichia coli HD701 

Butyrate was not produced in batch cultures (phase 1, 2 and chapter 2.1).  Traces of butyrate 

were first detected in the medium at ca. t-22 h (2 h prior to the onset of glucose addition), 

immediately preceding the highest rate of H2 production, the depletion of lactate from the 

medium and the decreased rate of acetate accumulation (Figure 2.2-c).  Since butyrate 

formation did not detract from H2 production, it is proposed that the precursor to butyrate is a 

product of pyruvate formate-lyase, rather than a higher intermediate, such as phosphoenol-

pyruvate or pyruvate whose pools are drained by the formation of lactate and succinate, 

respectively, detracting from H2 production (Figure 1, section 2.1.1).  The product of PFL and 

precursor to ethanol and acetate is acetyl-CoA, which is a butyrate precursor in Clostridium 

acetobutylicum [13].  In clostridia 2 acetyl-CoA are condensed to form one butyrate 

consuming one NADH and producing 1 ATP [106].   

 

The pathway from acetyl-CoA to butyrate is composed of five reactions, of which, enzymes 

known in E. coli can catalyse all but one.  The hydrogenation of butenoyl-CoA (or crotonoyl-

CoA) to butanoyl-CoA, carried out by an enoyl-CoA dehydrogenase (Figure 2.2-f, part B), is 

not an established function of any enzyme known in E. coli.  However, two enzymes are 

known to perform this function in other organisms; trans-2-enoyl-CoA reductase (TER) and 

butyryl-CoA dehydrogenase (BCAD) (Table 2.2-2).   

 

A 

 
 

B 

 
Figure 2.2-f  Generic hydrogenation of enoyl-CoA to acyl-CoA species. 
Generic reactions are catalysed by acyl-CoA dehydrogenases (A), for example the 
hydrogenation of butenoyl-CoA (B) as part of the pathway of butyrate formation (Table 2.2-
2). BCAD, butyryl-CoA dehydrogenase; TER, trans-2-enoyl-CoA reductase.   
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Table 2.2-2  Candidate enzymes in the pathway of butyrate formation 
Candidate enzymesa Reaction step 

Status in E. coli EC Enzyme name (and abbrev.) Source 
acetyl-CoA     

↓ 2.3.1.9 acetoacetyl-CoA thiolase (ACT) known [46] 
Acetoacetyl-CoA     

1.1.1.35 3-hydroxyacyl-CoA dehydrogenase (HCDH) known [16,145] ↓b 1.1.1.57 fructuronate reductase (FR) known [152] 
(S)-3-hydroxy-butanoyl-CoA     

↓ 4.2.1.17 enoyl-CoA hydratase (ECH, MaoC) known [4,143] 
butenoyl-CoA     

1.3.99.2 butyryl-CoA dehydrogenase (BCAD) putative [171] ↓b trans-2-enoyl-CoA reductase (NAD+) (TER) 1.3.1.44 unknown [68] 
butanoyl-CoA     

↓ 2.8.3.8 acetate CoA-transferase (ACT) known [95] 
butyrate (butanoate)     

aEnzyme function and species distribution data were assembled from the BRENDA database (www.brenda.uni-koeln.de). 
bAny of the listed enzymes can perform the reaction alone 
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Butyryl-CoA dehydrogenases (BCAD) (EC 1.3.99.2) are known among bacteria, archaea, 

eukaryotic microorganisms, and higher organisms (www.brenda.uni-koeln.de).  Conversely, 

trans-2-enoyl-CoA reductases (TER) (EC 1.3.1.44) are known only among mycobacteria and 

the mitochondria of eukaryotes such as Euglena gracilis and mammals (www.brenda.uni-

koeln.de).  Hoffmeister et al. (2005) identified several TER homologues in γ-proteobacteria 

(the same group as E. coli) annotated as putative acyl-CoA dehydrogenases, sometimes 

located in the proximity of genes involved in fatty acid synthesis [68].   

 

Three putative E. coli BCADs (see Figure 2.2-g) were identified (on the basis of sequence 

analysis) within E. coli K-12 strains W3110 and MG1655, for which complete genome 

nucleotide sequences are available.  Each of the three putative BCADs contains high 

homology (E-value threshold:  0.010) to conserved functional domains, identified by a 

conserved domain database [118]. 

 

Based on this analysis the most promising putative BCAD (AP_000876) is homologous to 

FadE, part of the fad operon, encoding enzymes involved in β-fatty acid oxidation in E. coli 

and Salmonella enterica [73].  Furthermore, its N-terminal domain is homologous to the 

SCAD domain, which is common to the FAD-dependent eukaryotic TER enzymes, the 

eukaryotic short/branched chain acyl-CoA dehydrogenase (SBCAD), the bacterial butyryl-

CoA dehydrogenase (BCAD) and 2-methylbutyryl-CoA dehydrogenase (isoleucine 

catabolism).  DUF1974 is predominantly found in various prokaryotic acyl-CoA 

dehydrogenases and may be considered indicative of bacterial BCAD (Figure 2.2-g, part A), 

although it is interesting that this C-terminal domain was not present in representative 

bacterial BCAD sequences.  Conversely, close homologues to AP_002315 are most 

commonly annotated as crotonobetainyl-CoA dehydrogenases, functionally related to but not 

clearly functional as BCADs.  NP_415757 homologues, however function as aldehyde and 

alcohol dehydrogenases and it seems unlikely that this protein functions as a BCAD in E. coli.  

The evidence suggests that the E. coli protein AP_000876 is a FadE homologue functioning 

as an acyl-CoA dehydrogenase, although further investigation would be needed to confirm its 

activity as a BCAD, specific to butyryl-CoA. 
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A:  AP_000876: putative acyl-CoA dehydrogenase

B:  AP_002315: acyl-CoA dehydrogenase

C:  NP_415757: fused acyl-CoA dehydrogenase/Fe-dependent ADH/PFL deactivase

A:  AP_000876: putative acyl-CoA dehydrogenase

B:  AP_002315: acyl-CoA dehydrogenase

C:  NP_415757: fused acyl-CoA dehydrogenase/Fe-dependent ADH/PFL deactivase

 

Figure 2.2-g  Putative Escherichia coli BCADs and their conserved functional domain 
topologies. 
Conserved domains were identified on the basis of close homology (E-value 
threshold:  0.010) with the query sequence using a conserved domain database [118]. 
SCAD/SBCAD, short chain acyl-CoA dehydrogenase (SCAD); DUF1974, domain of 
unknown function predominantly found in various prokaryotic acyl-CoA dehydrogenases; 
FadE; acyl-CoA dehydrogenase; ACAD, mitochondrial and peroxisomal acyl-CoA 
dehydrogenase; PRK12341, putative acyl-CoA dehydrogenase; PutA PutA, NAD-dependent 
aldehyde dehydrogenases; Fe-ADH, iron-containing alcohol dehydrogenasel; EutG, Alcohol 
dehydrogenase, class IV. 
 

Furthermore, the putative E. coli K-12 BCAD (AP_000876) aligns closely with representative 

BCADs from several bacterial species and retains a specific glutamate residue (and its 

context) known to be catalytically important to acyl-CoA dehydrogenase activity (Figure 2.2-

h) [8,11,42,189].  Conserved domains were found near the N-terminal (SCAD domain), 

which are thought to be responsible for substrate specificity and binding [85], whereas the C-

terminal (DUF 1974 domain) was missing from representative bacterial BCAD sequences.   

 

In conclusion, the enzymes necessary for the operation of the pathway shown in Table 2.2-2 

can be found in E. coli K-12, although detailed investigation would be necessary to establish 

the operation of this pathway and to confirm the involvement of specific enzymes.  
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Figure 2.2-h  Alignment of putative Escherichia coli K-12 BCAD (accession: AP_000876) and five representative bacterial BCAD 
sequences.   
Organisms and sequences: Deinococcus radiodurans R1 (accession: NP_294979), Halobacterium sp. NRC-1 (accession: NP_279692), 
Megasphaera Elsdenii (accession: 1BUC_A), Clostridium tetani E88 (accession: NP_782646), Streptomyces coelicolor A3(2) (accession: 
NP_625710).  The Alignment was performed using ClustalW (BLOSUM62 matrix).  Background shading: Black: 100 % identity, grey: > 50 % 
identity, none: < 50 % [60].  Arrow represents a conserved active site catalytic residue (see text).  The C-terminal domain (DUF1974, not shown) 
failed to align with representative BCAD sequences (see text). 
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2.2.4b-II Butyrate-type fermentation balance 

A theoretical analysis of butyrate-type fermentation was performed based on the following 

axioms:- 

1. Standard pathways of mixed acid fermentation [32] (Figure 1, section 2.1.1) with the 

additional pathway of butyrate production by the condensation of 2 acetyl-CoA to form 1 

butyrate with the oxidation of 1 NADH and the phosphorylation of 1 ADP, as occurs in 

clostridia [106]. 

2. For balanced electron flow, the 2 mol NAD/mol glucose reduced during glycolysis is re-

oxidised by the formation of end-products.  Therefore, the sum of 2*ethanol, 2*succinate, 

lactate and butyrate must equal 2 (molar yields). 

3. For balanced carbon flow, the sum of lactate, succinate, ethanol, acetate and 2*butyrate 

must equal 2 (molar yields). 

4. The molar yields of all products other than lactate cannot be negative, in accordance with 

observations (Figures 2.2-c and 2.2-e). 

 

Under these provisions, carbon and electron flow can be balanced, dependent upon the 

formation of feasible proportions of fermentation products.  For example, lactate cannot be 

formed during butyrate production and the yields of succinate and butyrate must be in the 

range 0-⅔ mol/mol glucose.  Theoretically, the consequences of butyrate-type fermentation 

are decreased yields of acetate, ethanol and ATP, while the yield of H2 is not directly affected.  

For example, an additional 0.5 mol butyrate/mol glucose would result in losses of -0.25 total 

acid, -0.25 ATP, -0.75 acetate and -0.25 ethanol (mol/mol glucose), according to the 

metabolic pathway and rules set out above.  The cost of a lower ATP yield may be offset by 

the relief of organic acid toxicity due to the decreased overall acid production.  E. coli is 

known to up-regulate lactic acid production as a response to acidic pH [32,183], which results 

in a lower proportion of the acid pool that is protonated and membrane-permeable, lactate 

having a lower dissociation constant than acetate (pKa values of 3.86 and 4.76, respectively).  

However, this reasoning cannot account for the switch to butyrate production because butyric 

and acetic acids are alike in terms of pKa values (4.81 and 4.76, respectively).  Rather, 

butyrate-type fermentation resulted in a decreased quantity of acid formed (Figure 2.2-e). 
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In practice the switch to butyrate formation was associated with lactate re-assimilation, which 

would theoretically contribute to the pools of NADH and pyruvate allowing the yield of 

butyrate to exceed ⅔ mol/mol glucose, increasing the yield of ATP, and allowing the yield of 

H2 to appear to exceed 2 mol/mol glucose (Figure 2.2-c, part A).  

 

The effects of butyrate-type fermentation were analysed by comparing the proportions of 

products during the first 24 h of fermentations (mixed acid fermentation) with the proportions 

observed subsequently (butyrate-type fermentation).  By producing butyrate at the expense of 

lactate, acetate and succinate, the formation of acid was decreased by 40 % (Figure 2.2-e).   

 

2.2.5 Conclusions 

H2 production by E. coli fermentation was developed through four phases, resulting in a 

continuous and sustainable system producing H2 at 80 % efficiency. 

 

The reaction was initially limited by pH.  After a pH optimum of 5.5 was determined and 

applied, substrate limitation occurred prompting the investigation of fed-batch mode.  The 

final limitation was organic acid toxicity, which was overcome by the incorporation in situ 

product removal (ISPR) by electrodialysis, which also provided water transport to balance the 

input of feed solution. 

 

With pH control and continuous feeding, H2 was produced for a total of 13 days.  The rate and 

yield of H2 production were initially high but began to decline after 4 days.  It is speculated 

that the accumulated organic acids exerted stress upon the cells, bringing about the cessation 

of fermentation, which was avoided by the incorporation in situ product removal by 

electrodialysis. 

 

A novel form of E. coli fermentation was observed.  Under the conditions of phase 3 and 

phase 4 E. coli took up the previously formed lactate and produced butyrate, temporarily 

producing H2 at a high rate.  Previous reports confirm the ability of E. coli to produce butyrate 

and the biochemical capability can be confirmed with the exception of one reaction step, for 

which putative enzymes were identified in E. coli K-12, from which strain HD701 was 
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derived.  Further work would be required to confirm the presence and activity of these 

enzymes and to further characterise butyrate-type fermentation in E. coli. 
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2.3 Development of photobiological H2 production by Rhodobacter sphaeroides 
2.3.0 Summary 
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Environmental conditions for the production of H2 by R. sphaeroides were investigated both 

practically and through the analysis of published data.  Small-scale batch reactors (100 ml) were 

used to examine the effects of acetate availability, culture density, ammonium ion inhibition, and 

CO2 availability on H2 production by R. sphaeroides.  Headspace gas composition analysis and a 

fluid-displacement system were employed for the measurement of H2 production in experiments 

using acetate as the sole carbon source.  The maximum concentration of NH4
+ permissive to H2 

evolution was ca. 1 mM in a background of 40 mM acetate.  The concentration of acetate 

(substrate) directly affected the extent and duration of H2 evolution, the minimum substrate 

concentration being ca. 10 mM.  Substrate inhibition was absent at substrate concentrations up to 

90 mM, and in an excess of acetate, the rate of H2 evolution was proportional to culture density 

up to 0.65 g dry weight/l.   

 

These data, coupled with information gathered from the literature were used in the design of a 

continuous R. sphaeroides photobioreactor achieving stable and continuous H2 production, which 

was employed subsequently in a dual system combining R. sphaeroides and E. coli (chapter 2.6), 
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in which the composition of the medium supplied to R. sphaeroides was dependent upon the 

preceding dark fermentation.  

 

Of particular relevance was the study of repression of H2 production by ca. 1 mM NH4
+, even in 

an excess of acetate.  This bottleneck prevented the production of H2 from E. coli fermentation 

effluent (see chapter 2.4) and the problem shown in this chapter was subsequently overcome 

through the application of electrodialysis (chapters 2.5 and 2.6).   

 

2.3.1 Introduction 

The light stage of a dual system for H2 production could be carried out by a variety of APB, of 

which the purple non-sulphur (PNS) bacteria are preferred owing to the lack of H2S formation.  

For this study Rhodobacter sphaeroides O.U. 001 was selected because of the wealth of 

information available regarding this organism.  Information is available regarding the metabolism 

[48,49,90] and kinetics [91] of H2 production by this organism, which has been applied in the 

utilisation of wastes and pollutants for H2 production [169,194,210], cultured in advanced 

photobioreactors [66], and cultured continuously [43].  

 

Several factors affect H2 production.  Under photoheterotrophic conditions (anaerobiosis, light, 

absence of fixed or molecular nitrogen) nitrogenase consumes ATP and reoxidises electron 

carriers in the production of H2 [86].  R. sphaeroides carries out anoxygenic photosynthesis to 

generate ATP, a requirement for nitrogenase activity and H2 production.  Nitrogenase activity is 

also dependent upon an excess of reduced electron carriers, generated by the assimilation of 

reduced carbon sources such as organic acids.  H2 production competes with other reductive 

processes for reducing power (and for ATP), such as the formation of storage materials, 

particularly poly-β-hydroxybutyrate (PHB) [70].  The nitrogenase of APB is a complex tetramer, 

containing Mo-Fe centres.  Due to its complexity, high ATP requirement and low specific 

turnover rate, nitrogenase places an exceptional demand upon metabolism [61], but nitrogenase 

plays an essential role in normal growth by fixing N2 (as NH3), to allow growth in the absence of 

a fixed N-source.  Normal nitrogenase activity produces NH3 with H2 formation as a wasteful 

side-reaction which disposes of excess reducing power, but in the absence of N2 nitrogenase 
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continues to turn over, producing only H2 [170].  The key factor is the nitrogenase, which is 

expressed and active only in the absence of O2 and NH4
+; nitrogenase is not directly regulated in 

response to the availability of its substrate (N2).   

 

In order to maximise H2 production by R. sphaeroides, the influences of environmental factors, 

particularly the concentrations of acetate and NH4
+, were investigated to determine the limits of 

operation.  Based on this data, and information gathered from the literature, a continuous, H2 

producing R. sphaeroides culture was established, for use in further studies. 

 
2.3.2 Materials and Methods 

2.3.2a Microorganisms, media and culture conditions 

The wild-type Rhodobacter sphaeroides strain O.U. 001 (DSM 5864), well-documented to 

produce H2 [44,61,91,169,194,210], was studied in axenic culture.  Cultures were grown using 

the SyA medium of Hoekema et al. (2002) [66], which contained 1 g/l yeast extract (Merck) as a 

source of N and Mo, and succinate as the primary carbon source (30 mM), which is standard for 

the growth of APB [15].  R. sphaeroides was cultured in full, sealed bottles, at 30 ºC under 40 μE 

m2/s of photosynthetically active radiation (PAR) (wavelengths 400-700 nm; PAR light meter 

SKP200, Skye Instruments).  Cells were harvested from late exponential phase (see Figure 4.1-d) 

by centrifugation (4435 x g; 4 ºC; 10 min) and pellets were resuspended in HP (H2 production) 

medium to the required volume.  The HP medium was derived from the AA-b medium of 

Hoekema et al. (2002) [66] omitting sources of NH4
+ and using 50 mg/l MgSO4•7H20 and 25 

mg/l CaCl2•2H20 (see appendix 4.1.2a).  Aliquots of cell suspension (50 ml) were sealed in serum 

bottles using butyl rubber stoppers and aluminium tear-seals, and purged with argon for at least 

20 min to displace air.  H2 production was monitored during incubation at 30 ºC under 100 μE 

PAR/m2/s.  Biomass concentration was estimated from measurements of optical density (1 OD660 

: 0.36 g dry weight/l).   

 

2.3.2b Measurement of H2 production 

Two methods of H2 measurement were employed in these experiments: composition analysis and 

fluid-displacement (see appendix 4.1.1). 
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For composition analysis 0.2 ml headspace samples were withdrawn from closed reactors using a 

gas-tight syringe (Hamilton) fitted with a 27-G needle.  Samples were analysed immediately 

using a combustible gas meter (CGM, Gas surveyor 2, Gas Measurement Instruments, Ltd.).  The 

CGM gave a numerical output related to the concentration of combustible gas in the injected 

sample.  The data was normalised to show the estimated concentration of H2 (% v/v) in the 

reactor headspace. 

 

The fluid-displacement system provided volumetric measurements of gas via measuring the 

displacement of a scrubbing solution (1 M NaOH) from a graduated 5 ml pipette.  The scrubbing 

solution absorbed CO2 from the evolved gas, as confirmed by GC analysis (see appendix 4.1.1e).   

 

2.3.2c The effects of acetate and NH4
+ concentrations 

Composition analysis was used to examine the effects of acetate and NH4
+ concentrations on H2 

production.  Acetate was selected as the substrate for H2 production by R. sphaeroides in this 

study as previous work on E. coli fermentation suggested that acetate would be the primary 

organic acid produced by E. coli [32,146].  The effect of acetate concentration was examined in 

the absence of NH4
+ with acetate concentrations in the range 0-90 mM.  Cells were resuspended 

in HP medium lacking acetate and dispensed into reactors in 50 ml aliquots, to which volumes of 

1 M acetate were dispensed to give the required final concentrations.  

 

The effect of NH4
+ was examined in a background of 40 mM acetate and ammonium 

concentrations in the range 0-10 mM.  Duplicate 50 ml suspensions were supplemented with 

small volumes of sterile 1 M NH4
+ solution, to the required final concentrations.  In accordance 

with Hoekema’s AA-b medium the 1M NH4
+ solution was 93 % NH4Cl and 3.5 % (NH4)2SO4. 

 

2.3.2d The effect of culture density 

Fluid displacement was employed to measure the effect of culture density on H2 production.  

Composition analysis was also employed as a qualitative test for H2.  Concentrated suspensions 

were prepared by harvesting late-exponential phase (see Figure 4.1-d) cultures (4435 x g; 4 ºC; 
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10 min) and resuspending to the required OD660 in HP medium, containing 100 mM acetate.  A 

series of cultures (50 ml) was prepared by serial dilutions of the concentrate using HP medium.  

 

2.3.2e Operation of a continuous photobioreactor (PBR) 

Photofermentation was carried out in a cylindrical glass photobioreactor (internal diameter, 105 

mm) (Figure 2.3-a).  The illuminated surface area was 0.107 m2 and the average intensity of 

photosynthetically active radiation (400-950 nm) at the culture surface was 334.3 µE/m2/s, 

provided by 3 tungsten filament bulbs arranged externally along the length of the cylinder, which 

was encased in a reflective tube (diameter, 35 cm).  The culture (3.0±0.5 litre) was stirred using a 

magnetic stirrer and follower (1200 rpm) located at the base of the PBR.  A temperature of 

30.0±0.2 ºC was maintained using a submerged cooling coil. 

 

The vessel was autoclaved and filled with 3 l of a modified SyA medium [66] containing 16 mM 

acetate, 14 mM succinate, 8 mM lactate, 5 mM butyrate and 1 g/l yeast extract.  The medium was 

inoculated with 30 ml late-exponential phase pre-culture and purged with argon for 30 min before 

H2 production was measured by fluid-displacement.  After growing for 72 h, the culture was 

diluted constantly (41.67 ml/h i.e. 1 l/day) and the photobioreactor (PBR) was constantly drained 

into an outflow vessel at the same rate, keeping the culture volume constant.   
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Figure 2.3-a  A photobioreactor for the continuous culture of Rhodobacter sphaeroides.  
Schematic diagram (A) and operational system shown with the reflective tube unfurled (B). 
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The diluents consisted either of basal medium (0.366 g K2HPO4, 0.433 g KH2PO4, 0.05 g 

MgSO4.7H20, 0.025 g CaCl2.2H2O, 1 g yeast extract per litre) or a mixed organic acid medium 

consisting of basal medium supplemented with simulated products of E. coli mixed acid 

fermentation; lactate (36.97 mM), acetate (31.42 mM), formate (3.56 mM) and succinate (20.18 

mM).  The simulated effluent was based on measurements of organic acid production in batch-

mode ‘phase 3’ fermentations (see chapter 2.2).  Culture purity was inspected regularly by serial 

dilution plating on nutrient agar (Oxoid, UK).  Light conversion efficiency was calculated by 

dividing the combustion enthalpy of the produced H2 by the supplied light energy (400-950 nm) 

[2] (appendix 4.1.4). 

 

2.3.3 Results and Discussion 

2.3.3a The effect of acetate concentration 
In these experiments composition analysis (using a combustible gas meter) proved a simple and 

effective technique for the estimation of H2 production, allowing factors affecting H2 production 

to be compared within individual experiments (see appendix 4.1.1a).  These results should be 

interpreted only in relative terms as the analysis could not be calibrated reproducibly. 

 

The experiment aimed to determine the minimum concentration of acetate permissive to H2 

evolution by R. sphaeroides.  H2 was not detected using 0-5 mM acetate, traces of H2 were 

detected using 10 mM, and prolific H2 production was observed only at 20 mM and above 

(Figure 2.3-b, part A).  Concentrations between 10 mM and 20 mM were not tested.  The lower 

limit was, therefore, 10 mM, under these conditions.  Higher concentrations (40-90 mM acetate) 

did not further promote H2 production (Figure 2.3-b, part B) and no substrate inhibition was 

observed.  40 mM was selected as a standard acetate concentration for the investigation of the 

effect of NH4
+.  Resting cultures such as these were not capable of long-term H2 production and 

ceased H2 production (after ca. 10 days) with a simultaneous change in appearance from 

yellow/brown to pink, indicative of the destruction of photopigments.  Attempts to rescue 

exhausted cultures by the addition of further acetate were unsuccessful, suggesting the exhaustion 

of some other essential nutrient such as a N-source or vitamin. 
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Figure 2.3-b  The effect of initial acetate concentration on H2 production by Rhodobacter 
sphaeroides.   
H2 was evolved using HP medium with acetate as the sole carbon source.  H2 production was 
monitored by headspace composition analysis.  Concentrations of acetate below 10 mM were not 
permissive to H2 production (A).  No significant difference in H2 production was observed in the 
range 40 mM to 90 mM acetate (B).  A and B should not be compared directly due to limitations 
of gas composition analysis (see text).  
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2.3.3b The effect of NH4
+ 

Experiments were conducted to determine the maximum NH4
+ concentration permissive to H2 

production by R. sphaeroides, in the absence of any other added nitrogen source and with an 

excess of acetate (40 mM) as the sole carbon source.  In the absence of NH4
+, H2 was detected 

within 12 hours incubation, whereas at 2 mM and above no H2 was detected over 11 days 

incubation.  The maximum tolerable concentration of NH4
+ was ca. 1 mM under these conditions, 

as traces of H2 were detected.  This result is in accordance with published reports documenting 

the repression of H2 production by NH4
+ concentrations as low as 20 μM [90].  These 

observations suggest that some nitrogen source is required for culture health, yet excess nitrogen 

is inhibitory to H2 production.  This paradox is addressed in chapter 2.5. 

 

2.3.3c The effect of culture density 

Although useful for the comparison of environmental conditions, composition analysis using the 

combustible gas meter was unsuitable for longer-term experiments and provided no absolute 

quantities for H2 production.  Therefore, a fluid displacement system was employed in the 

investigation of the effect of culture density on the rate of H2 evolution, in which 100 mM acetate 

was the sole carbon source.  Using this method, steady rates of gas evolution (up to 0.75 ml/h/50 

ml culture) were maintained for 100 h (Figure 2.3-c, part A).   

 

Cells were harvested rapidly (and not washed) to minimise the aerobic degradation of nitrogenase 

[110].  Therefore, the observed culture growth (Table 2.3-1) can be explained by the carry-over 

of residual and endogenous substrates from the growth medium, which supported less than one 

population doubling at the highest concentration.  OD660 measurements recorded at the end of 

experiments were considered representative under the assumption that growth occurred 

principally during the initial part of the experiment.  After an initial lag period, perhaps 

attributable to the consumption of residual or endogenous N-sources, H2 evolution occurred at 

constant rates, which were proportional to culture density (Figure 2.3-b, part B).  The maximum 

volumetric rate was 10 ml H2/l culture/h, which compares well with published rates in the range 

7-18 ml H2/l culture/h production by cultures of R. sphaeroides O.U. 001 [91,169]. 
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Figure 2.3-c  The effect of culture density on H2 production (A, B) and growth (C).   
The experiment was performed in duplicate under acetate excess (100 mM).  H2 production was 
measured by fluid displacement.  Final culture densities are shown.  
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Table 2.3-1  Growth in ‘resting’ cultures of Rhodobacter sphaeroides 
Initial culture density Culture density after 95 h Residual population 

doublings (g dry weight/l) (g dry weight/l) 
0.000 0.001 - 
0.043 0.124 2.9 
0.069 0.217 3.1 
0.137 0.397 2.9 
0.237 0.549 2.3 
0.395 0.637 1.6 

Data correspond to the investigation of culture density (Figure 2.3-c) and represent means of 
duplicate experiments.  For interpretation see Figure 2.3-c, part C. 
 

The volumetric rate of gas evolution (ml H2/l culture/h) increased linearly with final culture 

density in the range 0–0.65 g dry weight/l and the specific rate of gas evolution was constant at 

ca. 35 ml H2/h/mg dry weight (Figure 2.3-c, part B).  Light is required for H2 production, as the 

photosynthetic apparatus uses light energy to generate a proton motive force, which is used for 

ATP synthesis.  In darkness the ATP flux is insufficient to meet the high demands of nitrogenase 

activity and H2 production ceases.  As culture density increases, the specific rate of H2 production 

would be expected to decrease as the proportion of the culture receiving sufficient light 

decreases, but this relationship was not observed (Figure 2.3-c, part B), suggesting that light-

limitation did not occur in these experiments.   

 

As the HP medium contained no source of nitrogen, the extent of growth would be expected to 

relate directly to the size of the inoculum – the source of carried-over N-source.  This relationship 

was observed for the lower culture densities, but growth was limited when the culture density 

exceeded ca. 0.5 g dry weight/l (Figure 2.3-c, part C), indicating a possible light limitation of 

growth in the absence of an effect on H2 production.  The expected effect on H2 production was 

reported previously [140], and the penetration of light through photosynthetic bacterial cultures 

has been modelled [79,133].  Light intensity decreases logarithmically with respect to culture 

depth, and in dense cultures, the efficiency of H2 production would be low as only cells located in 

a narrow region would receive a light intensity sufficient for H2 evolution and below the 

saturation point.  Light availability affects both the efficiency of light conversion and the 

efficiency of substrate conversion.  At low light intensity, light conversion efficiency is high but 
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substrate conversion efficiency is low, and the inverse relationship occurs under high light 

intensity [133].  Therefore the optimum culture density for light conversion efficiency is higher 

than the optimum culture density for substrate conversion, requiring a compromise.  As the 

objective of this project was to improve the efficiency of H2 production from glucose, substrate 

conversion efficiency was prioritised over light conversion efficiency.  Various approaches are 

available to increase the efficiency of light conversion to H2, permitting denser cultures (see 

section 3.6.1). 

 

In this experiment, culture densities were insufficient to reveal the previously described effects of 

light limitation.  In larger continuous cultures, culture density may be controlled via the supply of 

nitrogen source.  Therefore, the knowledge that light limitation did not occur using culture 

densities of up to 0.65 g dry weight/l was useful, although the extrapolation of these results to 

larger cultures with deeper light paths may be unreliable. 

 

2.3.3d Validation of gas analysis. 

The fluid displacement system operated on the basis of produced gas displacing a ‘scrubbing’ 

solution (1 M NaOH) from a cylinder.  The evolved gas was a mixture of H2 and CO2, the latter 

dissolving in scrubbing solution  (confirmed by GC, see section 4.1.1e).  Concerns regarding the 

effect of scrubbing solution on R. sphaeroides were addressed. 

 

R. sphaeroides cultures were in indirect contact (via the headspace) with a strongly basic 

solution, which could potentially strip dissolved CO2 from the medium by disturbing the 

equilibrium between dissolved and gaseous CO2.  This phenomenon was observed by Hillmer 

and Gest (1977) [65] who observed the inhibition of H2 production by R. capsulatus when alkali 

was present in the centre well of a Warburg flask.  Furthermore, the removal of CO2 by 

continuous argon purging was inhibitory to growth and H2 production by a Rhodopseudomonas 

spp. [66].  Despite the net production of CO2 during the photo-assimilation of acetate, there was a 

clear requirement for the non-removal of CO2 in these species.  It is emphasised that this is not 

equivalent to a requirement for CO2 input.   
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In general, acetate assimilation occurs by the glyoxylate cycle [94] but the mechanism varies 

among anoxygenic photosynthetic bacteria [5].  Hoekema et al. [66] suggested that an alternative 

citramalate cycle [75] could explain the phenomenon.  The citramalate cycle relies upon cycling 

of CO2 and cannot operate in the absence of dissolved CO2.  The species in which a CO2 

requirement was detected (e.g. Rhodospirillum rubrum, Phaespirillum fulvum) lack isocitrate 

lyase (ICL) the key enzyme in the glyoxylate cycle, and hence the alternative citramalate cycle 

operates in these cases.  R. sphaeroides also lacks ICL [3], therefore the question of exposure to 

scrubbing solution was addressed.  A fluid break was added between the culture and the 

scrubbing solution, but this resulted in no significant increase in H2 production.  This was 

explained by recent work [48,49], which confirmed the operation of the citramalate cycle in R. 

sphaeroides and attributed the absence of a CO2-dependence to an unusually high capacity for 

acetate assimilation (i.e. CO2 production, 6-fold greater than that of R. rubrum) and to the 

presence of a mucous capsule, by which CO2/HCO3
- may be retained. 

 

Therefore, the fluid displacement method, using strong alkaline solutions (NaOH), was effective 

in the measurement of H2 production, without causing indirect adverse effects on H2 production 

by R. sphaeroides. 

 

2.3.3e Continuous H2 production by Rhodobacter sphaeroides 

A continuous culture (or chemostat) is typically operated by continuous dilution of the culture 

with fresh medium at a constant rate.  Alternative approaches may be employed for 

photobioreactors such as dilution only during light periods or by using fill-and-draw (F/D), 

intermittently replacing a proportion of the culture with fresh medium.  It was suggested that F/D 

operation is preferable due to the relatively low growth rate of PNS bacteria [25], however many 

reports are available describing chemostat cultures of PNS bacteria.  To construct a manageable 

dual-bioreactor experiment, it was preferable to operate the photobioreactor as a continuously 

illuminated chemostat, although industrial application would entail the adaptation of the method 

to diurnal solar illumination. 
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A survey of literature revealed extensive variation in the conditions of continuous H2-producing 

cultures of APB (Table 2.3-2).   

 

A high relative supply of carbon over nitrogen (C/N) is required for nitrogenase-mediated H2 

production.  The literature survey showed that C/N <10 only where hydraulic retention time 

(HRT) was very long, allowing N-sources to be consumed before H2 production commenced.  

This study found that the minimum C/N permissive to H2 production by resting cells, was ca. 80 

(1 mM NH4
+; 40 mM acetate), which is significantly higher than most reported values (Table 2.3-

2).  However, NH4
+ is a more potent inhibitor of nitrogenase activity than complex N-sources 

such as glutamate and yeast extract, whose presence results in the formation of NH4
+ only after 

the C-source is exhausted [90].  Yeast extract was found to be an effective source of N and 

vitamins in the continuous culture of R. sphaeroides O.U. 001 [91] and was selected for use in 

this study.  Yeast extract has a N-content of 8.85 % w/w [91] and PNS bacteria are composed of 

ca. 8.7 % N w/w [66], hence a medium designed to support a culture density of 1 g dry cell 

weight/l contained 1 g/l yeast extract, which when supplemented with mixed organic acids (see 

2.3.3e) resulted in a C/N of 41.6 in this study.  HRTs as short as 10 hours were reported 

previously (Table 2.3-2) but to increase the potential substrate loading a HRT of 3 days was 

selected.   
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Table 2.3-2  Conditions for H2-production by chemostat cultures of purple non-sulphur bacteria 
Subs. con. 

eff. (%) Organism C-source (mM) N-source (mM) C/N Operation HRT Source 

Rhodobacter 
sphaeroides glutamate, 10 malate, 7.5 7.1 batch - 36 [91] yeast extract, 0.2 g/l O.U. 001 

lactate, 30 18 R. capsulatus glutamate, 7 F/D 3 days 14-43 [103] butyrate, 30 22 
R. sphaeroides 17 days malate, 7.5 glutamate, 2 40 F/D NA [43] O.U. 001 (400 h) 

Rhodopseudomonas 
palustris WP3-5 acetate, 32.5 glutamate, 2.72 12 F/D 2 days 72.5 [25] 

NH4Cl, 4.75 R. sphaeroides RV lactate, 56 yeast extract, 0.25 g/l 31 chemostat 1.25 days 31-36 [52] (30 h) 
1.39 days R. capsulatus B10 lactate, 42 (NH4)2SO4, 4 16 chemostat 43 [191] (33 h) 

2 days 34 acetate, 9.14 Rhodopseudomonas 
capsulata 

glutamate, 2.94 3 days 39 propionate, 1.67 7.6 chemostat [175] NH4
+, 9.14 4 days 36 butyrate, 13.6 5 days 32 

NH4
+, 4.7 R. sphaeroides RV lactate, 100 mM Yeast extract, 0.5 g/l 38 chemostat 0.42 days 50-70 [45] (10 h) 

lactate, 36.97  This studyR. sphaeroides 
O.U. 001 

acetate, 31.42 
formate, 3.56 

succinate, 20.18 

 
yeast extract, 1 g/l 41.6 chemostat 3 days 32 chapter 2.3 

38 chapter 2.6 

C/N: molar ratio of total carbon over total nitrogen; F/D: fill-and-draw; HRT: hydraulic retention time; NA: data not available.
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The culture was maintained in batch-mode for the initial 3 days to allow growth. H2 

production commenced after 1 day, reaching a maximum substrate conversion efficiency of 

60 % (Figure 2.3-d, part B).  Subsequently, dilution with basal medium displaced residual 

substrate resulting in the cessation of H2 production.  Conversely, when organic acids were 

supplied in the diluent, H2 production became stable and continuous after day-4 with a rate of 

18 ml H2/h/l culture, a light conversion efficiency of 3 % and substrate conversion efficiency 

of 14 % based on supplied substrates, or 32 % based on consumed substrates.  Substrate 

conversion efficiency was low due to overloading of the culture; i.e. substrate was supplied at 

a rate higher than it was consumed.  As a result 64.2 % of supplied organic acid carbon was 

accounted for in the outflow (i.e. not consumed), representing 75.4 % of the supplied potential 

for H2 production (Figure 2.3-d, part C).  Optimisation would be required to balance the 

supply of substrate with the capacity for consumption and in an industrial system the residual 

substrate could be recycled to the inlet after cell separation (Figure 2.6-e). 
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Figure 2.3-d  H2 production (A), substrate conversion efficiency (B) and residual 
substrate in continuous cultures of Rhodobacter sphaeroides, diluted with synthetic 
organic acid medium.   
The H2 production rate of 150 ml/h (A) corresponded to a light conversion efficiency of 7.84 
% (appendix 4.1.4).  Substrate conversion efficiency (B) was calculated using the theoretical 
maxima of 4 mol H2/mol acetate, 6 mol H2/mol lactate, 7 mol H2/mol succinate and 10 mol 
H2/mol butyrate [170], and calculation was based on total substrate supplied rather than the 
proportion consumed.  Arrows indicate the onset of dilution after 3 days growth.  Data from 
single experiments are shown.   
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2.4 A two-stage, two-organism process for biohydrogen from glucose 
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The content of this chapter was originally presented at the International Hydrogen Energy 

Congress (IHEC-2005), Istanbul.  The paper was has been published in a special issue of the 

International Journal of Hydrogen Energy and is reproduced in full. 

 

This article describes the initial investigations into the photoproduction of H2 using effluent 

from E. coli fermentations (sequential batch mode).  While Rhodobacter sphaeroides grew 

well, consuming fermentation products (acetate, lactate, ethanol and residual glucose), the 

quantity of ammonium ion in the E. coli effluent was inhibitory to nitrogenase-mediated 

photoproduction of H2 by R. sphaeroides.  This result illustrated that the sensitivity to 

nitrogen sources is a major obstacle to overcome in the photoproduction of H2 when feeds 

such as wastewaters of fermentation broths are to be used.  It also showed that effluent from 

an E. coli glucose fermentation could at least be remediated via the cultivation of R. 

sphaeroides, which is itself a potentially useful product used for the production of 

biodegradable plastic from accumulated poly-β-hydroxybutyrate.  These results also confirm 

that ethanol and glucose can be consumed by R. sphaeroides O.U. 001.   

 

Hence, the principle of cross-feeding E. coli products to R. sphaeroides was demonstrated and 

the need to prevent the transfer of NH4
+ was identified, prompting the investigation of 
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electrodialysis (chapter 2.5) and justifying its subsequent incorporation into the dual system 

(chapter 2.6). 

 

The fermentation effluent (used as the feed in these experiments) was provided by DW 

Penfold, while analysis of the effluent and all other work, including authorship of the paper, 

were performed by the author. 

 

2.4.1 Article published in the International Journal of Hydrogen Energy   
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2.5 Development of the electrodialysis technique for use in a dual system 
 

2.5.0 Summary 
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Having identified the unwanted co-transfer of N-sources as a primary bottleneck to the 

successful operation of a dual system (chapter 2.4), the selective transfer of organic acids was 

investigated. 

 

This chapter describes the development of an electrodialysis technique as a potential means to 

enable a dual system combining fermentation by E. coli and photofermentation by R. 

sphaeroides.  This novel application is the subject of a patent application [159] (reproduced in 

appendix 4.2.1).  Preliminary studies on the electrodialysis technique are described, which 

provided a basis for the introduction of electrodialysis into E. coli fermentation and a 

complete dual system (chapter 2.6). 

 

To avoid repetition, a methods section is omitted from this chapter.  Relevant details are given 

in figure legends and references are made to full details found in adjacent chapters and 

appendices. 
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2.5.1 Electrodialysis in extractive fermentations 

Electrodialysis (ED) was identified as a promising technique for coupling the E. coli and R. 

sphaeroides reactors, for which the key function is the selective transport of E. coli 

fermentation products such as organic acids.  Fermentation products including benzoic acid, 

lactic acid, acetic acid, propionic acid and pyruvic acid have been actively extracted from 

fermentations [30,53,76,102,131,132,137,203,220,221] but no previous studies address the 

novel application of electro-separation to the production of H2.  

 

ED techniques employ cation-selective (CSM), anion-selective (ASM) and bi-polar (BP) 

membranes, to achieve the charge-selective separation of valuable products or unwanted 

contaminants and the generation of acid and alkali, applicable in processes such as seawater 

desalination [156], and organic acid production [69].  Both ASM and CSM consist of a co-

polymer matrix (various formulations, e.g. vinyl compounds), which provides physical 

support for charged functional groups conferring selectivity.  These may be positive in the 

case of CSM (e.g. –SO3−, –COO−, –PO3
2−, –PO3H−, –C6H4O−), or negative in the case of 

ASM (e.g. –NH3
+, –NRH2

+, –NR2H+, –NR3
+, –PR3

+) [208].  The industrial usefulness of ion-

selective membranes expanded in 1973, with the advent of Nafion® by DuPont, having 

improved chemical and thermal stability due to its perfluorinated ionomer composition [57].  

Further desirable qualities of ion-selective membranes include high electrical conductivity, 

low water content (swelling), high anion selectivity under applied current and low diffusivity 

without current.  A second significant development was the BP membrane, consisting of a 

CSM-ASM bi-layer [29].  An ASM composed of Neosepta AHA was selected for use in this 

study.  Neosepta AHA is characterised by its high mechanical strength and alkali resistance, 

and tolerates higher concentrations of solvents than earlier formulations (e.g. 7 % phenol, 30 

% acetone, 30 % dioxane and 50 % ethanol), but remains sensitive to strong oxidising agents 

(www.astom-corp.jp).  Little information is available on the function of Neosepta membranes 

and formulations are proprietary (Tokuyama Co., Japan).  Monoselective ASM and CSM (e.g. 

Neosepta ACS or CMS) are also available, having specificity to monovalent ions [129,208], 

whereas Neosepta AHA transports anions of various valences, which is advantageous as the 

products of dark fermentation include monovalent and divalent organic acids.   
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The application of ED in the dual system involves separating the two cultures with an anion 

selective membrane (ASM), which permits the passage of anions (such as organic acids) by 

diffusion in either direction.  Under a direct current (DC) the migration of anions is uni-

directional and rapid.  The previous chapter (2.4) demonstrated a limitation to the 

applicability of dual systems utilising PNS bacteria; the initial feed must be low in N-sources 

in order to permit nitrogenase activity, and hence H2 production by PNS bacteria.  As the 

ASM is relatively impermeable to cations including NH4
+, the application of ED results in a 

versatile system, able to utilise feeds with high N-content since NH4
+ and other cations are 

retained on the dark side of the ASM.  The electrodialysis technique is, therefore, bifunctional 

in that it feeds organic acids to R. sphaeroides while at the same time excluding inhibitory 

NH4
+.  

 

The ED cell was composed of four chambers (C, M, MA and A, from cathode to anode) 

(Figure 2.5-a).  The two outermost compartments were named C and A, being in contact with 

the cathode and anode, respectively.  The two innermost compartments were named M and 

MA, M representing the ‘main’ compartment (source of anions for recovery), and MA 

representing the space separating compartments M and A into which anions were recovered.  

These four compartments were divided by three membranes (BP, ASM and CSM).  In the ED 

cell, CSM and BP membranes prevent direct contact between bacterial cells and the 

electrodes, as the extremes of pH at the electrode surfaces would result in unwanted reactions 

[102,131,132].  The BP membrane also lyses water, generating H+ on the cathode side and 

OH- on the anode side.  This function has been exploited to provide pH control 

simultaneously during extractive fermentations [102,137].  The CSM also functions to 

transport Na+ from the C chamber, resulting in the formation of sodium salts in the MA 

chamber. 
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2.5.2 Studies on the application of electrodialysis 

Preliminary work was carried out to evaluate the application of ED to the integration of E. 

coli and R. sphaeroides cultures.  The operating conditions were established by examining the 

transfer of organic acids, the retention of ammonium ion and the long-term stability of the 

system.  

 

2.5.2a Operating modes: the hare or the tortoise? 

ED could operate either to transport organic acids slowly and steadily (low-constant mode) or 

rapidly for short periods (high-intermittent mode).  The latter strategy was examined initially 

as it would facilitate regular cleaning of the cell and would not require unattended operation. 

Initially, short periods of high current (10 A, 5-15 V) were studied.  With this approach, 

organic acids were successfully transported from E. coli fermentation cultures (Figure 2.5-b). 
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Figure 2.5-a  An electrodialysis (ED) cell using a ‘BAC’ membrane configuration.   
BP, bi-polar membrane; ASM, anion-selective membrane; CSM, cation-selective membrane; C, cathode chamber; M, main chamber; MA, 
permeate chamber; A, anode chamber; -, cathode; +, anode.  In use, an organic acid-producing E. coli culture was circulated through the M 
chamber and the permeate was harvested for use by R. sphaeroides (see Figure 2.6-a).  As described in sections 2.5.2f and chapter 2.6, 
additional features of the ED cell include electrolysis and water-transport; O2 is evolved at the anode and H2 at the cathode to be used as a 
tertiary H2 stream, while water is transferred with organic acids from the main chamber to the permeate chamber, balancing the fluid 
volume input into the E. coli vessel.  
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Figure 2.5-b  Mass balances for organic acid transport from fermenting Escherichia coli 
cultures using the ‘high-intermittent’ approach.   
A current of 10 A was applied over a membrane area of 200 cm2 (50 mA/cm2) for 1 h periods 
separated by intervals of ca. 48 h.  The M chamber contained a long-term glucose-fed E. coli 
HD701 culture (A) or the effluent from a batch fermentation fed with simulated fruit waste, as 
described in [149] (B), and was maintained constantly at 30 °C and pH 5.50 by the automatic 
addition of 2M H2SO4.  The MA chamber contained initially 1L of basal salts (0.366 g 
K2HPO4, 0.433 g KH2PO4, 0.05 g MgSO4.7H20, 0.025 h CaCl2.2H2O per litre) and the pH 
was not controlled.  The apparently positive mass balance is due to the presence of cells as 
described in section 2.5.2e. 
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However several limitations of the rapid-intermittent mode were identified.  Firstly, Figure 

2.5-b (part A) shows a progressive decrease in the rate of organic acid transport (flux), which 

cannot be attributed to the exhaustion of organic acids from the fermentation culture (M), 

which increased over the course of the experiment.  The decline in activity may be attributed 

to the negative effects of excessive current density on the activity of the ASM (section 

2.5.2b).  Secondly, H2 production (by E. coli) ceased when the current was applied and 

resumed ca. 2 h after it was removed (Figure 2.5-c).   
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Figure 2.5-c  Inhibition of fermentative H2 production by electrodialysis.   
A high current (10 A) was applied for 1 hour from T=0.  The E. coli fermenter was assembled 
as described in chapter 2.2 (phase 4). 
 

H2 production recovered to initial rates after ca. 24 h, suggesting that the use of intermittent 

periods of high-current electrodialysis would be restrictive.  During ED OH- was generated 

rapidly by the BP membrane (see Figure 2.5-a), resulting in the consumption of large 

quantities of acid titrant and the creation of local extremes of pH, to which the cessation of H2 

production may be attributed.  The effect on cell viability was not tested, however, the loss of 

viability of acidophilic bacteria subjected to direct current was reported previously [76].  

Thirdly, heat was generated while current was applied and cooling was required to maintain 

cultures at 30 °C and to prevent heating beyond 50 °C, which would be damaging to the 

membranes (D. Stratton-Campbell, C-Tech Innovation Ltd, pers. comm.).   

 

These limitations were overcome by operating continuous electrodialysis with low current.  

An operating current density of 2 mA/cm2 was selected based on the limiting current density 
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(LCD) (see 2.5.2.1b), the effectiveness of NH4
+ retention (see 2.5.2.1c) and the capacity for 

organic acid extraction (see 2.5.2.5). 

 

2.5.2b Operating modes: liming current density (LCD) 

Limiting current density (LCD) is defined as the maximum current density that can be applied 

without causing negative effects [129].  Exceeding LCD can cause decreased current 

efficiency, increased rates of side-reactions (e.g. water dissociation), membrane fouling and 

damage.  LCD was determined by the method shown in Figure 2.5-d.  
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Figure 2.5-d  The determination of limiting current density (LCD).   
Power was supplied and measured using a power supply (Thurlby Thandar Instruments, 32V-
2A).  As described previously [47] current was increased gradually and voltage was 
measured.  Resistance (V/I) was plotted over the reciprocal current (1/I) to highlight the point 
of departure from a linear (Ohmic) relationship (arrow).  In this example, three repeats are 
shown and the point of divergence from a linear relationship corresponds to 1/I=1.67; I=0.6 A 
for a membrane area of 200 cm2.  Hence the LCD was 3 mA/cm2. 
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In a sustained E. coli fermentation (‘phase 4’ see chapter 2.2) the LCD was measured 

repeatedly over a period of 10 days, revealing a decreasing trend in LCD (Figure 2.5-e).   

2

4

6

0 1 2 3 4 5 6 7 8 9 1

Time (days)

LC
D

 (m
A

/c
m

2 )

0

 

Figure 2.5-e  Variation in limiting current density in a sustained Escherichia coli 
fermentation. 
The fermentation was assembled as described in chapter 2.2 (phase 4).  The current density 
was 2 mA/cm2 except during measurements of LCD. 
 

The LCD decreased initially and, after 6 days, stabilised at ca. 3.5 mA/cm2.  Operating close 

to LCD or higher would reduce the longevity of the membrane, therefore a maximum current 

density of 2.8 mA/cm2 (80 % of LCD) was employed in subsequent work.  The initial 

decrease in LCD equates to a decreasing capacity of the ED cell for efficient activity, which 

may be attributed to progressive fouling of the cell or membranes.  The development of de-

fouling techniques or anti-fouling methods was beyond the remit of this work, and all de-

fouling was performed off-line by dismantling the ED cell.  On-line de-fouling could be 

performed intermittently by flushing the ED cell at a high fluid flow rate, which could be co-

ordinated with an interruption to the applied voltage, which drives electronegative cells 

towards the anode.  In the absence of bi-polar membranes (which would be destroyed) the 

electric polarity could be reversed to remove cells actively from fouled membranes.  

Alternatively, anti-fouling methodology could be adopted such as the modification of culture 

medium to render cells electroneutral (e.g. by the addition of metal cations) or by the addition 

of surfactants to the bacterial culture to inhibit biofilm formation. 
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2.5.2c Retention of ammonium ion 

Anion selective membranes (ASM) are not usually 100 % selective for anions and some 

cation leakage can occur (W. Skibar, C-Tech Innovation, pers. comm.).  The NH4
+-

permeability of the ASM used in this study (Neosepta AHA, described in section 2.5.1) was 

tested by placing varying concentrations of NH4
+ in chamber M and measuring the transfer 

into chamber MA after 15 min.  A linear relationship was found between the concentration of 

NH4
+ in the M chamber and the rate of transfer into the MA chamber under a current density 

of 2 mA/cm2 (Figure 2.5-f).   
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Figure 2.5-f  The effect of NH4

+ concentration in the M chamber on the transfer of NH4
+. 

A current density of 2 mA/cm2 was applied constantly across a membrane area of 200 cm2.  
M and MA solutions contained (per l) 0.366 g K2HPO4, 0.433 g KH2PO4, 0.05 g 
MgSO4.7H2O, 0.025 g CaCl2.2H2O supplemented with (NH4)2SO4 in the M chamber to the 
concentrations stated. 
 

The observed relationship suggests that the NH4
+ concentration of 1.5 mM used in dual 

system experiments (chapter 2.6) resulted in a flux of ca. 2.87 μmol NH4
+/h (0.014 

μmol/h/cm2; 200 cm2).  The MA compartment was diluted with NH4
+-free medium at a rate of 

1 L/day, hence the concentration of NH4
+ in the feed to R. sphaeroides would be estimated at 

68.9 μM, which would be permissive to H2 production by R. sphaeroides in a background of 

40 mM acetate, as shown in chapter 2.1. 
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Figure 2.5-g shows a reproducible relationship between the applied current density and the 

transfer of NH4
+.  The transfer of NH4

+ would decrease by half, relative to no current, at a 

current density of 1.205 mA/cm2.  The observation of a dependence of NH4
+ transport on 

applied current suggests the possibility to control NH4
+ transport, providing a metered N-

supply to R. sphaeroides.  This could replace the need for additional N-source, required in 

chemostat culture to support de novo biomass synthesis and prevent washout, as the careful 

supply of ammonium was shown previously to promote H2 production [125].  In current work 

nitrogen (0.0885 g/l) was supplied by yeast extract (1 g/l) in ‘basal medium’ (appendix 

4.1.2a).  The replacement of yeast extract by the ED-controlled supply of NH4
+ is a matter for 

future investigation. 
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Figure 2.5-g  Dependence of NH4

+ transfer on current. 
The NH4

+ concentration in the M chamber was 0.02 M.  Data were collected from two 
independent experiments.  Points represent, means ± standard errors of at least 3 results.  
Other details as Figure 2.5-f. 
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2.5.2d The effect of pH on organic acid transport 

Electrodialysis typically generated an acidic (~pH 1) solution of sodium salts in the MA 

chamber.  The pH of the transported organic acids solution would preferably be neutral so that 

the supply of substrate to the R. sphaeroides culture would not cause pH stress.  The effects of 

maintaining neutral pH in the MA chamber on organic acid transport were investigated using 

an autotitrator.  The transport of organic acids was measured while maintaining the pH in the 

MA chamber (pHMA) at 2 or 7.5, while the pH in the M chamber (pHM) was constantly 5.5.   

 

Table 2.5-1  Properties of organic acids 
pKa

 α Organic acid No. C Valence Anion MW 
Formate 1 3.75 1 45 
Acetate 2 4.76 1 59 
Butyrate 4 4.81 1 87 
Lactate 3 3.86 1 89 

Succinate 4 4.19, 5.57 2 117 
α pKa values were reproduced from [186]. 
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Figure 2.5-h  Transport rates of organic acids related to anionic mass and pH in the MA 
chamber (pHMA). 
The M chamber initially contained 5 L of simulated fermentation products containing 20 mM 
each of sodium lactate, sodium acetate, formic acid, sodium butyrate, succinic acid and 
sodium sulphate maintained at 30 °C and pH 5.50 by automatic titration with 2 M H2SO4.  
The MA chamber contained initially 1 L of basal salts (0.366 g K2HPO4, 0.433 g KH2PO4, 
0.05 g MgSO4.7H20, 0.025 h CaCl2.2H2O per litre) maintained either at pH 2.0 or pH 7.5 by 
automatic titration with 5 M NaOH.  A current density of 400 mA was applied over a 
membrane area of 200 cm2.  
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For monovalent organic acids (formate, acetate, butyrate and lactate), the transport rates were 

not significantly affected by pHMA but were inversely related to their differing anionic 

molecular weights (Table 2.5-1), consistent with the theory that smaller molecules are more 

mobile in solution and more readily transported by the ASM (Figure 2.5-h).  Conversely, the 

behaviour of succinate (a divalent acid) did not fit this pattern as it was transported more than 

twice as rapidly under neutral pHMA relative to acidic pHMA.  These observations can be 

explained in terms of the ionisation of organic acids with differing pKa values and valence 

numbers (Table 2.5-1).  As the pHM was constant, the strong effect of pHMA on succinate 

transport was unexpected.  At pH 5.5 (in the M chamber), its first acid group (pKa 4.19) 

would be almost completely dissociated, while the second acid group (pKa 5.57) would be 

close to 50 % dissociated.  It is speculated that incomplete mixing, proximal to the anion-

selective membrane, would result in a localised divergence of pHM from 5.5 and towards 

pHMA.  Therefore, under neutral pHMA, the proportion of dissociated succinate would be 

significantly increased at the membrane surface on the M-side, resulting in a higher 

charge/mass ratio and a higher transport rate.  The same effect may not be observed for 

monovalent organic acids due to their relatively low pKa values and resultant complete 

dissociation under both conditions.  

 

A neutral pHMA was, therefore, beneficial to the R. sphaeroides culture and marginally 

beneficial in terms of succinate transport and was used in subsequent work. 
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2.5.2e Mass balances for organic acid transport 

Mass balances were attempted for electrodialysis experiments transporting organic acids from 

synthetic solutions and fermentation broths.  Figure 2.5-i shows a successful mass balance for 

the transfer of organic acids from a cell-free solution containing 20 mM each of lactate, 

acetate, formate, butyrate, succinate and sulphate.   
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Figure 2.5-i  Mass balance for organic acid transport from a cell-free solution using the 
‘low-constant’ approach. 
Conditions were as Figure 2.5-h (using a pHMA of 7.5).  The ‘low-constant’ approach is 
described in section 2.5.2a.  In this experiment, the initial concentration of organic acids in 
chamber M was ca. 10-fold greater than the transport capacity in order to minimise the 
change in concentration in the M chamber.   
 

Mass balances were also performed using E. coli cultures (Figure 2.5-b).  Organic acids were 

transported from glucose-fed fermentations (Figure 2.5-b, part A) and also from fermented 

fruit waste obtained from a batch fermentation performed by Dr D. W. Penfold [149] (Figure 

2.5-b, part B).  For these samples, the mass balances appeared positive.  This was attributed to 

the presence of cells, which concentrate organic acids internally (see section 2.2.4a) and may 

release them as the apparent (external) concentration decreases. 
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2.5.2f The capacity for organic acid transfer 

Rates of organic acid transfer were measured in order to assess the ability of organic acid 

transfer to balance production by E. coli fermentation.  The transport of a mixture of organic 

acids and Na2SO4 (all 20 mM) was studied (Figures 2.5-h and 2.5-i).  Current efficiency (CE) 

was calculated according to equation 1 [117]:- 

i
NFCE 100(%) =                   (equation 1) 

CE current efficiency (%) 
N  charge flux as organic acid in mol/s/m2 
F Faraday constant, 96485.38 
i  current density in A/m2 
 

In the example (Figure 2.5-i) the total charge flux as organic acid was 0.0893 mmol/min (or 

7.44 x10-5 mol/s/m2) and the current density was 2 mA/cm2 (or 20 A/m2), therefore the current 

efficiency was 35.91 %.  Current efficiencies in the range 78-99 % were achieved in 

extractive fermentations [117,205,220] and the relatively low current efficiency in this study 

was attributed to competitive ion transfer; i.e. the transport of SO4
2- (present at 20 mM), 

which was not measured.  This suggests that the capacity for organic acid transfer by a 

membrane area of 200 cm2 was sufficient to balance production by an E. coli fermentation 

processing 60 mmol glucose/day.  Production was estimated to be ca. 60 mmol organic 

acid/day (chapter 2.2-phase 3).  An equal rate of transport would be predicted under a current 

density of 2 mA/cm2 and a current efficiency of 16.75 % (equation 1).  This current efficiency 

was considered feasible given that it was half of that obtained in the simulation.  In sustained 

E. coli fermentations organic acid transfer balanced production (chapter 2.2-phase 4, chapter 

2.6). 

 

2.5.2g Energetic analysis of a dual system using electrodialysis 

Electrodialysis requires an input of electrical energy, which detracts from the net energy 

output of the dual system.  Whether the addition of a photofermentation to the system results 

in a net energy profit depends upon the current efficiency, and upon the quantity of H2 

produced in the photobioreactor from the transported organic acids.  The “break-even” current 

efficiency (BCE) denotes the current efficiency at which the energy output resulting from ED 

balances the electrical energy input to ED and the BCE can be calculated according to 

equation 2. 
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SEY
CFVBCE
Htheo 2

10000(%) =                   (equation 2) 

BCE break even current efficiency (%) 
C valence of organic acid 
F Faraday constant, 96485 
Ytheo  theoretical yield by photofermentation (mol H2/mol substrate) 
EH2 combustion enthalpy of H2 (285900 J/mol) 
S  substrate conversion efficiency by photofermentation (%) 
 

For example, the BCE for butyrate with a substrate conversion of 75 % would be 18.00 %.  In 

practice the BCE was significantly decreased due to the additional energy value of H2 

produced by electrolysis, as a side-reaction of electrolysis (Table 2.5-2).  This tertiary source 

of H2 would contribute to the H2 output of the system and to the production of electrical 

energy by a fuel cell.  In this work the energy value of electrolytic H2 was sufficient to offset 

the electrical energy input by 28 % (Table 2.5-2), while the electrolytically generated O2 

could generate revenue or enrich the air supply to a PEM-FC, further augmenting electrical 

energy generation. 

 

Table 2.5-2  Potentially offset electrical input through electrolytically generated H2 
Energy output   

1.56 x10-6 rate of electrolytic H2 production mol H2/s 
combustion enthalpy of H2 285900 J/mol 
Energy value of H2 0.446 J/s (W) 
Energy input   
Current 0.4 A 
Voltage 4 V 
power  1.6 W (J/s) 
output / input 27.9 % 

 

When the offset electrical input is incorporated, BCE is calculated according to equation 3. 

 

SiAEY
ERViACF

BCE
Htheo

HH

2

22
)(10000

(%)
−

=                   (equation 3) 

RH2 Rate of electrolytic H2 production (mol H2/s) 
i current density (A/m2) 
A membrane area (m2) 
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For example, in this work RH2 was 135 ml/h (1.56 x10-6 mol/s), i was 20 A/m2, A was 0.02 

m2 and V was typically 4 V.  These values were used to generate BEC values for various 

organic acids (Table 2.5-3).   

 

Table 2.5-3  ‘Break-even’ current efficiency (BCE) for organic acids 
Ytheo α BCE (%)β Ytheo/C Organic acid Valence (C) 

Butyrate 1 10 10 12.99 
Propionate 1 7 7 18.55 

Lactate 1 6 6 21.64 
Pyruvate 1 5 5 25.97 
Acetate 1 4 4 32.47 

Succinate 2 7 3.5 37.10 
Fumarate 2 6 3 43.29 
Malate 2 6 3 43.29 

α Ytheo values were reproduced from [170].   
β Values (RH2 = 1.56 x10-6 mol/s, V = 4 V, S = 75 %, i = 20 A/m2, A = 0.02 m2) were used to 
calculate BEC according to equation 3. 
 

BCE decreased (i.e. becomes more energetically attractive) as the yield per valence (Ytheo/C) 

increases.  As a result organic acids such as succinate and malate, normally favoured 

substrates for H2 production by PNS bacteria, are less likely to result in a net energy profit, 

whereas butyrate would be preferred, which is a suitable substrate for R. sphaeroides 

(chapters 2.3 and 2.6).  As butyrate has the lowest BEC among the organic acids examined 

and butyrate was the primary product of E. coli fermentation (chapter 2.6), a dual system 

combining this fermentation-type and photofermentation (e.g. by R. sphaeroides) would be 

expected to generate a net energy profit, without accounting for operating costs.  A full 

economic assessment would be premature as the configuration of an industrial-scale dual 

bioreactor system is not yet finalised, hence capital and operational costs cannot be estimated.  

Other relevant unknowns include the cost and durability of electrodialysis membranes, ‘gate 

fees’ applied to feedstocks (acquired as wastes, undercutting landfill charges and tax), product 

values and distribution costs. 
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2.5.3 Conclusions 

• ED was more effective in this application when operated continuously using a low 

current rather than intermittently, for short periods using high current.   

• A current density of 2 mA/cm2 was determined to be suitable, being less than 80 % of the 

system LCD and being sufficient to transport the anticipated organic acid flux, while 

opposing excessive diffusion of NH4
+. 

• Organic acids were transported at different rates according to differences in mass, charge, 

concentration and ionisation.  The maintenance of neutral pH in the MA chamber was 

moderately beneficial to organic acid transport. 

• The electrical energy cost of ED was offset by the production of H2 from the transported 

organic acids (by R. sphaeroides) and by the electrolytic production of H2 (abiotic).  For 

the transport of butyrate, a current efficiency of 13 % is necessary to balance the 

electrical energy cost. 
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2.6 Linking dark and light H2 production by electrodialysis 
2.6.0 Summary and introduction 
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Having studied the application of electrodialysis (ED) to E. coli fermentation (chapter 2.5) the 

technique was used to construct a dual system combining fermentation by E. coli and 

photofermentation by R. sphaeroides.  Help and advice were provided by M. Wright (EKB 

Technology) and W. Skibar and D. Stratton-Campbell (C-Tech Innovation Ltd.).  The primary 

conclusions were:- 

• The dual system with ED achieved sustainable and continuous H2 production 

monitored over 16 days from an ammonium-rich substrate.  This was attributed to the 

transfer of organic acids to the R. sphaeroides culture, to the relief of organic acid 

toxicity on E. coli and to the exclusion of NH4
+ influx into the R. sphaeroides culture, 

such that nitrogenase activity was not inhibited. 

• In practice the dual system achieved 2.4 mol H2/mol glucose (20 % conversion of 

glucose to H2), although a practical maximum yield of 10 mol H2/mol glucose was 

predicted.  The important sources of inefficiency were un-optimised operation of the 

photobioreactor and the retention of non-ionic fermentation products (i.e. ethanol).  

Future work will aim to overcome these bottlenecks and achieve significantly higher 

yields. 

 

Several reports document dual systems combining various fermenting microorganisms and 

PNS bacteria, resulting in overall yields of ca. 8 mol H2/mol hexose (chapter 1.2)[160].  
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Initial attempts to operate a dual system combining E. coli and R. sphaeroides (see chapter 

2.4)[158] failed because the organic acid liquor generated by E. coli fermentation contained 

significant NH4
+, preventing H2 production when the liquor was supplied to R. sphaeroides.  

Electrodialysis (ED) techniques offer a solution to this problem, having the capacity to 

separate the desirable organic acids from the repressive NH4
+, while allowing controlled 

quantities of NH4
+ to pass through the anion-selective membrane (ASM) (chapter 2.5).   

 

2.6.1 Materials & Methods 

2.6.1a Dual system set-up 

For dual system experiments, E. coli HD701 fermentations were prepared as ‘phase 4’, 

chapter 2.2.2c.  The initial volume was 3 L and the initial concentrations of glucose and NH4
+ 

were 20 mM and 1.5 mM, respectively.  R. sphaeroides O.U. 001 was cultured as described in 

section 2.3.2 except that pre-culturing was performed using in 15 ml water-jacketed vials 

under ca. 300 µE/m2/s tungsten illumination.  

 

The two bioreactors were operated in parallel as follows.  The inoculation of the PBR took 

place 48 h prior to the inoculation of the fermentation vessel.  The addition of feed solution 

(0.6 M glucose, 7.5 mM (NH4)2SO4) to the fermentation vessel commenced 24 h following 

the initiation of dark fermentation at a rate of 100 ml/day to supply glucose and NH4
+ at rates 

of 60 mmol/day and 1.5 mmol/day, respectively.  This point coincided with the continuous 

addition of basal medium (1 litre/day) to the permeate vessel (Figure 2.6-a) to generate 

organic-acid enriched medium, which was continuously supplied to the photobioreactor (1 

litre/day) from the same time-point (Figure 2.6-b, part B, open triangles).  The addition of 

feed solution to the fermentation vessel caused little increase in culture volume due to the 

electroosmotic movement of water via ED. 

 

Hence, the R. sphaeroides culture was allowed to grow in batch mode for 72 h, before the 

contents of the permeate vessel (containing organic acids transferred from the dark 

fermentation via ED) were continuously added to the PBR (1 l/day) and the PBR was 

continuously drained into the outflow vessel at the same rate, at which point the continuous 

addition of feed solution to the fermentation vessel also commenced.   
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The PBR was operated under three conditions designated Rs1-3 (Table 2.6-1).  In preliminary 

work, the PBR was diluted with basal medium supplied directly (Rs1).  Experiments 

designated Rs2 represent dilution with ‘empty’ medium having passed through the 

electrodialysis system without gaining organic acids.  For Rs2 experiments, inactive 

membranes were fitted to the electrodialysis cell, corresponding with Ec2 experiments 

(above).  In Rs3 experiments active electrodialysis transferred organic acids into the basal 

medium before it was supplied to the PBR.  The R. sphaeroides culture was separated from 

the permeate chamber (MA) so that organic acid transfer could be monitored and current 

efficiency determined.  

 

Table 2.6-1  Experiments 
ID n Description Purpose 
Ec1 3 no electrodialysis (ED) Control – baseline H2 production 
Ec2 4 ED with inactive ASM Control – DC only 
Ec3a 2 ED with active ASM Organic acid transport, dual system 
Rs1 1 diluted with basal medium (no ED) Control – no substrate 

Control – no substrateb Rs2 2 ED with inactive ASM 
Rs3a 2 diluted with ED-permeate Organic acid transport, dual system 

a Ec3/Rs3 and Ec2/Rs2 experiments were performed in concert; b In Rs2 experiments DC was 
applied to the medium supplied to R. sphaeroides without transferring organic acids; n: 
number of replicate experiments; ASM: anion-selective membrane; inactive ASM: 
membranes were inactivated by applying a current of ca. 10-fold above the limiting current 
density of the system (10 A, 5-15 V, ca. 24 h).  
 

Biomass concentration was estimated from measurements of optical density (660 nm) as 

described previously [158].  Culture purity was inspected regularly by serial dilution plating 

on nutrient agar (Oxoid, UK).  Light conversion efficiency (%) was calculated by dividing the 

combustion enthalpy of the produced H2 (285.9 kJ/mol) by the supplied light energy (400-950 

nm) [2] (see appendix 4.1.4). 
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2.6 Results – A dual system using electrodialysis 

Figure 2.6-a  Process scheme (A) and configuration (B) for a dual system with integrated 
electrodialysis. 
1, fermentation vessel (3 L); 2, photobioreactor (3 L); 3, permeate vessel (1 L); 4, 
electrodialysis cell; 5, graduated cylinder for H2 collection; 6, CO2 trap (2 M NaOH with 
universal indicator); 7, void; 8, base titrant (3 M NaOH); 9, acid titrant (2 M H2SO4); 10, 
Feed solution; 11, tubular reflective sheath; 12, pH sensor; 13, cooling tube (stainless steel); 
14, magnetic stirrer and follower; 15a/15c, anode and cathode vessels, respectively, 
containing 0.5 M Na2SO4; 16, anti-backflow device; BP, bi-polar membrane; ASM, anion-
selective membrane; CSM, cation-selective membrane; C, cathode chamber; A, anode 
chamber; M, main chamber delivering organic acid from fermentation vessel (1); MA, 
permeate chamber supplied with basal medium and organic acids before delivery to the PBR 
(2).  See also appendix 4.3, showing a video of the complete functioning system. 
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2.6 Results – A dual system using electrodialysis 

2.6.1b Electrodialysis 

Thin-cell electrodialysis (ED) apparatus of a published design [89] was purchased from C-

Tech Innovation Ltd.  Its four chambers (C, M, MA, and A) were separated by 3 membranes; 

bi-polar (BP: Neosepta BP-1E), anion (ASM: Neosepta AHA), and cation (CSM: Nafion 

324), respectively (Figure 2.6-a).  Membranes were purchased from Eurodia Industrie, 

France.  A fresh ASM was used in each experiment (except Ec2/Rs2).  Chambers A and C 

(flanked by the anode and cathode, respectively) were in contact with solutions of 0.5 M 

Na2SO4, the M chamber was in contact with the E. coli culture and MA was in contact with 

the permeate vessel containing initially 1 l of a cell-free aqueous basal medium, modified 

from the SyA medium of [66] by omitting succinate and acetate (see appendix 4.1.2a).   

 

Silicone rubber gaskets (1 mm thickness) were cut to expose membrane areas of 200 cm2 (128 

mm x 157 mm).  All four chambers were flushed constantly (450 ml/min).  Reynolds number 

(Re) was 173 (see appendix 4.1.6), suggesting laminar flow although the calculation did not 

account for additional turbulence due to plastic mesh occupying each chamber.  A current 

density of 2 mA/cm2 (344 mA, variable voltage) was applied throughout experiments 

Ec2/Rs2 and Ec3/Rs3 (Table 2.6-1).  Current efficiency (or Faraday efficiency) represents the 

fraction of charge passed over a given time, which is attributable to the transfer of target 

species. 

 

Inactive ASM were prepared for Es2/Rs2 experiments by applying a current of ca. 10-fold 

above the limiting current density of the system (10 A, 5-15 V, ca. 24 h) before use.  Using 

synthetic solutions of organic acids (see chapter 2.5), negligible organic acid transport with a 

current efficiency of < 0.3 % was measured, whereas the use of fresh ASM resulted in current 

efficiencies of 36 % in parallel tests.  Current efficiency was monitored during Es2/Rs2 

experiments (see Results).  

 

2.6.2 Results 

2.6.2a H2 production by Escherichia coli 
In all experiments the rate of H2 production was initially high and decreased over the initial 

24 h as glucose was depleted (Figure 2.6-b).  Upon the introduction of a constant glucose 

supply (60 mmol/day fed continuously) the rate of H2 production immediately increased, 
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preceding a period of stable and efficient H2 production (80 % on average).  During this 

period, the measured concentration of glucose in the medium was zero (Figure 2.6-b, part B), 

hence the rate of glucose supply (60 mmol/day) was equal to the rate of glucose uptake by E. 

coli.  Therefore, the rate (ml H2/h) and yield (mol H2/mol glucose), were directly proportional 

in this period, a yield of 100 % (2 mol H2/mol glucose for E. coli) corresponding to a rate of 

120.3 ml H2/h, given a molar volume for H2 at 20 °C of 24.06 l (ideal gas).  This conversion 

was not applicable during the initial 24 h, nor when glucose was detected in the medium.  
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Figure 2.6-b  H2 production (A) glucose concentration (B) and organic acid 
concentration (C & D) in Escherichia coli fermentations. (Legend overleaf) 
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2.6 Results – A dual system using electrodialysis 

Legend to Figure 2.6-b  Ec1 experiments are represented by open symbols with dotted lines, 
Ec2 by shaded symbols with grey lines, and Ec3 by filled symbols with black lines.  The H2 
production rate of 120.3 ml/h corresponded to a yield of 2 mol H2/mol glucose (100 %).  
Arrow indicates the start of glucose addition 24h after t0.  The yield scale (A) applies only 
between the start of glucose addition and the increase in glucose concentration for individual 
experiments (see text).  During the operation of dual systems, the points indicated by arrows 
were equivalent in real time for Figures 2.6-b and 2.6-c.  In D only points beyond day-2 were 
plotted. 
 

The duration of efficient H2 production was dependent upon the application of ED.  In Ec1 

experiments the E. coli culture was in contact with the ED cell but current was not applied.  

H2 production remained at least 50 % efficient for ca. 7 days operation.  Decreased efficiency 

of H2 production coincided with the appearance of excess glucose (Figure 2.6-b, part B), 

marking a decline in culture activity, which is attributed to organic acid toxicity (see section 

2.6.3). 

 

In Ec2 experiments, the ED was operated using inactive membranes to investigate the effect 

of direct current (DC) on E. coli without causing changes in the ionic background.  The 

efficiency of H2 production declined below 50 % ca. 2-3 days sooner than in Ec1 experiments 

(Figure 2.6-b, part A).  A direct inhibitory effect of DC on E. coli is considered likely as DC 

is known to stress (and at high voltages, destroy) bacterial cells through unknown 

mechanisms, perhaps through the generation of free radicals [76] and E. coli was also found 

to be particularly sensitive to low-frequency magnetic fields [50].  However, DC may also 

have been stimulatory to other aspects of E. coli activity, as the ‘spike’ in the rate of H2 

production observed reproducibly at 2-3 days was greatest in Ec2 experiments (see section 

2.6.3d).  A stimulation of microbial activity by DC (in the absence of product removal) was 

shown previously [89]. 

 

With active ED (Ec3), H2 production remained efficient throughout the duration of the 

experiment (20 days, Figure 2.6-b, part A).  The H2 yield stabilised at ca. 80 % while the total 

organic acid concentration stabilised at ca. 80 mM (Figure 2.6-b, part C).  It is proposed that 

the removal of organic acids prevented organic acid toxicity, as Ec3 experiments resulted in 

only low concentrations of organic acids, associated with high rates of H2 production (Figure 

2.6-b, part D).  Conversely in Ec1/2 experiments there was a negative relationship between 

total organic acid concentration and the yield of H2, such that the yield declined to 50 % when 
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the organic acid total reached ca. 120 mM for Ec1 and ca. 90 mM for Ec2.  In other words, H2 

production continued in the absence of DC despite a background concentration of organic 

acids that was inhibitory in the presence of DC.  This indicates that a long-term effect of DC 

was to exacerbate the inhibition of H2 production by organic acids (see section 2.6.3). 

 

2.6.2b H2 production by Rhodobacter sphaeroides 

In all experiments (Rs1-3) the first 72 h entailed culture growth in the photobioreactor on a 

growth medium containing organic acids (see materials & methods).  72 h post-inoculation 

(arrowed in Figure 2.6-c), the active H2-producing cultures were diluted (HRT = 3 d) with 

various media (Table 2.6-1).  When the diluent solution contained no organic acids and yeast 

extract was the only supplement (Rs1/Rs2), the residual organic acids from the growth 

medium washed out and H2 production ceased by day 7 (Figure 2.6-c, part A).  A similar 

result was observed whether the empty medium was supplied directly to the PBR (Rs1) or 

passed first through inactive ED system (Rs2) indicating that ED per se had no deleterious 

effects on R. sphaeroides. 

 

When a synthetic mixture of organic acids was used H2 production continued beyond day 7 

with a stable substrate conversion efficiency of 32 % (chapter 2.3).  A higher value (38 %) 

was achieved when organic acids from the E. coli fermentation were transported to the PBR 

by ED (Rs3).     
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Figure 2.6-c  H2 production (A) and substrate conversion efficiency (B) by Rhodobacter 
sphaeroides. 
Rs1 experiments are represented by open symbols with dotted lines, Rs2 by shaded symbols 
with grey lines, and Rs3 by filled symbols with black lines.  The H2 production rate of 150 
ml/h corresponded to a light conversion efficiency of 7.84 % (see appendix 4.1.4).  Substrate 
conversion efficiency (B) was calculated using the theoretical maxima of 4 mol H2/mol 
acetate, 6 mol H2/mol lactate, 7 mol H2/mol succinate and 10 mol H2/mol butyrate [170], 
based on the consumed substrate.  Arrows indicate the onset of dilution after 3 days growth.  
During the operation of dual systems (Ec2/Rs2 and Ec3/Rs3) the dilution of both reactors 
commenced simultaneously at the times indicated by arrows in Figures 2.6-b and 2.6-c. 
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2.6.2c Electrodialysis 

Rhodobacter sp. were reported to cease H2 production in response to as little as 20 µM NH4
+ 

[90].  Further, with a background of 40 mM acetate 1.5 mM NH4
+ was sufficient to 

completely repress H2 production in R. sphaeroides O.U.001 (chapter 2.3).  In this study, 

prolonged H2 production by R. sphaeroides was observed despite the presence of 15 mM 

NH4
+ in the initial feed solution.  Therefore this approach, using ED, was effective in 

retaining NH4
+ in the dark fermentation while transferring fermentation products to the PBR, 

although a transfer rate of 2.87 µmol NH4
+/h was calculated (chapter 2.5), which was not 

measured in the dual system. 

 

In these experiments, current efficiency followed an increasing trend from 5 % to 28 % 

(Figure 2.6-d), losses being attributable to competitive ion transfer, i.e. the movement of 

inorganic anions such as SO4
2-, which do not contribute to H2 production.  The increase could 

be attributed to the increasing concentration of organic acids in the fermentation medium 

(Figure 2.6-b, part C). 
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Figure 2.6-d  Efficiencies of organic acid transfer in experimental dual systems. 
Ec1/Rs1 experiments did not use ED, Ec2/Rs2 experiments are represented by shaded 
symbols with grey lines, and Ec3/Rs3 by filled symbols with black lines.  Current efficiency 
(or Faraday efficiency) indicates the effectiveness of organic transfer and was calculated as 
the charge of organic acids transported divided by the charge passed over a given period.  The 
mass transfer of organic acids was calculated from measurements of organic acid 
concentrations in the permeate chamber (MA) and the dilution rate (1 L/day). 
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In the PBR, the efficiencies of substrate conversion and utilisation were 38 % and 56-94 %, 

respectively (Figure 2.6-e).  Consequently, the electrical energy input to ED was slightly 

greater than the energy value of H2 resulting from it; i.e. the sum of H2 from the 

photobioreactor and H2 produced electrolytically (see section 2.5.2g).  It was calculated that 

given 75 % efficient substrate conversion and complete substrate utilisation in the PBR, the 

threshold current efficiency required to generate sufficient H2 to balance the energetic cost of 

ED would be 13 %, which is lower than the average current efficiency achieved in Ec3/Rs3 

experiments (Figure 2.6-d). 

 

 
Figure 2.6-e  H2 production by a dual system with integrated electrodialysis. 
All values are expressed as mol product/mol glucose, equivalent to mol product/400h.  The 
dotted arrow illustrates the possibility to recycle unused organic acids. 
 

Current efficiency could be improved further by the use of a cationic buffer in the 

fermentation medium [89], however buffers (e.g. phosphate) were excluded in this study as 

they would contribute to the polluting potential of waste fermentation medium and cationic 

buffers may represent an economic burden upon scale up.  Water transport from the 

fermentation chamber (M) to the permeate chamber (MA) (and electrolysis) occurred at an 

average rate similar to that of substrate addition, obviating the need for fill-and-draw of the 

fermentation vessel and disposal of the resultant effluent.  An additional benefit of ED was 

pH control.  It was shown previously that bi-polar ED can double-function as a pH-stat due to 
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the generation of OH- ion on the anode side of the bi-polar membrane [89,102,137].  In this 

study the demand for NaOH titrant to the fermentation vessel was completely removed by this 

activity of bipolar ED, and small volumes of H2SO4 titrant were required. 

 

2.6.3 Discussion 

2.6.3a Productivity of the dual system 

The application of electrodialysis was successful in the production of H2 by E. coli and R. 

sphaeroides from an initial feed containing 15 mM NH4
+, which if fed into a conventional 

system (without ED) would be inhibitory to nitrogenase-mediated H2 production, which shut 

down in a background of 1 mM NH4
+ (chapter 2.3).  The total H2 production of the system 

was 261 ml H2/h: 96 ml/h from dark fermentation, 30 ml/h from photofermentation and 135 

ml/h from electrolysis of water (a side-reaction of ED). 

 

By combining the steady-state H2 yields from both stages with the loading rate of glucose (60 

mmol/day) an overall yield of 2.4 mol H2/mol glucose was determined (Figure 2.6-e), which 

is higher than would be possible using E. coli alone, but comparable to reported yields from 

some single-stage dark fermentations (chapter 1.2) [36,62].  Therefore the dual system 

succeeded in increasing H2 production but significant potential for improvement remains as 

several reports document discontinuously operated dual systems producing ca. 8 mol H2/mol 

glucose [6,71,80,126,206,211] (chapter 1.2).  In contrast, the dual system described here 

tolerated NH4
+ in the initial feed and achieved stable and continuous operation, with the 

additional ED-related benefits of relief of organic acid toxicity, cell retention, water transport, 

and inherent pH control. 

 

The productivity of the dual system can be dissected as follows.  The dark fermentation was 

ca. 80 % efficient, whereas significant H2-production potential was lost in the PBR resulting 

from incomplete substrate utilisation and inefficient substrate conversion to H2.  At steady-

state (post-day 7) the average substrate conversion efficiency was 38 % in Rs3 experiments 

(Figure 2.6-c, part B), while on average, 94 % of succinate, 85 % of acetate and 56 % of 

butyrate were utilised (Figure 2.6-e).  In these experiments the outflow (containing 26 % of 

the supplied H2 potential) was discarded, however 100 % utilisation could be achieved in a 

scaled-up system in which the PBR outflow (containing valuable organic acids and 
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background medium components) would be returned to the permeate chamber, following cell-

separation.  Substrate conversion efficiencies of up to 75 % were reported for continuous 

cultures of APB using various substrates [25,45,162] (chapter 2.3) and the relatively low 

values observed here were attributed to sub-optimal culture conditions (such as substrate 

loading rate, hydraulic retention time, culture density and illumination).  It is also possible 

that the Rs3 cultures were affected by sodium toxicity, although Na+ concentrations were not 

monitored.  Na-toxicity was identified in a mixed culture, where the use of Ca(OH)2 base 

titrant (rather than NaOH) was beneficial to dark fermentative H2 production [97].  The ED 

approach utilised Na2SO4 in the C chamber, actively transporting cations (e.g. Na+) across the 

CSM into the MA chamber.  Alternatively, calcium and magnesium salts could be used in ED 

[30].   

 

Given a substrate conversion efficiency of 75 % and complete substrate utilisation the overall 

yield would increase to 4.42 mol H2/mol glucose (37 % of the theoretical maximum), 

therefore, other factors would also be important in realising greater yields.  The total 

concentration of organic acids in the E. coli medium stabilised (Figure 2.6-b, part C), 

indicating that ED effectively removed organic acids in balance with production.  Under DC, 

organic acids migrated across the ASM as a result of their negative charge.  Uncharged E. coli 

products (i.e. ethanol) were not transported reducing the potential for H2 production by R. 

sphaeroides.  E. coli produced 0.6 mol ethanol/mol glucose, which represents a potential 3.6 

mol H2/mol glucose [54].  A potential H2 yield of 10.05 mol H2/mol glucose can be predicted 

based on the observed dark fermentation and predicted complete transfer of organic 

fermentation products, and complete substrate utilisation (at 75 % conversion efficiency) in 

the PBR.   

 

The transport of ethanol into the PBR was outside the scope of this study although it should 

be noted that alcohols are suitable substrates for H2 production by PNS bacteria [54,71 and 

chapter 2.3].  The recovery of ethanol from fermentation broths by membrane distillation and 

molecular sieve techniques represent well-developed technology [22,167,219], hence ethanol 

may be transferred in a dual system by conventional methods or using an alternative process 

configuration as described in (see Figure 3-a). 
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2.6.3b Potential application of the system with alternative fermentations 

E. coli produced ca. 0.6 mol ethanol/mol glucose, which is suitable product for conversion to 

H2 by PNS bacteria [54,158] but was not separated by anion-selective ED.  Alternative 

fermentations may be advantageous.  For example, solventogenesis can be suppressed in 

Clostridium acetobutylicum fermentations producing butyrate and acetate [27,134].  However, 

the sensitivity of clostridial cultures to DC is unknown and, furthermore, clostridial 

fermentations are critically sensitive to H2 back-pressure, producing similar H2 yields 

compared to E. coli under practical conditions (see chapter 1.2) [40].  Lactic acid fermentation 

could be used, although the absence of dark H2 production would place higher demands on 

efficient substrate transfer and photofermentation.  Furthermore, butyrate fermentations (e.g. 

clostridia or E. coli) would be preferred over lactic acid fermentations as the theoretical H2 

yield from butyrate is higher than from lactate, resulting in a relatively low energetic cost of 

substrate transport (see chapter 2.5). 

 

2.6.3c The effect of electrodialysis on Escherichia coli 
In Ec3 experiments the total concentration of organic acids stabilised at ca. 80 mM, whereas 

H2 production was 50 % inhibited at ca. 120 mM and 90 mM in experiments Ec1 and Ec2, 

respectively (Figure 2.6-b, part D).  Therefore, an effect of applying ED to E. coli 

fermentation was the relief of organic acid toxicity, with a resultant increase in H2 production.  

The relief of organic acid toxicity using ED was reported previously in E. coli fermentation 

[23] and in lactic acid fermentation [74,102].  The difference of only 10-40 mM in the 

stabilised concentrations of organic acids is significant, as it is known that a slight difference 

in the extracellular concentration of an organic acid will reflect a large difference in the cell 

interior, where toxicity takes effect.  For example E. coli accumulated acetate to a cytoplasmic 

concentration of 240 mM, in an extracellular concentration of 8 mM and pH of 6.0 [165].  

Intracellular accumulation is a result of the pH gradient across the cell membrane as the 

protonated fraction of the acid pool is membrane-permeable, hence the production of organic 

acids with lower pKa values present a lower protonated proportion and cause less organic acid 

toxicity.  For example E. coli up-regulates lactate production in response to acidic pH 

[32,183].   
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The effects of ED on cellular activity were evident not only from the rate of H2 production but 

also from the rate of glucose uptake.  When effective organic acid transfer was absent (Ec1 

and Ec2) H2 production declined and glucose accumulated within 9 days of operation.  

Conversely, when active organic acid transfer was applied (Ec3) H2 production stabilised at 

approximately 80 % efficiency and the residual glucose was insignificant (Figure 2.6-b, part 

B). 

 

2.6.3d The effect of direct current on Escherichia coli 
Applying DC to E. coli without product removal (Ec2) shortened the period of H2 production, 

but these results also provide evidence of a stimulatory effect in the short-term.  Figure 2.6-c 

(part A) shows a reproducible spike in the rate of H2 production at days 2-3.  The production 

of H2 at >100 % efficiency is attributed to the short-term uptake of lactate formed during the 

initial batch-mode fermentation (days 0-1) (see chapter 2.2).  In Ec1 experiments the peak H2 

production rate observed was 150 ml/h, whereas rates of up to 320 ml/h were recorded for 

Ec2 experiments in this brief period.  A further indication of the stimulatory effect of DC is 

the observation that DC resulted in prolonged periods of maximal glucose uptake (when the 

glucose concentration was negligible; Figure 2.6-b, part B) in 3 out of 4 Ec2 experiments, 

relative to ED-free experiments (Ec1).  A similar phenomenon was described previously [89], 

but remains unexplained.  Direct electron transfer between cells and the electrodes of the ED 

cell can be excluded as cells were separated from the anode and cathode by membranes. 
 

2.6.3e Further development and application 

This work represents ‘proof of concept’ for a novel system using ED to enable continuous and 

sustainable operation of two mutually dependent bioreactors.  As individual topics, biological 

H2 production and ED are well-studied, whereas the application of ED to H2 production is a 

novel aspect of this study.  The integration of ED resulted in two important developments; the 

possibility to utilise low C/N feedstocks and the possibility for sustained dark fermentation 

free from organic acid toxicity.  There is significant potential to develop and apply this 

approach for energy generation in the form of H2 production. 

 

Although glucose/NH4
+ solution was used as a model feed in this study (with yeast extract 

supplement to the PBR), ED can be applied to fermentations using complex substrates e.g. 
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food wastes [201].  In this study, the current applied for ED was constant and an important 

aspect for further development would be the modulation of ED according to the requirements 

of the PBR and in relation to organic acid production.  Using the current approach, this would 

entail rapid, on-line analysis of transferred species and minimal fluid retention time within the 

transfer system [159].  For the purpose of experimentation an artificial symbiosis was 

established between E. coli HD701 and R. sphaeroides but this approach could be applied 

using a wide range of mesophilic microbial symbioses and H2-upregulated strains.  In 

particular, the use of other enterobacteria or mesophilic clostridia in the dark fermentation 

could reduce the loss of potential H2 to solventogenesis (in this study, ethanol), although the 

responses of H2-producing fermentative bacteria to DC are little-studied. 

 

Membrane-fouling could present a challenge upon scale up although it did not become 

limiting within 20 days (Ec3), and, conversely, the current efficiency increased with time 

(Figure 2.6-d). 

 

The use of ED resulted in a versatile system able to produce H2 more efficiently than a single-

stage E. coli fermentation, from an ammonium-rich feed.  However, the additional benefits of 

product removal, pH control, a stimulatory effect of DC and the inherent properties of cell 

retention and suspended solids retention suggest that the ED approach could be beneficial 

even where high C/N substrates are available. 
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2.7 Biomass-supported palladium catalysts on Desulfovibrio and 
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Having investigated the potential for H2 production by a dual bioreactor system, a potential 

application for excess biomass from the process was explored.  This chapter describes the 

investigation of Rhodobacter sphaeroides as a matrix for the formation and support of 

catalytically active Pd(0) particles.  Methods of catalyst production, which had been 

developed for Desulfovibrio desulfuricans were applied to R. sphaeroides without 

modification and the resultant biomass-supported catalysts were compared using example 

test-reactions of industrial and environmental significance.   

 

In independent work K Deplanche, IP Mikheenko and NJ Creamer found that E. coli biomass 

was an effective catalyst support.  Thus, excess biomasses from both parts of the dual H2-

producing system could constitute raw materials for the manufacture of valuable catalysts.  To 

complete the conversion of wastes to energy, a PEM-FC was constructed using the novel 

bionanocatalysts to generate electricity from Bio-H2 (chapter 2.8).   

 

Catalytic testing was performed by the author in collaboration with K. Deplanche with 

methodology training from the late Dr V.S. Baxter-Plant.  Mrs L. Tomkins (Centre for 
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Electron Microscopy, University of Birmingham) assisted with electron microscopy.  Catalyst 

preparation, data analysis and manuscript preparation were carried out independently by the 

author.   

 

2.7.1 Article published in the Journal of Biotechnology and Bioengineering 

Preliminary results were published in the Proceeding of the International Biohydrometallurgy 

Symposium (IBS2005), Cape Town, South Africa (reproduced in appendix 4.2.1). 
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2.8 Fuel cell anode construction to recycle biomass from biohydrogen 

production  
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In the preceding chapter (2.7) R. sphaeroides was found to be a suitable matrix for the 

biocrystallisation of Pd(0), forming a useful catalyst with comparable activity to the well-

established D. desulfuricans material.  The conceptual process (diagram above) involves the 

conversion of H2 to energy using a fuel cell.  This chapter focuses on the use of excess 

biomasses from the dual system, within the same system, to fabricate the anode catalyst of a 

PEM-fuel cell for generation of electricity from the two bio-H2 streams and from the ‘electro-

H2’ stream from the electrodialysis cell (see chapter 2.5). 

 

Electricity was generated by proton exchange membrane fuel cells (PEM-FC) with anodes 

constructed using bionanocatalyst.  Bio-crystallised Pd(0), manufactured using outflow 

biomass from a continuous photobioreactor as part of a dual-bioreactor system for H2 

production, was an effective PEM-FC anode catalyst.  The power outputs from PEM-FC 

constructed using Rhodobacter sphaeroides biomass was similar to that reported previously, 

using E. coli HD701.  The maximum power output of “bio-fabricated” PEM-FC was 33 % 

that of a cell with commercial Pd(0) catalyst.  The potential for catalyst production using the 

excess biomass from a dual system is estimated.  Therefore, all elements of the proposed 
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system were proven in concept although optimisation and further research are required in the 

future development of an economically viable process. 

 

Electrode construction and testing were performed by the author under the guidance of Dr P. 

Yong.  Data for comparison were provided by P. Yong and I.P. Mikheenko (Figure 2.8-b). 

 

2.8.1 Introduction to study 

As detailed in chapter 1.3, polymer electrolyte membrane fuel cells (PEM-FC) are widely 

regarded as the most promising technology for the release of energy stored in H2.  PEM-FC 

employ platinum group metal (PGM) catalyst, which is problematic due to the high economic 

cost and ultimately limited global resources of PGM.  Both issues were addressed by using 

bacterial cells to accelerate the reclamation of PGM from waste solutions, and bind the 

forming PGM particles.  Once bound to relatively large bacterial cells, PGM can be 

concentrated easily, resulting in PGM-coated biomass.  While the catalyst/biomass mixture 

has been shown to be effective in several important reactions [112,113], for use in PEM-FC a 

more electrically conductive support material is required.  Therefore, the organic component 

must be removed by incineration [216].  It was originally thought (B. Murrer, Johnson-

Matthey plc., pers. comm.) that Pd(0) would have little potential in a fuel cell but Yong et al. 

[215,216] showed that a PEM-FC constructed using palladized cells of D. desulfuricans 

produced 81 % the power of the Bio-Pt(0) equivalent and that, contrary to expectations, 

activity was maintained over several weeks of intermittent operation.  This prompted the 

examination of the ability of R. sphaeroides to fulfil a similar function. 

 

MEA were constructed previously [216] using bio-recovered PGM as anode catalysts.  In this 

study the outflow biomass from a continuous H2-producing Rhodobacter sphaeroides culture 

was salvaged for the biomineralisation of Pd, and the construction of PEM-FC anodes.  The 

1st stage E. coli biomass was retained within the vessel as a resting cell suspension, with the 

added fluid volume being extracted via the electrodialysis membrane (chapter 2.6).  In 

contrast, the PBR operated as a chemostat, with R. sphaeroides biomass passing to waste. 
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2.8.2 Materials & Methods 

2.8.2a Preparation of Bio-Pd(0) 

Bio-Pd(0) was prepared as described in chapter 2.7 except that R. sphaeroides biomass was 

collected from the outflow of a continuous culture (chapter 2.6) collected over 7 days in 4 

batches.  As an additional modification, biomass (harvested and washed as chapter 2.7) was 

mixed with a model leachate solution containing 150 mg/L Pd(II) (414.69 mg/L Na2PdCl4, 

pH 2.0 with HNO3).  Bio-Pd(0) was washed three times in de-ionised water and twice in 

acetone, dried at room temperature and ground.  The model leachate was based on a recovery 

efficiency of 67 % by a microwave-leaching process reclaiming PGM from solid wastes 

containing 0.1 % PGM w/w (A. Murray, personal communication).   

 

2.8.2b Construction of fuel cell anode 

A described previously [216] the organic component of palladized Rhodobacter sphaeroides 

biomass (Rs-Pd(0)) was removed by incineration.  The furnace temperature was increased up 

to 700 ºC over 4 h and then held for a further 4 h, resulting in a 92.5 % decrease in mass for 

palladized Rs-Pd samples.  As the initial Pd-loading of Rs-Pd(0) was 5 % w/w, the resultant 

material was estimated to be 67 % Pd(0) and 33 % residual material (w/w).  For the 

construction of anodes with an area of 16 cm2 loaded with 1 mg Pd(0)/cm2, 24 mg incinerated 

Rs-Pd was mixed with 76 mg activated carbon powder (BDH, UK) and suspended in a 

mixture of 1 ml H2O and 200 μl Nafion (10 % w/v aqueous suspension, Aldrich).  The 

resultant Nafion density was 12.5 mg/cm2 and the Nafion content of the catalytic layer was 

16.7 % w/w.  The catalyst slurry was transferred onto Teflon-treated carbon paper (Fuel Cell 

Scientific, USA), spread evenly using a fine paintbrush and dried (2 h, room temperature). 
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Figure 2.8-a  Construction of polymer electrolyte membrane fuel cell with bio-fabricated 
Pd anode.   
A, end-plates; B, ‘bio-fabricated’ Pd anode; C, Nafion sheet; D, standard Pt cathode (H-tec); 
E, membrane electrode assembly (MEA); F, Gas inlet; G, electrical terminals. 
 

 

 

2.8.2c Fuel cell testing 

Fabricated anodes were loaded, catalyst side facing the Nafion membrane, into a single-cell 

PEM-FC (no. 1919, H-tec, Germany) containing the manufacturer’s Pt cathode and Nafion 

NRE-212 membrane (Sigma-Aldrich) (Figure 2.8-a).  An electrolyser (no.1936, H-tec, 

Germany) supplied pure H2 and O2 to the anode and cathode of the PEM-FC, respectively, 

under ca. 5 cm water-pressure.  For testing the PEM-FC was connected in a circuit 

incorporating a variable resistor. The current and voltage across the resistor were measured as 

resistance was varied through at least 3 cycles  (0-∞ Ω). 
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2.8.3 Results 

2.8.3a Power generation by fuel cell with ‘bio-fabricated’ anodes 

Four anodes were prepared from different batches of Rs-Pd(0) and their power outputs were 

measured (Figure 2.8-b, part A).  The results are inconsistent, reflecting an artefact of the 

biomass production method employed.  R. sphaeroides biomass was collected discontinuously 

from the outflow of a continuous photobioreactor.  The rate of outflow was 1 L/d and biomass 

was routinely harvested in batches of 2 L.  Therefore, the cells were stored for up to 48 h 

under sub-physiological conditions (aerobic, in darkness, room temperature) before 

harvesting.  Batch 4 was an exception as the harvested culture was collected directly from the 

photobioreactor as the experimental dual system was terminated and was not stored.  This 

methodological discrepancy correlates with the efficacy of the resultant PEM-FC anodes.  

Batches 1-3 resulted in relatively low and inconsistent power outputs, whereas the power 

obtained using batch 4 was comparable to that obtained using E. coli HD701 (Table 2.8-1 and 

Figure 2.8-b, part B). 

 

Table 2.8-1  Maximum power outputs from ‘bio-fabricated’ fuel cells 
Maximum power Max. catalytic efficiency Source of biomass * 

mW % g Pd/kW 
Commercial Pd(0) av. (n=2) 81.49 100 245.44 

E. coli HD701 av. (n=2) 27.08 33.2 738.50 
R. sphaeroides batch 4 19.45 23.9 1028.49 

R. sphaeroides av. (n=4) 6.53 8.0 3062.32 
* Anodes were constructed using bio-Pd(0) (5 % Pd loading, w/w), manufactured using 
commercial Pd catalyst, E. coli HD701 biomass and R. sphaeroides biomass from the outflow 
of a dual H2 producing system.  Data for E. coli and commercial Pd were provided by P. 
Yong and I.P. Mikheenko.  Data represent means of at least 3 measurements.  SEM were less 
than 5 %.  The electrode area was 16 cm2. 
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Figure 2.8-b  Power output profiles of ‘bio-fabricated’ fuel cells. 
Anodes were constructed using incinerated bio-Pd(0), initially 5 % Pd, w/w, manufactured 
using R. sphaeroides biomass from the outflow of a dual H2 producing system (A) and using 
E. coli HD701 Bio-Pd(0) and using commercial Pd catalyst (B).  Data for E. coli and 
commercial Pd were provided by P. Yong and I.P. Mikheenko.  Data represent means ±SEM 
of at least 3 measurements (A). 
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Previous experiments (chapter 2.7) used freshly cultured R. sphaeroides (and D. 

desulfuricans), and these results demonstrate the importance of the freshness of R. 

sphaeroides biomass for palladization.  Therefore, the industrial production of Rs-Pd(0) from 

the output of a dual H2-production system would be time-sensitive unless biomass can be 

stored without loss of activity.  Refrigeration was not effective for the preservation of E. coli 

cell pellets for palladization (K. Deplanche, pers. comm.).  Alternatively, a semi-continuous 

photobioreactor could be operated by ‘fill & draw’, providing batches of fresh culture, which 

would be more suitable for Bio-Pd(0) manufacture. 

 

The maximum power output achieved using Rs-Pd(0) (batch 4) was broadly comparable to 

that achieved using E. coli HD701 (Table 2.8-1 and Figure 2.8-b, part B).  The comparison 

with commercial catalyst-grade Pd powder provides a suitable reference as published values 

would not be applicable due to differences in the method of anode construction (see 

introduction).  When the fuel cell was fitted with the manufacturer’s Pt anode power output 

was 18 % greater than that achieved using anodes home-built using commercial Pt on carbon 

catalyst [216]. 

 

2.8.3b Harvesting biomass from a continuous system 

These results indicated the importance of using fresh biomass in Bio-Pd(0) manufacture, 

which potentially conflicts with the continuous outflow of biomass from the dual system.  In 

order to eliminate the delay between emergence of biomass from the PBR and palladization, 

the outflow was fed directly into a Pd(II) solution.  The outflow biomass concentration was 

reasonably stable (see Discussion), allowing the Pd loading to be roughly designed.  An 

outflow vessel was filled with model leachate solution and then allowed to fill with outflow 

culture to 2 L.  In this way, the biosorption step of Bio-Pd(0) manufacture was able to occur 

without delay. 

 

This approach was unsuccessful due to an uncharacterised interaction between soluble, non-

cellular material and Pd, resulting in the formation of a ‘Pd-X’ colloid.  63.2 % of Pd mass 

was not cell-bound but persisted in the supernatant following centrifugation (5-15 mg 

Pd(0)/L), making the supernatant clear and dark (Figure 2.8-c, part C).  Consequently, the 

Pd(0) loading of biomass fraction was 1.8 % w/w rather than 5 % w/w.  The optimal Pd-
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loading for anode-fabrication is unclear, but due to the requirement for carbonisation, it is 

suggested that the use of higher Pd-loadings (i.e. lower organic fraction) would reduce time 

and energy inputs into incineration. 

 

 
Figure 2.8-c  The effect of medium composition on the precipitation of Pd(0). 
75 ml of test-solution was mixed with 25 ml model leachate, reduced under H2, 20 min and 
allowed to settle under gravity overnight (A-C).  Test solutions were pure H2O (A), fresh R. 
sphaeroides medium (SyA) (B), and the supernatant after cell-separation from the outflow of 
a continuous R. sphaeroides culture (C).  Pd(0) was absent from the first supernatant upon 
harvesting Rs-Pd(0) produced using washed cells (D). 
 
The influence of chemical background on the precipitation of Pd(0) was investigated (Figure 

2.8-c).  Normal (i.e. complete) precipitation of Pd(0) was obtained in a background of pure 

water (Figure 2.8-c, parts A and D) and in fresh R. sphaeroides medium (SyA) (Figure 2.8-c, 

part B).  Conversely, the cell-free supernatant collected from a continuous R. sphaeroides 

culture contained interfering components that prevented the precipitation of Pd(0), forming a 

Pd-X colloid (Figure 2.8-c, part C).  This confirmed that the formation of Pd-X resulted from 

the presence of a soluble substance, absent from fresh medium, suggesting that it may be a 

product of R. sphaeroides.  Pd-X was harvested by centrifugal filtration with 100 kDa MW 

cut-off (Millipore, UK).  Fuel-cell construction using the harvested Pd-X was attempted, 

however the material failed to adhere to the support and investigation is ongoing into the use 

of surfactants to address this problem.  Although the activity was not quantified, the harvested 

Pd-X was distinctly active in the decomposition of hypophosphite (chapter 2.7) and hence this 

may be a valuable material worthy of further study. 
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2.8.4 Discussion 

2.8.4a Bio-fabricated Pd(0) fuel cell anode 

This study compared catalysts for PEM-FC, using a reliable “vary one factor at a time” 

approach.  As water formation at the cathode results in water balance issues [14], this would 

confound the investigation of catalyst quality.  Therefore, a standard cathode (from the 

manufacturer) was used while the anode composition was varied so that the effects could be 

interpreted in terms of catalytic properties, rather than hydrodynamic properties. 

 

The data indicate that Bio-Pd(0) produced using R. sphaeroides or E. coli can be 24-33 % as 

effective as commercial Pd catalyst as a material for PEM-FC anode fabrication.  It would be 

anticipated that the bionanocatalysts could be produced more cheaply than the conventional 

materials due to the possibility of reclaiming PGM and biomass from wastes [33]. 

 

The results of the current work confirm the importance of removing competing ligands from 

biomass (by washing) before the biosorption of [PdCl4]2- ion, which was studied previously 

[38].  For the preparation of cell-bound Pd(0) particles, the freshness and chemical purity of 

the biomass are important factors.  This should be considered during the design of a pilot-

scale dual system as biocatalyst production may be economically important.  For industrial 

operation, the production of H2 and catalyst could be reconciled by preserving the activity of 

the outflow biomass (e.g. by maintaining reaction conditions), by producing bionanocatalyst 

24 h in shifts, or by an automated continuous harvesting and palladization system. 

 

2.8.4b Catalyst productivity estimate 

There is sufficient data for a preliminary estimate relating the scale of a dual bioreactor 

system for H2 production with the potential productivity of bionanocatalyst. 

 

With the current configuration, no excess E. coli biomass was produced by the dark 

fermentation as ED provided inherent cell retention and water transport.  Likewise, a scaled-

up photobioreactor would ideally utilise a cell-separation system to return solvent to the 

permeate chamber and biomass to the photobioreactor (Figure 2.6-a, part A).  Although cell 

retention may initially increase the volumetric activity in both reactors, it is anticipated that 

optimum biomass concentrations exist.  For the dark fermentation, the optimum may be very 
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high - where viscosity limits mixing and diffusion.  However, for the photofermentation, 

culture density may be limited to ca. 2-4 g DW/L due to light limitation (self-shading) (see 

chapter 2.3). 

 

Therefore, a long-term dual bioreactor system would produce excess biomass from both 

cultures.  Their quantities are estimated based on data from the experimental system, which 

processed 60 mmol glucose/day.  The average production rate for E. coli HD701 biomass was 

0.60 g dw/day for a 3 L culture (Figure 2.8-d, part A).  Therefore, with a Pd loading of 5 % 

w/w, the productivity of Ec-Pd(0) would be 0.21 g/day/L culture.  The R. sphaeroides cultures 

eventually reached a stable biomass concentration of ca. 1 g/L, for 3 L culture (Figure 2.8-d, 

part B).  As the rate of dilution was 1 L/day the biomass productivity was ca. 1 g/day and a 

Pd-loading of 5 % w/w would indicate a productivity of 0.35 g/day/L culture. 

 

Therefore the total output can be estimated as 0.28 g catalyst/day/L total culture.  Given a 

PGM-loading of 5 % (w/w), this productivity would reclaim 28 mg PGM/day/L culture from 

0.19 L leachate/day/L culture, assuming 150 mg PGM/L leachate (A. Murray, personal 

communication). 
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Figure 2.8-d  Production of Escherichia coli HD701 (A) and Rhodobacter sphaeroides 
(B) biomasses by a dual-bioreactor system for H2 production. 
Data correspond with Ec3/Rs3 experiments (chapter 2.6), which were performed in duplicate 
(open and filled circles).  Reactor volumes for E. coli and R. sphaeroides reactors were ca. 3 
L.  The arrow indicates the onset of dilution of the R. sphaeroides culture at a rate of 1 L/day.   
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However, these figures are subject to several caveats.  For example, E. coli may grow more 

rapidly on complex medium (e.g. food wastes) containing ready sources of nitrogen (e.g. 

amino acids), whereas these experiments used a ‘poor’ glucose/NH4
+ medium (described in 

chapter 2.2).  Furthermore, the suitability of E. coli biomass for palladization would be 

dependent upon the nature of the feedstock.  A significant quantity of solids would confound 

cell harvesting and may also foul the reactor, possibly necessitating the separation of 

insoluble components from E. coli biomass by coarse filtering post-fermentation, or by pre-

treatment of the feedstock.  Palladization of waste E. coli after H2 production from food 

wastes has not yet been attempted.  The biomass output from the photobioreactor would be 

affected by various factors, such as the HRT, influent composition, light supply and bacterial 

strain, which are likely to differ after further development. 

 

Excess catalyst would be available as a product given a productivity of 0.28 g catalyst/day/L 

total culture (above), which would exceed considerably, the mass of catalyst required in the 

construction of a PEM-FC with sufficient capacity to utilise the produced H2, according to the 

following calculation.  A dual system producing 8 mol H2/mol glucose and processing 60 

mmol glucose/day, would produce 0.48 mol H2/day, with a potential energy value of 137.2 kJ.  

A realistic PEM-FC may operate with an efficiency of 50 % and a H2 utilisation of 95 % 

[100,101].  Therefore, the produced H2 could be converted to 65.18 kJ electrical energy/day, 

equivalent to a constant power of 0.754 W.  Based on the basic methods and preliminary 

results of this study (hand-painting, 1 mg Pd/cm2, 0.98-1.36 mW/cm2, 739-1028 g Pd/kW), a 

large quantity of catalyst would be required.  However, modern electrode construction 

techniques can produce efficiencies in the range 0.1-1 g Pd/kW [204]. Therefore, the 

necessary anode could be constructed using relatively insignificant quantities of catalyst and 

biomass, leaving a catalytically active product for alternative commercial exploitation.  

 

The effectiveness of bio-recovered mixed PGM catalysts as substitutes for pure Pt on the 

anode and cathode of PEM-FC is a subject of ongoing investigation. 
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3 : DISCUSSION 
3.0 Chapter summary and contents 

This project achieved its primary goal – proof of principle for each component of a dual 

system for H2 production: dark fermentation, transfer of produced organic acids, 

photofermentation using the transferred organic acids and the manufacture of bionanocatalyst 

using biomass from the dual-bioreactor system.  In this section, the project outcomes and 

future directions are summarised (Table 3-1), the components of the system are discussed 

individually and the bottlenecks identified.  Finally the environmental implications of the 

applied dual system and challenging aspects for further development are discussed. 
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3 Discussion 

Table 3-1  Summary of outcomes 
Element Outcomes Future directions 

Food wastes in continuous culture. Dark Stable and continuous H2 production 
with 80 % efficiency using E. coli 
HD701 

High density fermentation. fermentation 
Strain development to further increase 
yield and broaden substrate range. Increased H2 yield using 

hydrogenase mutants.  Further investigation to confirm the 
metabolism of butyrate-type 
fermentation in E. coli. 

Optimised pH. 
Improved pre-culture method. 
Characterised butyrate-type 
fermentation in E. coli. 

Prevent production of uncharged 
products (ethanol). 
Optimisation of continuous culture 
conditions to increase substrate 
utilisation and conversion to H2. 

Photo- Definition of nutritional 
requirements for H2 production from 
acetate. 

fermentation 

Construction of chemostat-type 
photobioreactor system. 

Strain development to eliminate H2 
recycling and PHB synthesis. 

Stable and continuous H2 production 
with 1.5 % light conversion to H2, 38 
% substrate conversion to H2 and 64 
% substrate utilisation using R. 
sphaeroides 

Design of an industrial-scale PBR. 

Balancing the capacity of two reactors 
to operate in concert. 

Dual System Exhaustive review of previous 
studies on dual systems.  

Control of NH4
+ supply to PBR in 

response to growth requirements. 
Demonstration of the need for 
selective organic acid transfer to 
enable the use of nitrogen-rich 
substrates. 

Development and optimisation of 
electrodialysis. 

Demonstration of organic acid 
transport with NH4

+ retention by 
electrodialysis.  

Achieve separation of uncharged 
products (ethanol). 
Increase molar conversion towards 
theoretical maximum. Stable and continuous operation of 

dual bioreactor system integrated by 
electrodialysis. 

Mass balance of dual system. 
De-fouling of ED membranes. 

Demonstration of control of NH4
+ 

transport via electrodialysis. 
Confirmed efficacy of R. 
sphaeroides-supported Pd catalyst in 
environmentally and industrially 
valuable reactions. 

Reconcile discontinuous catalyst 
preparation with continuous biomass 
production. 

Biomass-
supported 
catalyst  

Further characterisation of Pd-X 
colloid. Prepared Pd catalysts using R. 

sphaeroides biomass as a product of 
the dual system, recycled in the 
fabrication of PEM-FC anodes. 

Effect of strain development on the 
catalytic properties of resultant 
catalyst. 
Metal recovery from industrial 
leachate using R. sphaeroides. 
Effect of light during metal challenge 

PEM-FC, polymer electrolyte membrane fuel cell; ED, electrodialysis; PBR, photobioreactor. 
Pd-X; uncharacterised Pd suspension (chapter 2.8). 
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3.1 Dark fermentation by Escherichia coli 
3.1.1 Genetic manipulation of Escherichia coli for increased H2 production 

E. coli is capable of producing H2 with a maximum yield of 2 mol H2/mol glucose [32].  As 

described in chapter 2.6, stable and continuous H2 production with a yield of 80 % (1.6 mol 

H2/mol glucose) was achieved in continuous culture using strain HD701 (ΔHycA), which was 

also effectively deficient in lactate formation due to a switch to butyrate-type fermentation 

(see section 2.2.4b).  Previously the genetic suppression of lactate formation resulted in 

improved H2 production  (Δldh phenotype) [119,178,179] as did the suppression of succinate 

formation (Δfrd phenotype).  Yoshida et al. (2006) achieved a H2 yield of 90 % in batch 

cultures using E. coli strain SR15, in which the formation of lactate and succinate were 

suppressed and FHL activity was promoted (ΔHycA, FhlA++, Δldh, Δfrd phenotype).  In this 

study (chapter 2.1) experiments using batch cultures showed that genetic manipulation to 

suppress H2 recycling activity increased the H2 yield from 38 % to 52 %.  Future development 

would ideally combine these improvements in a single ‘super-strain’ (ΔHycA, FhlA++, Δldh, 

Δfrd, ΔHyd-1, ΔHyd-2) potentially resulting in H2 yields approaching 100 %. 

 
3.1.2 Increasing the substrate range of Escherichia coli 
Further strain development may be needed to enable the utilisation of certain substrates, such 

as sucrose.  Penfold et al. (2004) described the transformation of E. coli (various strains) with 

plasmid pUR400 carrying sucrose-utilisation genes [147].  To achieve efficient H2 production 

using sucrose-feedstocks (e.g. sugarcane juice) a H2-overproducing strain (e.g. ΔHycA, 

FhlA++, Δldh, Δfrd, ΔHyd-1, ΔHyd-2, see above) could be transformed with pUR400.  

Another issue is the utilisation of lactose, a capacity lacking in MC4100-derived strains 

including HD701 and the hydrogenase deficient strains (chapter 2.1).  Wild-type E. coli is 

lac+, and the lac- phenotype of strain MC4100 (used as parent in E. coli strain development) is 

advantageous for the purpose of genetic engineering as it permits blue/white selection on solid 

medium containing a marker (blue: lac+).  Re-introduction of the lac+ phenotype in a future 

‘super-strain’ does not represent a significant barrier.  Conversely, the utilisation of more 

difficult substrates such as starch or lingo-cellulose by E. coli would require significant 

metabolic engineering and abiotic pre-treatment may be a more viable approach.  

Lignocellulosic biomass requires initial delignification by mechanical or chemical means 

(milling or alkaline hydrolysis) leaving cellulose and hemicellulose [31,78].  Although 
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cellulose-utilising microorganisms are available [139,195], hydrolysis is the rate-limiting step, 

hence pre-hydrolysis can be advantageous.  Available hydrolytic methods include enzymatic 

treatment [59], acidic steam-explosion [35,153], biomimetic catalysis [109] or ohmic heat-

treatment [149]. 

 

3.1.3 Mass pre-culture of Escherichia coli 
A system is also needed for the mass culture of ‘primed’ E. coli, expressing the biochemical 

machinery for H2 production.  As demonstrated in chapter 2.1, H2 production occurs 

anaerobically, therefore anaerobically grown E. coli is metabolically prepared for H2 

production but the anaerobic growth is very slow.  A more efficient means of generating E. 

coli for H2 production is aerobic pre-growth with sodium formate (see chapter 2.1), although 

further investigation is needed to optimise the formate-induction of FHL and minimise the use 

of sodium formate.  E. coli culture densities of up to 50 g/l were achieved in continuous 

aerobic cultures [64].  An effective approach could entail a continuous aerobic pre-culture to 

load E. coli biomass progressively into an anaerobic H2-producing reactor.  The anaerobic 

vessel would also be fed with substrate, but may require no overflow due to the inherent cell-

retention and fluid-transport properties of electrodialysis.  A cost-benefit analysis is needed to 

investigate the induction of H2 producing capacity in aerobically cultured E. coli.  The 

induction of FHL activity in aerobically-grown E. coli was investigated previously [218].  

The maximum FHL activity was half of that achieved in anaerobically-grown cells but only 

post-growth induction was investigated in this case and not the addition of formate into the 

aerobic growth medium as described in chapter 2.1. 
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3.2 Photofermentation by Rhodobacter sphaeroides 
3.2.1 Rates, yields and operating conditions 

Chapters 2.3 and 2.6 describe a photobioreactor (PBR), which was operated continuously in 

chemostat mode, achieving stable and continuous H2 production from organic acids produced 

by E. coli and transported by electrodialysis.  Improvements are needed in the efficiency of 

the photosynthetic component, which would ideally provide 70-80 % of the total bio-H2 

output, but in the experimental dual system consumed only 64 % of the supplied substrate (on 

the basis of carbon) and produced H2 with a substrate conversion efficiency of 38 %, resulting 

in an overall contribution of only one third of the total bio-H2.  The losses in substrate 

conversion efficiency may be attributable to the activity of competing pathways.  In this study 

a wild-type strain (O.U. 001) was used but, as described in chapter 1.2, significant 

improvements in H2 production by PNS bacteria can be achieved through genetic 

manipulation, e.g. to decrease H2 uptake activity, to prevent the formation of storage polymer 

and to truncate the light harvesting antennae of the photosystem in order to increase the point 

of light saturation (see 3.6.1).  Such alterations may be necessary in order to improve the 

efficiency of H2 production in the PBR.  However, substrate conversion efficiencies of up to 

75 % were reported for continuous cultures of wild-type PNS bacteria [25,45,162] (chapter 

2.3) and the observed inefficiency may also result from sub-optimal culture conditions such as 

the balanced supply of light, carbon-source and nitrogen-source.  Further work is required to 

establish the optimum conditions, e.g. with respect to the ability of ED to deliver organic 

acids and also a controlled amount of NH4
+ (for growth). 

 

This study aimed to achieve stable and continuous H2 production, although perfectly stable 

output would not be feasible in a developed system under diurnal (solar) illumination.  The 

PBR operated as a continuously illuminated chemostat, although a fill-and-draw method may 

be more suitable for PNS bacteria having a relatively low specific growth rate [25] and would 

also be more compatible with bionanocatalyst manufacture (see 3.4).  Although practically 

more complex, a fill-and-draw method may be more readily incorporated with diurnal 

illumination as the relative timings of N-source addition, medium exchange and dark periods 

can affect H2 production [125]. 
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3.2.2 Butyrate utilisation 

As described in chapter 2.3 R. sphaeroides was grown using a medium containing a mixture 

of organic acids.  Different organic acids were consumed to different extents, such that 99.8 

% of lactate, 77.0 % of succinate, 65.7 % of acetate but only 10.9 % of butyrate were 

consumed.  Similarly in the dual system (chapter 2.6), a mixture of organic acids 

(predominantly butyrate) was supplied to a chemostat-type culture, of which 93.8 % of 

lactate, 84.8 % of acetate and 55.5 % of butyrate were consumed.  All of these substrates are 

known to be suitable substrates for R. sphaeroides, yet the relatively low uptake of butyrate is 

unexplained.  It is known that the consumption of organic acids which are relatively oxidised 

compared to the cell material results in CO2 production, whereas the utilisation of more 

reduced organic acids requires CO2 uptake.  For example 0.7 mol CO2 was utilised per mol 

butyrate consumed, whereas 0.17 mol/mol was produced from acetate and 0.7 mol/mol was 

produced from succinate [184].  It is likely, therefore, that the incomplete utilisation of 

butyrate was, in part, due to a requirement for exogenous CO2, although the addition of CO2 

(or bicarbonate) is not common practice for butyrate-fed photofermentations (e.g. [26]).  If a 

CO2 requirement can be confirmed, it would be logical to purge the PBR with the off-gas 

from the E. coli reactor (containing ca. 40 % CO2) and also to incorporate headspace 

recirculation [66].  However, other explanations cannot be ruled out, for example the uptake 

mechanisms for butyrate may be less effective than those for other organic acids (e.g. lactate 

and succinate), or the expression of enzymes performing the decomposition of butyrate to 

acetyl-CoA [184] may require stimulation. 
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3.3 Integrating the dual bioreactor by electrodialysis 
3.3.1 Benefits of electrodialysis 

Electrodialysis (ED) was an effective technique for the integration of dark fermentation and 

photofermentation, solving the key bottleneck of ammonium inhibition of the 

photobioreactor, while simultaneously providing pH control, cell-retention and water 

extraction from the E. coli culture along with a tertiary H2 stream (chapter 2.6) 

 

3.3.1a Electrolysis 

Additional H2 resulting from electrolysis (electro-H2) was produced in similar quantity to bio-

H2 by the experimental system.  However, the ratio of bio-H2 to electro-H2 was low in this 

study due to the under-production of bio-H2 by the photobioreactor.  If the bio-H2 yield were 

to improve to 8 mol H2/mol glucose under similar conditions, then the proportion of electro-

H2 would be ca. 24 %.  It is expected that the electro-H2 stream would scale up proportionally 

with the bio-H2 stream.  Faraday’s 1st law states that that ‘the mass of a substance produced at 

an electrode during electrolysis is proportional to the quantity of electricity passed’.  As the 

requirement for organic acid transfer would scale proportionally with the feed-processing 

capacity of the bio-H2 system, the size and power of ED cell would follow, and hence the rate 

of electro-H2 production. 

 

3.3.1b Butyrate fermentation and transport 

In chapter 2.5 it was found that butyrate is the primary organic acid produced by E. coli 

during long-term culture, which is beneficial because butyrate is particularly economical to 

transport by ED, having a very high photosynthetic H2 production potential (10 mol H2/mol 

butyrate) and a single ionic charge (chapter 2.5.  Complete consumption of butyrate by the R. 

sphaeroides culture may require CO2 addition (see section 3.2.2). 

 

3.3.2 Demand-responsive electrodialysis 

In this study a constant current was applied to the ED cell and no attempt was made to 

modulate ED according to the requirements of the PBR or in relation to organic acid 

production.  It was shown (chapter 2.5.2c) that the rejection of NH4
+ by anion selective 

membranes (ASM, Neosepta AHA) is incomplete and related to the applied current.  

Although in this study, the nitrogen requirements of the PBR were provided using yeast 
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extract, there is potential to provide a metered supply of NH4
+ to an R. sphaeroides culture by 

modulating the current applied to ED in response to growth requirements.  NH4
+ can provide 

a suitable nitrogen-source for H2 producing cultures of PNS bacteria if supplied in carefully 

controlled quantities [125]. 

 

3.3.3 Membrane lifespan 

A further observation regarding ASM was that prolonged use at high current density was 

detrimental to transport activity.  ASMs, therefore have a lifespan, which may be very long 

under ideal conditions but nevertheless could significantly affect the economic feasibility of 

the system as ASM are very expensive (ca. £400/m2 for Neosepta AHA).  An economic 

analysis is to be carried out after optimisation of the process. 

 
3.3.4 Ethanol 

A significant limitation of the ED approach was the lack of ethanol transport by the ASM, 

which detracted a potential 3.6 mol H2/mol glucose from the overall yield (chapter 2.6).  ASM 

are non-selective to non-polar molecules and it is possible that a small quantity of ethanol 

diffused into the permeate chamber although this was not monitored.  Ethanol formation plays 

a key role as the primary ‘electron sink’ in anaerobic fermentation in E. coli [32].  Hence, to 

eliminate ethanol formation through metabolic engineering would be to transplant pathways, 

rather than genes, from another organism.  Taking an example from bioethanol production 

(see chapter 1.2; review article section 4) membrane technology is now sufficiently advanced 

to provide ethanol recovery in the dual system and an additional membrane extraction step to 

utilise the bioethanol from E. coli is feasible but the economic attractiveness of this solution 

requires detailed investigation. 

 

As described in chapter 2.2, alternative fermenting bacteria (e.g. clostridia) are also promising 

organisms for H2 production, in which solventogenesis can be suppressed.  However the 

enterobacteria offer the important advantages of rapid growth, (relatively) facile genetic 

manipulation, absence of sporulation and the possibility to eliminate H2 uptake (which is 

impossible in other groups because H2 formation and uptake are carried out by bi-directional 

hydrogenase).  Therefore no metabolic system can be considered ideal and it may be 

worthwhile to attempt to supplant acetate/butyrate-type fermentation (e.g. as Clostridium 
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acetobutylicum, see chapter 2.2) into an enterobacterium such as E. coli.  However, 

alternative methods for ethanol transport would be more feasible in the short-term.  For 

example an alternative approach (Figure 3-a) could entail conventional membrane dialysis for 

the separation of all fermentation products (and cell retention), followed by the removal of 

NH4
+ from the permeate by cation-selective ED, before supplying the remaining substrates to 

R. sphaeroides.  The separated NH4
+ and minerals could be recycled to the E. coli reactor or 

pre-cultivation.  An advantage of this approach would be the facile control of NH4
+ supply to 

R. sphaeroides by controlling the extent of NH4
+ removal.  However, membrane dialysis is 

known to suffer from fouling [99,181,220] and it may be difficult to prevent the diffusion of 

unfermented sugars along with the products.  A trade-off would be sought between high 

dilution rate, needed to minimise the accumulation of organic acids, versus the washout of 

unfermented substrate and membrane fouling.  Furthermore, potentially inhibitory nitrogen 

sources such as proteins having high molecular weight would not be separated by this means.  

In conclusion, 3.6 mol H2/mol glucose (attributable to untransported ethanol) may be a 

worthwhile sacrifice for the benefits of the ASM-ED approach. 

 

3.3.5 Current efficiency 

In this work, the efficiency of organic acid transfer (current efficiency) was variable, but 

typically greater than 13 % (see chapter 2.6); the hypothetical efficiency at which the H2 

energy resulting from ED (i.e. from electro-H2 and photosynthetic H2) would offset the 

electrical energy input into ED (the BCE, see chapter 2.4).  The activity of ED may be 

affected by such conditions as medium composition (e.g. specific salts, cationic buffers, 

amino acids and proteins), culture density, cell immobilisation, improvements in ASM 

formulation and de-fouling.  Optimisation of these factors was not attempted in this study and 

represents an important aspect for further development. 
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Figure 3-a  An hypothetical application combining electrodialysis and membrane 
dialysis for the non-specific transport of fermentation products. 
1, dark fermentation vessel; 2, photobioreactor; 3, permeate vessel; 4, electrodialysis cell; 5, 
dialysis membrane unit; 8, base titrant; 9, acid titrant; 10, feed solution; 11, tubular reflective 
sheath; 12, pH sensor; 13, cooling tube (stainless steel); 14, magnetic stirrer and follower; 15, 
electrode wash vessel (single vessel to lessen pH change); BP, bi-polar membrane; CSM, 
cation-selective membrane; C, cathode chamber; A, anode chamber; M, main chamber 
delivering organic acids, ethanol and NH4

+ from fermentation vessel (1); MC, permeate 
receiving cations including NH4

+.  For comparison with experimental configuration, see 
Figure 2.6-a. 
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3.4 Biomass-supported palladium catalyst 
The dual-bioreactor system produced two kinds of biomass: E. coli and R. sphaeroides 

(predominantly the latter), both of which can be effective supporting biomaterials for PGM 

recovery and catalysis using Bio-Pd(0) [34,215].  This study represents the first investigation 

of bio-Pd(0) production using a photosynthetic organism, however the question of how 

photosynthetic metabolism might affect the pre-patterning of metal reduction was not 

addressed as incubations were performed in darkness, so as to adhere to a single preparation 

method.  Further investigation of the catalytically active Pd-X colloid may also be justified 

(see section 2.8.3b). 

 

The reconciliation of the necessary conditions for effective catalyst production with the 

continuous production of biomass is a problem, which may be resolved either via semi-

continuous photofermentation (i.e. fill-and-draw) or by preserving the outflow biomass before 

catalyst manufacture, as discussed in chapter 2.8.   

 

Rs-Pd(0) was effective in the manufacture of anode catalyst for PEM-FC and it was calculated 

that the excess biomass from the dual system could significantly exceed the required biomass 

for the production of sufficient fuel-cell catalyst for use within the process, leaving an excess 

for commercial catalyst production (chapter 2.8). 

 

Issues for further investigation relevant to industrial bionanocatalyst manufacture include:- 

• Supply and logistics of PGM leachates 

• Adaptation of the manufacturing process to utilise continuously produced biomass, or 

of the dual system to provide biomass discontinuously  

• Scale up of the biocatalyst manufacturing process 
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3.5 Environmental impacts 
3.5.1 Potential CO2 offsetting 

The dual-bioreactor system for H2 production represents a strategy for sustainable and carbon-

negative energy production.  The potential for carbon offsetting can be calculated based on 

the preliminary data obtained in this study.  The system has the potential to offset CO2 and 

CH4 emissions in three ways:- 

• Offset conventional energy production.  Electricity exported to the grid would detract 

from the demand on power generation from fossil fuels.  The CO2 cost of energy is 0.72 

kg CO2/kWh using a coal fired power plant or 0.37 kg CO2/kWh using a modern gas-

fired power plant [187]. 

• Divert waste from land-filling and avert resultant emissions.  Each tonne of 

biodegradable waste land-filled produces 200-400 m3 land-fill gas which is 40-45 % 

CO2 and 55-60 % methane (v/v), a much more potent ‘green-house’ gas [51,164]. 

• Retain C in solid state.  The process generates bacterial cell mass as a useful by-product, 

which is dried to produce a stable powder (ca. 50 % C w/w) to be used as a catalyst, 

preventing degradation to form CO2.  The process generates ca. 26.7 g dry cell mass (i.e. 

retains 14.3 g C and prevents the formation of 48.9 g CO2) per mol hexose processed. 

 

3.5.2 Apple waste scenario 

A scenario was constructed to estimate the energy productivity and environmental benefits of 

the dual system.  Fruit waste was shown to be a suitable feedstock for the system [149], hence 

the scenario was based on apple, which contains a high density of available sugars along with 

potentially useful polysaccharides, proteins and organic acids, which were not taken into 

account (Table 3-2). 

 

Table 3-2  Free-sugars content of apple 
Fermentable in E. coli Component Content (mol hexose/tonne apple) 

glucose 122.67 Yes 
fructose 335.26 Yes 

Yesa sucrose 144.32 
602.24 Total  

Apple composition data were retrieved from www.food-allergens.de.  Apple also contains 
33.3 mol starch-hexose/tonne, excluded from the total due to the requirement for hydrolysis.  
Protein, lipid, fibre, amino acids and organic acids are also excluded.  a Sucrose utilisation was 
achieved in E. coli using a sucrose-utilisation plasmid [147]. 
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According to the constructed scenario (Table 3-3), the dual system could achieve significant 

environmental benefits.   

 

Table 3-3  Scenario for H2 production from apple waste 
Input   
mass 1 tonne 
hexose 602.0 mol 

mol hexose/tonne apple (70 %)a fraction extracted  421.6 
Productivity   
gaseous 8 mol H2/mol hexose (projected) 
 3370 mol H2/tonne apple 
 172 kWh/tonne appleb 
 549 mol CO2 per tonne apple (14 % of total gas)c 

kg CO2 per tonne apple (14 % of total gas)c  24.2 
dry cell mass 26.7 g dry cell mass/mol hexose (50 % C, w/w) 
 11.3 kg dry cell mass/tonne apple 
 20.6 kg CO2 fixed in biomass/tonne apple 
Offsetting   

kg CO2/tonne apple -coal-fired plantd power generation 124 
kg CO2/tonne apple - gas-fired plantd  63.7 
m3 land-fill gas/tonne applee land-filling 200-400 

 1.15-2.59 kg CO2/tonne apple 
 0.570-1.25 kg CH4/tonne apple 
Totals   
offset CO2 85.5-147 kg CO2/tonne apple 
offset CH4 0.570-1.25 kg CH4/tonne apple 
Equivalents   

Km driven in a Fiat puntof offset GHG 700-1300 
energy produced 4 months running a 60 W lightbulb constantly 
 or  

1  week running a home at 1 kW constantly 
Values are presented to 3 significant figures. 
abased on the extraction of sucrose from sugarcane 
bproduction of electricity from H2 using a fuel cell operating at 50 % efficiency and 95 % 
utilisation [100].  
cwhich is not considered an emission, being derived from recently fixed CO2. 
d0.72 kg CO2/kWh for a coal or 0.37 kg CO2/kWh for natural gas [187]. 
elandfill gas is 40-45 % CO2 and 55-60 % CH4 (v/v).  It is assumed that landfill gas is an 
emission and no recovery takes place. 
fbased on driving emissions of 136 g CO2/km, and CH4 having a global warming potential 
(GWP) of 25 (100-year basis, relative to an equal mass of CO2) [51]. 
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To summarise Table 3-3, processing 1 tonne of apple waste using the dual system instead of 

simply burying it (without landfill-gas recovery), is estimated generate sufficient power to 

meet the demand of a home for 1 week and to prevent greenhouse gas emissions equivalent to 

driving ca. 1000 km in a small car.  However, the analysis should be interpreted with care, as 

further development is required before several factors can be taken into account.  In 

particular, the scenario was based on the assumption of all produced electricity being exported 

to the grid because the proportion of the produced energy, needed to run the bio-H2 system is 

unknown at this stage.  This could be a significant detractor from the offset CO2, which is 

derived partly from electricity exported to the grid to displace conventional energy 

production.  Also, it is likely that some depreciation of the substrate would occur prior to 

fermentation, detracting form the quoted free-sugars content (Table 3-2), whereas the 

excluded components (see legend to Table 3-2) may enhance the calculated potential for H2 

production. 

 

Further development is required preceding a complete economic analysis as summarised in 

Table 3-4. 

 

Table 3-4  Technical aspects requiring development prior to an economic assessment of 
the dual system 

Bottleneck Possible solutions 
Low substrate conversion 
efficiency in PBR 

Strain development (addressing HUP and PHB) 
Optimisation of culture conditions 

Practicality and cost of large PBR Use of cheap materials 
Light focussing from robust collectors into compact PBR 

Limitation of H2 yield from dual 
system due to uncharged E. coli 
products (ethanol) 

Alternative membrane separation (e.g. Figure 3-a) 
Metabolic engineering to remove ethanol from E. coli 
Alternative fermenting bacteria 

PBR, photobioreactor; HUP, H2 uptake activity; PHB, poly-β-hydroxybutyrate (a storage 
polymer accumulated by R. sphaeroides). 
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3.6 Prominent technical challenges for future development 
Following the development of commercially ready technology, questions relating to business 

and logistical aspects must be addressed.  Inputs to the process requiring sourcing include 

sugar (e.g. from fruit waste or an energy crop), PGM leachate (e.g. from autocatalyst scrap), 

both of which are available, and the time for establishing supply contracts would be at pilot-

scale process demonstration, but detailed consideration of these issues is beyond the remit of 

this study.  Of more basic importance are technical bottlenecks, of which several are outlined 

in Table 3-4, along with possible solutions.  A particularly challenging technical bottleneck is 

the long-term economic validity of an industrial-scale photobioreactor. 

 

3.6.1 Photobioreactor development 

Large scale industrial photobioreactors (e.g. 700 m3 [12]) have been developed for biomass 

production. However, the commercial application of outdoor solar photobioreactors for 

gaseous products is not yet evident, although this is an area of intensive research 

[19,31,56,104,190,192,193].  Several outdoor pilot-scale systems have been studied using 

cylindrical, tubular or flat-panel configurations.  The flat-panel design [67] can be seen as a 

representative scaleable unit for a future solar-driven system, however the challenge of scale 

up is only beginning to be addressed. 

 

Light is an abundant source of energy but it is diffuse (1 kW/m2) and exploitation demands 

large areas for light capture, which necessitates a PBR with a large surface-volume ratio.  This 

requirement is not easily reconciled with the required mixing, gas-exchange, and control of 

environmental conditions (e.g. temperature and pH).  However, the most significant challenge 

may be the economical construction and lifetime maintenance of extensive light capture 

surfaces, which are also sufficiently cheap, gas-impermeable, transparent and durable to 

function as the wall of a bioreactor.  Life cycle energy analysis, an approach in which all 

energy inputs to the construction, operation and decomissioning of a system are accounted 

for, was employed in the examination of an algal H2-producing PBR, using a tubular 

configuration, which is relevant to PNS bacterial H2 production [21].  Although revealing, this 

study is not equivalent to an economic analysis as different forms of energy (e.g. electricity 

and heat) have different monetary values.  The study compared glass (1.6 mm thickness), 

rigid acrylic (3 mm thickness) and flexible polyethylene film (0.18 mm thickness).  The study 

 213



3.6 Discussion – Challenges for future development 

found that a favourable life cycle energy ratio (ca. 6) could be achieved using glass or flexible 

plastic film, but glass would not be practical due to its mechanical limitations.  Polyethylene 

tubing was considered the most suitable material due to its low cost, although it would be 

easily damaged and weathered requiring periodic replacement, and concerns over its 

permeability to H2 are currently being addressed. 

 

A more practical approach may be to focus light into a compact PBR.  Abiotic light 

harvesting technology may be more robust, compared to expanses of tubular or panel 

bioreactor, requiring mixing and environmental control.  Savings in construction, maintenance 

and running costs of a compact PBR may offset the increased primary light capture area 

required due to light losses in the focussing system.  This approach was advocated by other 

authors [40,192] and work has begun at the University of Wageningen to the test a PBR using 

a lens to focus light and conduct it into a deep PBR through a PVC sheet (Figure 3-b) [31]. 

 

 
Figure 3-b  Prototype light focussing photobioreactor under development at 
Wageningen University, Netherlands. 
A lens focuses light into a PVC sheet to transmit light into deep cultures [31]. 
 

The PBR configuration outlined in Figure 3-b would facilitate solar tracking, by adjusting the 

angle of the focussing lens rather than the angle of the entire PBR.  Experimental data is not 

yet available, but in theory excessive light intensity at the lens (i.e. above the saturation point 

of the culture) would be diffused over a larger illuminated surface area, e.g. the vertical 

surface of a deep PBR such as that shown.  By diffusing light into a deep culture, the system 

may improve efficiency under excessive light intensity, however it would offer no advantage 
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over a solar-tracking panel or tubular PBR under sub-saturating light intensity.  For this 

purpose the area of light capture must be larger than the area of illuminated culture surface, 

light capture and culture being separate components (Figure 3-c). 
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and focussing

Compact, 
photobioreactor

H2

Light capture Light conduction 
and focussing

Compact, 
photobioreactor

Light capture Light conduction 
and focussing
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Figure 3-c  Conceptual design of a light-concentrating photosynthetic system, for light 
intensities below saturation. 
 

A limitation of this approach is that photosynthetic cultures have a light saturation point – a 

light intensity above which no further increase in productivity occurs.  It would be pointless to 

concentrate/intensify light above the saturation point.  Future work will examine the 

relationship between light saturation and culture density in H2-producing cultures of PNS 

bacteria in order to examine the prospective advantages of light concentration.   

 

PNS bacteria are adapted to photosynthesis at low light intensities, using large light 

harvesting antennae to channel diffuse light energy into the reaction centre.  As a result 

cultures saturate at low light intensity, limiting the productivity per volume of culture.  

Intensive research is underway to increase the light saturation point of cultures of 
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photosynthetic micro-organisms, and thereby achieve, smaller denser cultures to improve the 

ratio of productivity-culture volume.  An important approach is genetic modification to 

truncate light harvesting antennae [2,84,87,92,93,127,151,198], while light saturation was 

also improved by immobilising dense cultures in latex films [56]. 

 

In conclusion, a combination of the light concentrating approach (Figure 3-c) with an 

antenna-truncation strain is a promising strategy, potentially resulting in a compact, high 

density, high activity PBR, which could be more feasible than an expansive culture-filled 

system.  This study has shown that the photosynthetic culture (rather than the dark 

fermentation), in addition to being the dominant H2-producer, is the stage crucially limited by 

light availability, and future studies would focus on this. 
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4.1 Methodology and validation 
4.1.1 Gas analysis and measurement 

4.1.1a Composition analysis – combustible gas meter (CGM) 

Samples were withdrawn from the headspace of H2 producing cultures using a gas-tight syringe 

(Hamilton) and injected immediately into a CGM (GMI, UK).  The system produced a numerical 

result related to the concentration of combustible gas in the injected sample.  It was shown by GC 

(appendix 4.1.1e) that combustible gases other than H2 (e.g. CH4) were not present.  This method 

was useful for comparing the initial production of H2 in parallel experiments, however the device 

was battery-powered and could not produce consistent results.  When the concentration of H2 in 

the sample neared 100 %, further H2 production could not be detected by this method, therefore 

useful data was produced only initially.  Further, the method was inappropriate for the 

measurement of absolute quantities of H2, therefore fluid displacement techniques were 

developed, in which the CGM was used to test qualitatively for the presence of H2.  

 

4.1.1b Fluid-displacement methods 

Gas formed inside sealed vessels, generating positive pressure sufficient to displace fluid from a 

graduated container.  Assuming negligible pressure differential, the volume of fluid displaced is 

equal to the volume of gas produced.  This approach was effective in the measurement of H2 

production by cultures of E. coli and R. sphaeroides in the range 50 ml to 5 L.  For 50 ml cultures 

of R. sphaeroides (Figure 4.1-a, part A) and 100 ml cultures of E. coli (Figure 4.1-a, part B), 

scrubbing solution (1-2 M NaOH) was located in the displacement cylinders (10-100 ml).  For 3 

L cultures a larger capacity for CO2 absorption was anticipated.  Therefore, out-gas was bubbled 

through 1 L of scrubbing solution before being collected over water in a 2 L collector.  The 

separation of scrubbing and measurement minimised the use of scrubbing solution (caustic 

hazard) but introduced 15 cm water pressure opposing the flow of gas.  E. coli and R. 

sphaeroides are capable of H2 uptake and this activity is dependent on the partial pressure of H2 

(pH2), therefore, to minimise H2 recycling by the culture, the opposing pressure was offset by 

introducing negative pressure in the displacement cylinder, with a total vertical water-drop of ca. 

30 cm (Figure 4.1-a, part C).  Gas measurement was performed within ± 10 cm water pressure. 
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Figure 4.1-a  Fluid displacement systems for the measurement of H2 production. 
A & B, 50-200 ml cultures; C, 3- 5 L cultures.  P: hydrostatic pressure. 
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4.1.1c Discussion of fluid displacement methods 

Figure 4.1a shows how fluid displacement methods were adapted for the measurement of gas 

production at a wide range of rates.  Data was acquired 24h using time-lapse digital photography, 

however the limitation of fluid displacement is that it is discontinuous; the displaced fluid must 

be replaced manually at intervals, creating sudden perturbations in headspace pressure which, 

although minimal, represent an undesirable source of error. 

 

More sophisticated techniques include purging the reactor continuously with an inert gas such as 

argon, while measuring flow rates using conventional meters (accurate at high flow rates) and 

carrying out online composition analysis (e.g. by GC).  This method would be economically 

unfeasible for industrial use (owing to the cost of purge gas) and would be misleading if used in 

experimental work due to known effects of gas-stripping on cultures, which may include the 

prevention of H2 recycling (e.g. in clostridial fermentation) or the removal of CO2 required for 

acetate assimilation (e.g. by certain PNS bacteria) as detailed in chapter 1.2 

[66,128,136,144,196].  Ideally, low-flow gas meters (e.g. www.milligascounter.de) would be 

used in conjunction with data-logging equipment. 
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4.1.1d Storage of gas samples 

The method of gas sample storage shown in Figure 4.1-b was preferred over Teflon gas bags, 

which cannot reliably retain H2 for more than a few minutes.  The inverted bottle was effective as 

glass is permanently impermeable to H2 and the butyl rubber bung was sealed with a layer of 

water.  Bottles were completely filled with water, which was partially displaced upon the 

injection of gas samples.  Water was injected simultaneously, upon withdrawal of gas samples, to 

maintain nominal pressure, minimising contamination. 

glass wall

gas sample

water

butyl rubber stopper

glass wall

gas sample

water

butyl rubber stopper

 

Figure 4.1-b  Storage of gas samples for analysis. 
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4.1.1e Validation of H2 measurement by gas chromatography (GC) 

Gases were sampled from H2 producing cultures and stored as above.  The presence of H2 and the 

removal of CO2 (to <0.5 % v/v) was confirmed using a ThermoQuest gas chromatograph 

(TraceGC2000) fitted with a Shincarbon ST column (100/120 mesh, length: 2 m, ID: 2 mm, 

Shimazu, Japan).  The GC operating conditions were split 60:1, 40 °C + 15 °C/min for 10 min, 

and the injection volume was 1 ml. 

 

 

 
Figure 4.1-c  Gas chromatogram showing the absence of CH4 and CO2. 
CH4 and CO2 are excluded to less than 0.5 % v/v in bio-H2.  The sample analysis shown was 
taken from a continuous R. sphaeroides culture (chapters 2.3 and 2.6). 
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4.1.2 Medium compositions 

4.1.2a Media for the culture of Rhodobacter sphaeroides 

Modifications to the SyA medium described in [66] included the addition of molybdenum, a trace 

element necessary for the biosynthesis of MoFe nitrogenase, and hence for H2 production [90].  

External analysis of standard SyA medium (ICP-MS; inductively coupled plasma mass 

spectrometry, H2b, Capenhurst) determined the Mo content to be 0.04 mg/l.  The threshold for 

Mo-limitation occurred at 0.05 mg Mo/l in R. capsulatus [176].  Hence Mo was added to the 

microelements solution to increase the final concentration from 0.04 mg/L to 0.06 mg/l.  A 

further modification was to reduce the concentrations of macronutrients in SyA medium to 

correspond with the fully developed (AA-c) medium of [66]. 

 

Table 4.1-1  Media for the culture of Rhodobacter sphaeroides 
SyA 

medium 
HP 

medium 
Basal 

medium 
Mixed org. 

acid mediumδ  

Succinate 30 mM - - 20.18 mM 
Acetate 0.0073 mM - - 31.42 mM 
Lactate - - - 36.97 mM 
Formate - - - 3.56 mM 

Yeast extract 1 g - 1 g  1 g 
KH2PO4 1.732 g 1.732 g 0.433 g 0.433 g 
K2HPO4 1.466 g 1.466 g 0.366 g 0.366 g 

Macronutrient solution (20 x)γ 50 mlβ 50 ml 50 ml 50 ml 
Trace elements solution (100 x)γ 10 mlβ 10 ml 10 ml 10 ml 

Vitamins solution γ 2 ml - 2 ml 2 ml 
Final pH 6.8 6.8 6.8 6.8 

Masses and volumes are per litre of final medium. βmodifications from [66]; γSolutions of 
macronutrients, micronutrients and vitamins were sterilised separately and added after 
autoclaving. δMixed organic acid medium simulates the effluent from a “phase 3” dark 
fermentation (see chapter 2.2) was fed to a continuous photofermentation (see chapter 2.3). 
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Table 4.1-2  Additives to media for the culture of Rhodobacter sphaeroides 
 

SyA macronutrients (20 x), per litre  
MgSO4 ·7H20   1000  mg 
CaCl2 ·2H20    500  mg 
Sterilised by autoclaving 

 

Trace elements solution (100 x), per 500 ml 
MnSO4 ·4H20   1827.5  mg          
Na2 EDTA ·2H20   1051  mg 
FeSO4 ·7H20   590  mg 
H3BO3 (boric acid)   140  mg 
Na2SO4 (anhydrous)  19.5  mg 
Na2MoO4 ·2H20   12.98  mg 
ZnSO4 ·7H20   12  mg 
Cu(NO3)2 ·3H20   2  mg 
Sterilised by autoclaving 
 

SyA vitamins solution (1000 x), per 20 ml 
Biotin    20  mg 
Thiamin   20  mg 
p-amino benzoic acid  20  mg 
B12    20  mg 
Nicotinamide   20  mg 
Filter-sterilised 
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Figure 4.1-d  Example growth curve for Rhodobacter sphaeroides O.U. 001. 
R. sphaeroides was grown using SyA medium as described in chapter 2.3.  
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4.1.2b Postgate’s medium C for the growth of Desulfovibrio sp. (pH 7.5), per litre 

KH2PO4   500 mg 
NH4Cl    1000 mg 
Na2SO4   4500 mg 
CaCl2.6H2O   60 mg 
MgSO4.7H2O   60 mg 
Yeast extract    1000 mg 
Sodium citrate dihydrate 300 mg 
FeSO4.7H2O   4 mg  
Sodium lactate   7800 mg 
Sterilised by autoclaving 

 

4.1.2c Nutrient broth for the growth of Escherichia coli (pH 7.0), per litre 

Nutrient broth (Oxoid) 28 g 
Sodium formate (Sigma) 5 g 
Sterilised by autoclaving 
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Figure 4.1-e  Growth kinetics and organic acid profile for the aerobic growth of Escherichia 
coli HD701 on nutrient broth with sodium formate. 
Growth was carried out as described in chapter 2.1 and organic acid analysis, as described in 
chapter 2.4.  Means and standard errors from 4 replicate experiments are shown. 
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4.1.3 Biomass estimation 

Biomass estimations for E. coli MC4100, HD701 and additional strains (chapter 2.1) were 

performed independently by D.W. Penfold and V. Marcadet with the same result.  An OD600 of 1 

corresponded to a biomass concentration of 0.482 g/l for E. coli.  Biomass estimations for D. 

desulfuricans were performed by D. Sanyahumbi.  An OD600 of 1 corresponded to a biomass 

concentration of 0.72 g/l for D. desulfuricans. 

 

For R. sphaeroides O.U. 001, the relationship between OD660 and culture density was 

investigated by the author.  R. sphaeroides was cultivated as described in section 2.3.2a at 30 ºC 

using SyA medium.  OD660 values were recorded for cultures (50 ml) of R. sphaeroides, which 

were subsequently harvested by centrifugation in pre-weighed containers (2400 x g; 4 ºC; 20 

minutes), washed twice in 50 ml deionised water and dried at 60 ºC to constant mass.  A linear 

relationship was observed when OD660<1 and an OD660 of 1 corresponded to a dry biomass 

concentration of 0.356 g/l. 
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Figure 4.1-f  The relationship between OD660 and culture density in Rhodobacter 
sphaeroides O.U. 001, grown on SyA medium. 
The data represent two replicate experiments, each performed in triplicate.  Standard errors were 
within the boundaries of the symbols and are not shown.   
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4.1.4 Light conversion efficiency in photobiological H2 production 

A photobioreactor (PBR) supplied with a constant light intensity receives a constant supply of 

light energy.  The proportion of that energy which is recovered in the combustion enthalpy of 

produced H2 is called the light conversion efficiency. 
 

100)((%) 2 ×
×

=
hv

YmolHefficiencyconversionLight       (equation 1) 

 
Y combustion enthalpy of produced H2 (285900 J/mol) 
hv light energy supplied (J) 
 
To determine the light supply to the PBR, several factors were taken into account.  The light 

intensity at the culture surface (i.e. the internal surface of the PBR) was measured using a 

specialised sensor (Skye, UK) designed to detect only photons with wavelengths in the range 

400-950 nm, corresponding to the PAR (photosynthetically active radiation) range for PNS 

bacteria (Figure 4.1-g). 

 

 
Figure 4.1-g  Absorption spectrum of purple non-sulphur bacteria (solid line) and spectrum 
of daylight. 
Taken from [2]. 
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The light sensor produced a value in units of µE/m2/s, where E (Einstein) is a mole of photons 

having wavelengths in the range 400-950 nm.  To convert this value to energy (J) would be 

straightforward under monochromatic light (see equation 2).  

λ
AhcE =       (equation 2) 

 
E Energy (J/Einstein) 
A Avogadro’s number (6.602 x1023) 
h Plank’s constant (6.626 x10-34) 
c speed of light (2.998 x108 m/s) 
λ wavelength of monochromatic light (m) 
 

However in practice an analysis of the emission spectrum of the light source (in this case 

Tungsten filament bulbs) is required in order to determine a representative wavelength to input 

into equation 2 (Figure 4.1-h). 

 

 
Figure 4.1-h  Emission spectrum of tungsten filament within a white light bulb. 
The shaded area corresponds to the part of the spectrum detected by the light sensor.  The dotted 
line indicates the bisection of the shaded area in the x-axis [157]. 
 

The midpoint of the distribution (i.e. the representative wavelength) is the point where the 

emitted light (shaded area of Figure 4.1-h) is divided into two equal halves.  The distribution was 

modelled in the x-range 400-950 using a cubic equation (author’s derivation), which was 
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integrated to bisect the area covered by the curve.  The result was 758.9 nm, (i.e. 7.589 x10-7 m), 

corresponding to 157.64 kJ/E (equation 2).  

 

In this work the PBR had an illuminated internal surface area of 0.1069 m2.  The light intensity 

was measured at several points uniformly distributed points on the wetted internal surface of the 

vessel, under 3 x 40 W Tungsten bulbs and with the reflective sheath in position (see chapter 

2.3).  The average light intensity was 334.29 µE/m2/s.  Therefore the light energy supplied to the 

PBR was 20.217 kJ/h. 
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4.1.5 Quantitative chemical analysis 

4.1.5a Pd(II) assay by the SnCl2/HCl method 

Application: This assay was used to confirm the complete reduction of Pd(II) in the production of  

Bio-Pd(0) and the separation of insoluble Pd(0) from solution.  It was also used in assays of Pd 

content in Bio-Pd(0) (see section 4.1.5b). 

 

Assay principle:  A coloured Pd(II)-Sn(II) chloride complex forms in a conc. HCl background 

when the solutions are mixed [7,55]. 

 

Assay method: Samples were prepared by centrifugation or filtration to remove cells and/or 

interfering insoluble Pd(0).  Sample volumes of 200 µl were transferred to cuvettes and 1000 µl 

reagent was added and mixed.  Colour was allowed to develop for 30 min before the sample was 

mixed again and A463 was recorded.  The reagent contained 14.95 g SnCl2 dissolved in 250 ml 

concentrated HCl, stored at room temperature.   

 

Result: The relationship between Pd(II) concentration and A436 is linear in the range: 0-200 mg/l 

or 0-1 mM, but in this study the assay was used only the range 0-40 mg/l.  The lower limit of 

sensitivity was ca. 2 mg/l (Figure 4.1-i).  Interference by components of SyA medium was 

excluded by repeating the assay using Pd standards dissolved in SyA medium. 

 

Caveats & limitations:  The method can be adapted for the analysis of various PGM but is 

applicable only for the assay of single-PGM solutions; i.e. Pd may only be assayed in the absence 

of other PGM.  Insoluble Pd(0) is an interfering agent as Pd(0) may dissolve in the acidic reagent.  

This method was cross-validated using polarography by I. P. Mikheenko [123]. 
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Figure 4.1-i  Sample calibration curve for Pd(II) assay by the SnCl2 method 
 

4.1.5b Analysis of Pd(0) content of Bio-Pd(0) 

Application:  Accurate loading of Pd(0) on biomass is crucial to the reliable comparison of 

different catalysts (e.g. prepared using different biomasses, chapter 2.7).  Therefore the Pd-

loading was verified. 

 

Method:  Dry sample material (5-10 mg) was digested in 4.6 ml acid mixture (4.5 ml 2 M HNO3, 

0.1 ml conc. HCl, 50 °C, 2 h).  Undigested organic material was subsequently removed by 

centrifugation (13000 x g, 4 min) and the Pd(II) concentration in the supernatant was assayed (as 

4.5.1).  Pure Pd powder (Sigma) was included as a standard to confirm complete oxidation of 

Pd(0). 

 

Table 4.1-3  Example analysis of Pd content in Bio-Pd(0) 
Pd(II) in supernatant (4.6 ml) mass digested 

(mg) Sample mg/l mg  % Pd (w/w) 

Pd powder (standard) 7.7 1703.99 7.84 101.80 
Pd powder (standard) 7.3 1643.48 7.56 103.56 
Pd powder (standard) 9.5 2040.43 9.39 98.80 
Rs-Pd(0) 25 % w/w 4.4 256.44 1.18 26.81 
Rs-Pd(0) 25 % w/w 4.1 225.95 1.04 25.35 
Rs-Pd(0) 50 % w/w 3.8 415.67 1.91 50.32 
Rs-Pd(0) 50 % w/w 3.9 412.49 1.90 48.65 
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4.1.5c Glucose analysis by the dinitrosalicylic acid (DNSA) method  

Applications: Quantitative analysis of glucose in E. coli fermentation broths, feed solutions and 

effluents.   

 

Method:  Based on the method described by [24], samples were filtered, mixed with DNSA 

reagent in varying proportions (Table 4.1-4), boiled for 10 min, cooled on ice and the A570 was 

recorded.  For the preparation of DNSA reagent, 0.25 g 3,5-dinitrosalicylic acid (DNSA) and 75 

g sodium-potassium tartarate were dissolved in 50 ml 2 M NaOH overnight in a brown glass 

bottle, after which the volume was made up to 250 ml with de-ionised water.  

 
Table 4.1-4  Assay range of DNSA method 

Sample vol (µl) Reagent vol (µl) Assay range (mM glucose) 
20 800 25-250 
50 800 10-100 
100 800 5-50 
300 700 0.5-5 

 

Limitations:  As the method is sensitive to all reducing sugars, the accurate quantitative analysis 

of glucose is dependent upon glucose being the only reducing sugar present in significant 

quantities.  Both lower and upper limits of sensitivity apply (Table 4.1-4).  DNSA reagent 

remains useful for up to 2 months if stored in darkness at 4 °C but decomposes gradually and 

calibration curves must be repeated daily.  
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Figure 4.1-j  Sample calibration curves for the analysis of glucose 
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4.1.5d NH4
+ analysis by an indophenol blue method 

 

Applications:  Quantitative analysis of NH4
+ in fermentation effluent (chapter 2.4) and the 

transfer of NH4
+ across anion-selective membranes (chapter 2.5). 

 

Method:  Reagents were purchased from Sigma-Aldrich (Aquanal-plus kit no. 37400). 

Table 4.1-5  Reagents for the analysis of NH4
+ 

Approximate concentrationa  
Reagent 1 < 5 % NaOH 

> 20 % sodium tartrate-2-hydrate 
ca. 50 % NaCl Reagent 2 
ca. 50 % Na2SO4 
<1 % dichloroisocyanuric acid-2-hydrate 

Reagent 3 < 5 % sodium nitroprusside-2-hydrate 
< 0.5 % thymol 
ca. 30 % ethanol 

a all reagents in aqueous solution.  Exact concentrations are proprietary. 
 

The method was modified from the manufacturer’s instructions as follows.  A mixture containing 

4 g reagent 2, 20 ml deionised water and 12 ml reagent 1 was prepared freshly.  To 320 µl of this 

mixture was added 1000 µl sample ([NH4
+] in the range 0-200 µM), which was mixed and left for 

2 min before adding 20 µl reagent 3, mixing and recording A690. 

 

Limitations:  NH4
+ forms a green complex with nitroprusside and thymol in alkaline solution.  

Although the method is highly sensitive (range: 0-200 µM), high background concentrations of 
buffering agents cause interference.  Potentially interfering species occurring in samples include 
phosphate (present in SyA medium at 20 mM) and TRIS buffer (Tris-hydroxymethyl 
methylamine) (used in some fermentations at 100 mM).  Interference was not detected in a 
background of 20 mM phosphate but colour development was inhibited by 100 mM TRIS (Figure 
4.1.5.4.1). 
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Figure 4.1-k  Sample calibration curve for the analysis of NH4

+, validating the method for 
use in a background of 20 mM phosphate.  
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4.1.5e Analysis of chloride by the mercury (II) thiocyanate method 

 

Application: Monitoring the reductive dehalogenation of chlorophenols and polychlorinated 

biphenyls by the release of Cl- into aqueous solution (chapter 2.7). 

 

Method: Based on the method described by [121].  To 840 µl sample, were added 80 µl Reagent 

A (saturated Hg(SCN)2 supernatant, 0.75 g/l) and 80 µl reagent B (40.4 g/l Fe(NO3)3.9H2O and 

conc. HNO3, 50 % v/v).  A460 was recorded after mixing and incubating for 10-40 min.  Samples 

from dehalogenation experiments contained a background of MOPS buffer (20 mM sodium 

morpholinepropanesulfonic acid -NaOH (pH 7)) and the assay standards were prepared in the 

same background.  All reductive dehalogenation tests were carried out in a low-Cl- background 

using the highest purity reagents commercially available [9]. 

 

Limitations:  Susceptible to contamination with chloride, which was excluded using negative 

controls. 
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Figure 4.1-l  Sample calibration curve for the analysis of chloride. 
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4.1.5f Ethanol analysis by alcohol dehydrogenase (ADH) assay 

 

Application:  Monitoring ethanol production by E. coli and consumption by R. sphaeroides  

(chapter 2.1, 2.2). 

 

Principle: Ethanol was oxidised to acetaldehyde (by alcohol dehydrogenase, ADH) and 

subsequently to acetic acid (by aldehyde dehydrogenase, Al-DH).  The concomitant reduction of 

NAD+ to NADH was monitored at A340. 

 

NADHdeacetaldehyNADethanol ADH +⎯⎯ →⎯+ +  

 

NADHacidaceticNADdeacetaldehy DHAl +⎯⎯ →⎯+ −+  

 

Reagents: 

20 mM NAD+ solution (pH 7.5) 

Buffer A: 100 mM phosphate buffer, (0.995 g/l KH2PO4, 16.33 g/l K2HPO4, pH 7.5 using 

HCl/NaOH) with 1 g/l bovine serum albumin (as a stabilising agent). 

Buffer B: 0.65 M potassium pyrophosphate (pH 9.0 using HCl/NaOH) 

ADH, EC 1.1.1.1, 190 U/ml in Buffer A (Sigma, A-7011) 

Al-DH, EC 1.2.1.5, 5.0 U/ml in Buffer A (Sigma, A-6338) 

 

1 U ADH will oxidise 1.0 µmol ethanol to acetaldehyde per min at pH 8.8 and 25 °C. 

1 U Al-DH will oxidise 1.0 µmol acetaldehyde to acetic acid per min at pH 8.0 and 25 °C. 

 

Method: Lyophilised enzymes were resuspended in cold buffer A (4 °C) to the concentrations 

specified, aliquoted, and stored at –80 °C.  For use enzyme suspensions were thawed and kept on 

ice.  A pre-reaction mixture was prepared containing 23.81 ml buffer B, 23.81 ml NAD+ solution 

and 0.5 ml Al-DH suspension (assay concentration: 16.18 U/l).  Aldehyde was initially removed 

by adding 420 µl pre-reaction mixture to 1000 µl sample and incubating for 3 min.  The resultant 
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A340 was recorded.  The activity of Al-DH was confirmed using 100 µM formaldehyde, under 

assay conditions (Figure 4.1-m, part B).  Ethanol was then determined from the increase in A340 

(ΔA340) following the addition of 20 µl ADH suspension (assay concentration: 2.64 U/ml) and an 

incubation for 3 min.  Calibration curves were re-drawn for each experiment. 
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Figure 4.1-m  Analysis of ethanol. 
Sample calibration curve (A) and kinetics of the oxidation of 100 µM ethanol under assay 
conditions and 100 µM formaldehyde by aldehyde dehydrogenase only (B). 
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4.1.6 Reynolds number in an electrodialysis cell 

It was found (M. Wright, EKB Technolgy Ltd. pers. comm.) that limiting current density (LCD) 

in the electrodialysis cell (chapter 2.5) was related to the turbulence of fluid flow through the cell, 

which is routinely represented by a dimensionless vector called Reynolds number (Re).  

Information on the calculation of Re was sourced from www.engineeringtoolbox.com and [142] 

with guidance from D. Stratton-Campbell (C-Tech Innovation Ltd.). 

 

v
Lμ

=Re    (equation 1) 

where 
µ is the fluid velocity (m/s) 
L is the characteristic length (m) 
v is the kinematic viscosity (m2/s) 
 

Using the values for µ, L and v calculated below, Re was found to be 173, a similar value to those 

calculated by EKB Technology, which suggests laminar flow as Re values in excess of 105–106 

are indicative of turbulent flow over a flat plate.  However, the calculation did not account for 

additional turbulence due to plastic mesh occupying each chamber. 

 

4.1.6a Fluid velocity (µ) 

Fluid velocity was assumed to be similar in all four chambers of the ED cell, being created by a 

single 4-channel pump using identical pump-tubing (Norprene L/S 18, Cole-Parmer) for each 

channel.  The measured flow rate of 450 cm3/min was converted to 0.0219 m/s (µ) using the 

length (15.70 cm) and volume (53.81 cm3) of a single chamber of the ED cell.  To determine the 

chamber volume occupied by fluid, the volume of an internal plastic mesh was subtracted from 

the total chamber volume, which was calculated from the chamber dimensions (15.70 cm, 12.35 

cm, 0.32 cm).  The mesh volume was determined to be 0.04 cm3/cm2 using a eureka can, and the 

area of mesh occupying the chamber was 193.9 cm2, indicating a mesh volume of 7.76 cm3. 
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4.1.6b Characteristic length (L) 

Characteristic length concerns the cross-section of the vessel through which fluid flows.   

P
AL 4

=     (equation 2) 

where  
A is the cross-sectional area perpendicular to the direction of fluid flow (m2) 
P is the perimeter (m) 
 

For this cell, A was 3.92 cm2, and P was 25.34 cm, therefore L was 0.00619 m. 

 

4.1.6c Kinematic velocity (v) 

ρ
zv =       (equation 3) 

where 
z is the dynamic viscosity (N.s/m2 = Pa.s = kg/m.s) 
ρ is the fluid density (g/l = kg/m3) 
 
The dynamic viscosity for water is 801.5 x10-6 N.s/m2 at 30 °C and the density of a typical E. coli 

culture was determined gravimetrically to be 1023.67 g/l, indicating a kinematic velocity of 0.783 

x10-6 m2/s. 
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4.1.7 Search results: protein-BLAST (basic local alignment search tool)  

BLAST search results relate specifically to section 2.2.4b where interpretation is given. 

 

4.1.7a BLAST results for Euglena gracilis trans-2-enoyl CoA reductase 

Query: trans-2-enoyl CoA reductase of Euglena gracilis (UniProtKB/Swiss-Prot entry Q5EU90) 

The search was limited to Escherichia coli (Taxid 562). 

 
Table 4.1-6  Sequences producing significant alignments – Euglena gracilis 

Accession Annotation % identity 
Putative enzyme [Escherichia coli O157:H7 EDL933] NP_289367 40 
hypothetical protein ygdL [Escherichia coli CFT073] NP_755258 40 

ZP_00713503 COG1179: Dinucleotide-utilizing enzymes involved in 
molybdopterin and thiamine biosynthesis family 1 [Escherichia 
coli E110019] 

40 

40 ZP_00725616 COG1179: Dinucleotide-utilizing enzymes involved in 
molybdopterin and thiamine biosynthesis family 1 [Escherichia 
coli F11] 
conserved protein [Escherichia coli K12] 40 NP_417292 
large subunit terminase [Escherichia coli O157:H7] BAA94157 25 

NP_286986 partial putative terminase large subunit of bacteriophage BP-933W 
[Escherichia coli O157:H7 EDL933] 

25 

hypothetical protein UTI89_C0238 [Escherichia coli UTI89] YP_539272 33 
ZP_00725559 COG3515: Uncharacterized protein conserved in bacteria 

[Escherichia coli F11] 
33 

hypothetical protein APECO1_1771 [Escherichia coli APEC O1] YP_851414 33 
Sequences are listed in order of decreasing similarity based both on % identity (shown) and % 
similarity (not shown). 
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4.1.7b BLAST results for clostridial butyryl-CoA dehydrogenase 

Query: butyryl-CoA dehydrogenase (BCAD) of Clostridium acetobutylicum ATCC 824 

(accession P52042). 

The search was limited to Escherichia coli (Taxid 562). 

 

Table 4.1-7  Sequences producing significant alignments – Clostridium actobutylicum 
Accession Annotation % identity 

COG1960: Acyl-CoA dehydrogenases [Escherichia coli F11] ZP_00726504 32 
Putative acyl-CoA dehydrogenase [Escherichia coli CFT073] NP_754356 33 
putative acyl-CoA dehydrogenase [Escherichia coli UTI89] YP_541217 33 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli E24377A] ZP_00702410 28 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli F11] ZP_00721216 28 
crotonobetainyl-CoA dehydrogenase [Escherichia coli O157:H7 
EDL933] 

NP_288129 30 

acyl-coA dehydrogenase [Escherichia coli APEC O1] YP_852786 30 
predicted acyl-CoA dehydrogenase [Escherichia coli K12] NP_416210 30 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli E24377A] ZP_00704000 30 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli 101-1] ZP_00924637 30 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli 53638] ZP_00736180 30 
acyl-CoA dehydrogenase [Escherichia coli O157:H7 EDL933] NP_285938 25 

Q8X7R2 Acyl-coenzyme A dehydrogenase (ACDH) 25 
acyl-CoA dehydrogenase [Escherichia coli] AAM28523 25 
acyl-CoA dehydrogenase [Escherichia coli CFT073] NP_752308 25 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli F11] ZP_00725541 25 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli B7A] ZP_00717599 25 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli E110019] ZP_00721365 25 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli 101-1] ZP_00924937 25 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli E24377A] ZP_00702595 25 
acyl coenzyme A dehydrogenase [Escherichia coli K12] NP_414756.2 25 
acyl-CoA dehydrogenase [Escherichia coli UTI89] YP_539295 25 
acyl-CoA dehydrogenase [Escherichia coli APEC O1] YP_851438 25 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli HS] ZP_00708103 23 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli E24377A] ZP_00702165 23 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli B7A] ZP_00717627 23 
acyl-CoA dehydrogenase domain protein [Escherichia coli B] ZP_01699570 23 
putative acyl coenzyme A dehydrogenase [Escherichia coli 
O157:H7 strain Sakai] 

NP_313190 23 

putative acyl coenzyme A dehydrogenase [Escherichia coli 
O157:H7 EDL933] 

NP_290817 23 

COG1960: Acyl-CoA dehydrogenases [Escherichia coli 101-1] ZP_00923728 23 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli 53638] ZP_00737581 23 
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AAC18889 putative; homology to acyl CoA dehydrogenases and isovaleryl 
CoA dehydrogenases [Escherichia coli] 

23 

isovaleryl CoA dehydrogenase [Escherichia coli K12] NP_418608.4 23 
putative acyl-CoA dehydrogenase [Escherichia coli APEC O1] YP_859856 22 
putative acyl-CoA dehydrogenase [Escherichia coli UTI89] YP_543722 22 
AidB protein [Escherichia coli CFT073] NP_757122 22 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli F11] ZP_00726185 22 

BAA07583 'YafH [Escherichia coli W3110] 32 
COG1960: Acyl-CoA dehydrogenases [Escherichia coli B7A] ZP_00714579 30 
respiratory nitrate reductase 2 alpha chain [Escherichia coli UTI89] YP_540695 36 

Sequences are listed in order of decreasing similarity based both on % identity (shown) and % 
similarity (not shown). 
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4.2 Additional publications 
The work described in this thesis has been published and disseminated as follows 

(chronologically). 

 

4.2.1 Publications in which the author played primary role 

• Magazine article: Redwood MD (2006) Microbial biotechnology: small bugs for big business; 
Green energy from chocoholic microbes. Society for General Microbiology, Research 
Matters Magazine. 
Role: author  
Reproduced within appendix 4.2.1 

• Conference manuscript: Redwood MD, Deplanche K, Yong P, Baxter-Plant VS, Macaskie 
LE. Biomass-supported palladium catalysts on Desulfovibrio and Rhodobacter. Proceedings 
of the 16th International Biohydrometallurgy Symposium (IBS 2005), Cape Town, S. Africa. 
Editors: Harrison STL, Rawlings DE, Petersen J. ISBN: 1-920051-17-1 p. 335-342 
Role: author 
Rreproduced within appendix 4.2.1 

• Journal article: Redwood MD & Macaskie LE (2006). A two-stage, two-organism process for 
biohydrogen from glucose. International Journal of Hydrogen Energy 31(11):1514-1521 
Role: author 
Reproduced in chapter 2.4. 

• Patent: Named inventor, British Patent Application Number 0705583.3 entitled “Apparatus 
and Method for Biohydrogen Production” (March 2007). 
Role: inventor/co-author 
Reproduced within appendix 4.2.1 

• Journal article: Redwood MD, Deplanche K, Baxter-Plant VS, Macaskie LE (2008) Biomass-
supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides. 
Biotechnol Bioeng 99(5):1045-1054. 
Role: author 
Reproduced in chapter 2.7 

• Journal article: Redwood MD, Mikheenko IP, Sargent F, Macaskie LE (2008) Dissecting the 
roles of E. coli hydrogenases in biohydrogen production. FEMS Microb Lett 278:48-55. 
Role: author 
Reproduced in chapter 2.1 

• Invited review: Redwood MD, Paterson-Beedle M, Macaskie LE.  Integrating dark and light 
biohydrogen production strategies: towards the hydrogen economy. Reviews in 
Environmental Science and Biotechnology, in submission. 
Role: author 
Reproduced in chapter 1.2 
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4.2 Appendices – Additional publications 
Redwood MD (2006) Microbial biotechnology: small bugs for big business; Green energy from chocoholic microbes. Society for General 
Microbiology, Research Matters Magazine. 

Green energy from chocoholic microbes 
Sweet, yummy chocolate; loved by everybody… even by bacteria!  Under special conditions 
feeding chocolate to bacteria forces them to produce hydrogen, the fabled ‘fuel of the future’.  
By teaming up different kinds of bacteria, Scientists at the University of Birmingham are making 
hydrogen from chocolate-waste.  This technology could ease the need for scarce landfill sites, 
and cut emissions of greenhouse gases like methane and carbon dioxide, helping Kyoto 
targets to be met. 

Industries that generate sugary waste could use hydrogen, made by bacterial teamwork 
(biohydrogen), to generate electricity on-site and cut electricity bills and waste-disposal costs.  
 

 
“The tricky part is getting the bacteria to pull together, but early results are promising.”   

- Mark Redwood of the University of Birmingham. 
 

While the food-processing industry is the first target, this principle could later be applied to 
household waste.  Homes and communities could use the kind of waste that would normally go 
on compost heaps to reduce electricity bills. 

The bacterial team would include E. coli, a friendly gut microbe, and the soil-living Purple 
Bacteria.  As E. coli makes biohydrogen, it uses up the high-energy substances in the food-
waste (like sugars), leaving behind low-energy substances.  Purple Bacteria use energy from 
sunlight, to clean up the last of the waste, and make more biohydrogen.  In this way, none of the 
starting material is wasted.  The system is being tested using waste from a well-known chocolate 
company. 

Hydrogen can be converted to electricity by a fuel cell, and the only waste is water, whereas 
burning oil and natural gas (fossil-fuels) creates greenhouse gases, acid rain and smog.  This 
kind of alternative energy strategy is becoming increasingly important, but not just 
because of global warming and Kyoto targets.  At best, we have until 2050 before 
demand for fossil-fuels outstrips supply, creating worldwide economic chaos.  That is, 
unless alternatives like hydrogen are open to people in time. 
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ABSTRACT

A novel Rhodobacter sphaeroides-supported palladium catalyst was compared with a previously

studied Desulfovibrio desulfuricans-supported catalyst and unsupported palladium. The cell surface

localisation of palladium deposits on cells of R. sphaeroides was similar to previous observations of D.

desulfuricans-bound particles but the frequency of deposits differed among equally loaded preparations.

These differences may underlie the observation of different activities of Desulfovibrio- and

Rhodobacter-supported catalysts, when compared with respect to their ability to promote hydrogen

release from hypophosphite and to catalyse the reductive dehalogenation of chlorinated aromatic

compounds. A Desulfovibrio-supported preparation would be potentially more useful in the reductive

dehalogenation of polychlorinated biphenyls, whereas a Rhodobacter-supported catalyst would be

preferable for the remediation of pentachlorophenol.

Keywords: palladium, catalyst, Rhodobacter sphaeroides, Desulfovibrio desulfuricans, reductive

dehalogenation, polychlorinated biphenyls.

INTRODUCTION

The application of Rhodobacter sphaeroides in palladium recovery from solution and in catalysis

using the resulting palladised biomass was investigated in comparison with the previously studied

Desulfovibrio desulfuricans. R. sphaeroides is a member of the purple non-sulphur (PNS) bacteria, the

metal interactions of which were first noted by Moore et al. (1992) [1], with some strains exhibiting

intrinsically high resistance to various metallic pollutants such as chromate [2], rhodium [1], tellurite/

tellurate [1, 3, 4] and selenite/selenate [1, 5, 6].

Dissimilatory metal reduction is a widespread mode of bacterial respiration in which simple organic

substrates are oxidised and metals can act as the primary or sole terminal electron acceptor. For

example, Geobacter metallireducens can oxidise various alcohols and simple organic molecules (e.g.

acetate) to reduce Fe(III) to Fe(II) or U(VI) to U(IV) [7]. Conversely, in PNS bacteria metal reduction

was widely concluded to be a mechanism of detoxification to permit growth in the presence metallic ions

in an oxidised form [1-6]. Since Rhodobacter spp. are well documented to reduce metal ions [1-6] the first

objective of this study was to evaluate the ability of R. sphaeroides to reduce Pd(II) to Pd(0).

In nature palladium occurs as a base metal (Pd(0)) in mixed ores with other platinum group metals

(PGM) and nickel. It is used extensively in automotive catalysts and in industrial reactions where PGM

catalysts are necessary (e.g. hydrogenation reactions) [8]. Efficient use of catalyst is essential due to the

increasing price of palladium and finite ore resources [8]. Palladium can be reclaimed from wastes (e.g.

spent automotive catalytic converters and electronics scrap) by solubilising with aqua regia, where Pd(0)

is oxidised to Pd(II) in the form of the [PdCl4]
2- anion to create a Pd(II)-rich leachate [9]. In order to

regenerate Pd(0), a reducing mechanism is required. Soluble Pd(II) can be reduced by a suitable electron

donor such as H2 but the rate was greatly accelerated in the presence of cells of Desulfovibrio spp. [10].

In this process the cells became ‘palladised’ (coated with a fine layer of Pd(0) nanocrystals) and the

palladised biomass was shown to be an active catalyst using various test reactions [9, 11-14].

For preparation of Bio-Pd(0) catalyst, Pd(II) was initially removed from solution by biosorption [15]

and reduction of sorbed Pd(II) was initially mediated by periplasmic hydrogenases [11]. On provision of

an excess of reductant, crystal growth continued until Pd(II) was completely removed from the medium.

Hence, palladised biomass of a known Pd:biomass loading ratio could be produced by reducing a

known mass of Pd(II) in the presence of a known mass of cells. The resultant dried palladised biomass

(Bio-Pd(0)) offered improved catalytic activity when compared with unsupported Pd(0) powder

prepared chemically under H2 (Chem-Pd(0)) and when compared with finely divided Pd(0) [13, 14]. The
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increased catalytic activity of Bio-Pd(0) was attributed to reduced Pd(0) particle size as the crystals

accumulated on biomass had only half the diameter compared to particles of Chem-Pd(0) [13]. Smaller

crystals would present a larger surface area, leading to a higher catalytic activity from a constant mass

of Pd(0), and indeed a subpopulation of Pd(0) nanoparticles (*5 nm diameter) was detected

magnetically [11]. The Bio-Pd(0) can thus be described as a bionanocatalyst.

Biomass-supported palladium catalysts have potential applications. Bio-Pd(0) prepared using D.

desulfuricans was shown to be catalytically active in reductive dehalogenation reactions [10, 14].

Halogenated aromatic compounds (e.g. chlorinated phenols and biphenyls) represent a group of

persistent environmental contaminants. Pentachlorophenol (PCP) is widely used as a wood preservative

and as a pesticide. Polychlorinated biphenyls (PCBs) were industrially prevalent due to their stability

and thermal insulation properties, and were introduced into the environment from anthropogenic

sources. Although industrial use and production have ceased, PCBs persist in sediments and aquifers,

leading to bioaccumulation in fish stocks and continuing damage to human health [16]. Dehalogenation

is a prerequisite in the biodegradation of chlorinated aromatics because the chloride substitutions

protect the aromatic rings from microbial oxygenases [17], but this process occurs only very slowly in

the environment. Bio-Pd(0) was shown previously to catalyse the dechlorination of PCBs [10].

Cellular surface chemistry may influence the biosorption and hydrogenase-mediated reduction of

Pd(II) [12], thus affecting the patterning and hence potentially, the properties of the resultant Bio-Pd(0).

Preliminary results indicated that R. sphaeroides can nucleate Pd(0) and form an active catalyst,

prompting a comparison of Bio-Pd(0)Rhodobacter with Bio-Pd(0)Desulfovibrio.

Bio-Pd(0) was prepared using D. desulfuricans and R. sphaeroides at various Pd(0) loadings (25%,

5%, 1% w/w). The cellular localisation of Pd(0) deposits was determined by transmission electron

microscopy (TEM), and with the objective to compare the catalytic efficacy of Bio-Pd(0)Desulfovibrio and

Bio-Pd(0)Rhodobacter, the respective catalytic properties were investigated in tests based on H2 release

from hypophosphite [13] and dehalogenation of chlorinated aromatic compounds [10].

MATERIALS AND METHODS

Microorganisms and culture conditions

Desulfovibrio desulfuricans (NCIMB 8307) was maintained and cultured as described previously [13].

Rhodobacter sphaeroides O.U.001 (DSMZ 5864) was held in stock at -808C (in 15% glycerol v/v),

revived on nutrient agar (308C) and cultured in full sealed bottles under fluorescent illumination (39.5

ı̀M photons m-2 s-1 measured by PAR light meter SKP200, Skye Instruments Ltd.) at 308C using the

SyA medium described in [18].

Determination of dry weight

Biomass concentration (mg dry weight cm-3) was calculated from optical density (660 nm) with

reference to a conversion, determined previously in triplicate by recording optical densities from dense

cultures after various dilutions in deionised H2O. Cultures were washed twice by centrifugation/

resuspension (2400 x g, 20 min, 48C, 50 cm3) before drying at 608C to constant mass.

Preparation of Bio-Pd(0)

The procedure was based on that described previously [13, 14]. Bacterial cells were harvested from the

mid-logarithmic phase of growth by centrifugation (11900 x g, 10 min) and resuspended in a small

volume of sterile buffer (20 mM sodium morpholinepropanesulphonic acid (MOPS) (pH 7)). Analar

reagents were used throughout to reduce the chloride background in dehalogenation assays.

Aliquots of cell concentrate and Pd(II) solution (Na2PdCl4 Sigma) were mixed to produce the desired

mass ratio. For example, in order to produce Bio-Pd(0) loaded at 25% Pd(0) (w/w), 0.1 g Pd(II) and 0.3

g cell dry weight were mixed in 0.01 mM HNO3, pH 2. Mixtures (50-100 cm3) were sealed in 100 cm3

serum bottles with butyl rubber stoppers and aluminium tear seals, degassed under vacuum (5 min),

sparged with oxygen-free N2 (10 min) and incubated statically (308C, 60 min) to allow biosorption of

Pd(II) before sparging with H2 (15 min) after which loss of Pd(II) was confirmed by assay (below). The

preparations were harvested by centrifugation (39200 x g, 10 min) and washed three times in sterile

MOPS buffer (above) and once in acetone and dried at 608C. Chemically reduced Pd(0) (Chem-Pd(0))
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was prepared in parallel without bacterial cells and with complete Pd(II) reduction requiring 60 min

under H2. Dried material was ground using a pestle and mortar before catalytic testing.

Assay for Pd(II)

Before harvesting palladised biomass, complete reduction of Pd(II) was confirmed by reading the

A420 in a variable wavelength spectrometer (Ultraspec III, Pharmacia Biotech). This assay method was

validated previously using the SnCl2 method, and polarographically [11].

Electron Microscopy

Samples of palladised biomass were washed as above, omitting the acetone wash, and prepared for

examination by transmission electron microscopy (TEM) as described by Baxter-Plant et al. [10].

Evaluation of catalytic activity by the hypophosphite test reaction

The method was developed from Yong et al. [13]. For assay, each reaction contained 0.5 mg Pd(0) as

a variable mass of total material dependent upon the Pd(0) fraction. The preparations were resuspended

in 10 cm3 of 10 % NaH2PO2(aq), buffered with MOPS (0.5 M, pH 8), at 258C. After the onset of gas

release the volume of H2 generated over 30 min was measured using a water trap. The pH of reaction

mixtures was unchanged after 30 min.

Assay for catalytic dehalogenation of chlorinated aromatic compounds

Dehalogenation of chlorophenols and polychlorinated biphenyls (PCBs) by Bio-Pd(0) was

demonstrated previously (using formate as the reductant) [10], and has applications in remediation

technology. The substrates tested are shown in Table 1. Chlorophenols and PCBs were purchased from

Aldrich and QMX Laboratories Ltd., respectively, and were used at equivalent concentrations of

chloride.

Table 1. Chlorinated aromatic compounds used as substrates for catalytic dehalogenation tests

* Due to their low water solubility, the aromatic substrates were used as hexane in water suspensions. The
concentration shown is that in the 10 cm3 of test mixture, the actual concentration in the aqueous phase was not
determined. Solubilities of PCBs in water were given in [10].

For assay, each reaction contained 2 mg of test catalyst (i.e. total material: Pd(0) and biomass

component), resuspended in sterile 20 mM MOPS-NaOH buffer (pH 7) and aromatic substrate

(dissolved in hexane) to a total volume of 10 cm3. After settling (5 min) a 1 cm3 sample was taken from

the aqueous fraction. The reaction was started by the addition of 1 cm3 1 M formic acid and further

samples were taken at suitable intervals. Catalyst was separated from the aqueous phase by

centrifugation (13000 x g, 4 min), and 0.84 cm3 of supernatant was transferred into cuvettes. Reductive

dehalogenation was monitored by the release of chloride, as determined by the mercury (II) thiocyanate

method, scaled down from the method of Mendam et al. [19]. A standard curve was prepared using

NaCl in MOPS buffer. Assay interference by the organic components was excluded experimentally.
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RESULTS

Examination of the palladised biomass under electron microscopy

R. sphaeroides was successfully palladised without modification to the procedure, as shown by the

appearance of black Pd(0) deposits under TEM (Figure 1). Despite morphological differences between

cells of D. desulfuricans and R. sphaeroides, Pd(0) deposits exhibited similar cell surface locations and

morphologies, but the frequency of Pd(0) deposits was apparently lower on R. sphaeroides than on D.
desulfuricans, despite equal Pd(0) loading weight for weight, as determined by loss of Pd(II) from the

palladisation mixture in each case.

Figure 1: TEM sections of D. desulfuricans (D) and R. sphaeroides (R) palladised to 25% Pd(0) w/w

Da,Ra : non-loaded cells (bar: 2 mm) Db,Rb: cells palladised at 25% w/w (bar: 2 mm) Dc,Rc:

morphologies of Pd(0) deposits (bar: 0.2_mm).

Evaluation of catalytic activity by the hypophosphite test

Hydrogen evolution from hypophosphite was used as an indicator of catalytic activity for various

preparations (Figure 2). Bio-Pd(0) loaded at 1 %, 5 % and 25 % Pd(0) w/w was tested along with

Chem-Pd(0) (100% Pd(0) w/w) and non-palladised biomass (0 % Pd(0) w/w).

Non-palladised biomass promoted no H2 evolution, as did Bio-Pd(0)Rhodobacter and Bio-

Pd(0)Desulfovibrio loaded at 1% Pd(0) w/w. The highest rate of H2 generation was seen using Bio-

Pd(0)Desulfovibrio loaded at 25% Pd(0) w/w, at more than four times the rate using Chem-Pd(0). When

compared at 5% Pd(0) (w/w) the rate using Bio-Pd(0)Desulfovibrio was only slightly higher (1.4 times) than

using the Bio-Pd(0)Rhodobacter, whereas at 25% Pd(0) (w/w) the rate was 2.3 times higher.

All Bio-Pd(0) preparations, loaded at 5% or 25% on Rhodobacter or Desulfovibrio, were more

catalytically active than Chem-Pd(0). By this test, the most highly loaded Desulfovibrio preparation (25

% Pd(0) w/w) was most active, whereas a moderately loaded Rhodobacter preparation (5 % Pd(0) w/w)

was most active. It was also observed that cells with lower loadings of Bio-Pd(0) were more readily

resuspended in the reaction mixture than cells with higher loadings, which may have been a contributing

factor to catalytic activity (see discussion).
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Figure 2: Rates of H2 generation from hypophosphite by various catalytic preparations. All reactions

contained 0.5 mg Pd(0). Data are means and standard errors from four experiments. No H2 was generated
using unloaded biomass or Bio-Pd(0) loaded at 1% Pd(0) w/w.

Evaluation of catalytic activity by reductive dehalogenation of chlorinated aromatic compounds

Bio-Pd(0)Rhodobacter, Bio-Pd(0)Desulfovibrio (25% Pd(0) w/w) and Chem-Pd(0) were tested for the

capacity to catalyse reductive dechlorination of chlorophenols (2-chlorophenol and pentachlorophenol)

and polychlorinated biphenyls (PCBs). Controls, i.e. non-palladised biomass and Bio-Pd(0) of each type

without electron donor promoted no chloride release.

Chloride release from 2-chlorophenol (2-CP)

Constant rates of chloride release from 2-CP were observed using all three catalysts over 60 min (time

course not shown). The highest chloride release (36.14 mg cm-3) was observed using Bio-Pd(0)Desulfovibrio

(Table 2). The corresponding rates using Bio-Pd(0)Rhodobacter and Chem-Pd(0) were 53 % and 33% of

this, respectively. On a mass of Pd(0) basis the differences between Bio-Pd(0) preparations and Chem-

Pd(0) can be corrected by a factor of 4, i.e. the chloride release for Bio-Pd(0)Rhodobacter and Bio-

Pd(0)Desulfovibrio were 12.2 and 6.5 times higher than for Chem-Pd(0), respectively.

Table 2: Chloride release from chlorophenols and PCBs

* Data represent the increase in chloride concentration after 60 min for chlorophenols, and 24 hours for PCBs. Data
are means + standard errors from at least three independent experiments. Note that since the Pd:biomass ratio was
1:3, the data for Bio-Pd(0) can be multiplied by four for direct comparison with Chem-Pd(0) on a mass of Pd(0) basis.
no sig Cl- : significant chloride was not detected. Assay sensitivity was 0.5-100 mg Cl- cm-3.

339



Chloride release from pentachlorophenol (PCP)

Table 2 shows chloride release from PCP after 1 hour, at which point the only extensive

dehalogenation took place with Bio-Pd(0)Rhodobacter. In the case of PCP, a delay was observed for Bio-

Pd(0)Desulfovibrio and Chem-Pd(0), the first significant chloride being detected after 1-2 hours, while Bio-

Pd(0)Rhodobacter catalysed a similar overall extent of dechlorination, but with the first chloride release

detected within 40 min (Figure 3).

Figure 3: Reductive dehalogenation of pentachlorophenol (PCP) Pd(0) catalysts (solid lines): ( ^ )
25% Bio-Pd(0)Desulfovibrio ( * ) 25% Bio-Pd(0)Rhodobacter ( ~ ) Chem-Pd(0) Pd(0)-free controls
(dashed lines): ( ^ ) Desulfovibrio biomass ( * ) Rhodobacter biomass. Data represent means and

standard errors from at least three independent experiments. Note that since the Pd:biomass ratio was 1:3,

the data for Bio-Pd(0) can be multiplied by four for direct comparison with Chem-Pd(0) on a mass of
Pd(0) basis. Error bars not shown are within the dimensions of the symbols.

After 6 hours the highest release of chloride was obtained using Bio-Pd(0)Rhodobacter and the

corresponding value for Bio-Pd(0)Desulfovibrio was only slightly lower (Figure 3). On the basis of chloride

release per mass of Pd(0), both Bio-Pd(0) preparations were over four times as active as Chem-Pd(0).

Chloride release from polychlorinated biphenyls (PCBs)

Chloride release from various PCBs (listed in Table 1) was determined after 24 hours (Table 2). The

greatest PCB dehalogenation was observed using Bio-Pd(0)Desulfovibrio with PCB 28 (see Table 1). The

corresponding values were 11 % and 43% of this with Bio-Pd(0)Rhodobacter and Chem-Pd(0),

respectively. On a mass of Pd(0) basis, the extent of dehalogenation with Bio-Pd(0)Rhodobacter was

equivalent to that observed with Chem-Pd(0), whereas Bio-Pd(0)Desulfovibrio was superior to Chem-Pd(0)

by 9.4-fold.

This trend for the Bio-Pd(0)s was seen for the majority of the PCBs tested (Table 2), although Bio-

Pd(0)Rhodobacter was comparable to its Desulfovibrio counterpart in the case of PCB 52. The controls

(non-palladised biomass) exclude the possibility of chloride release from the biomass component of Bio-

Pd(0). The observation of no significant chloride was seen in some tests of Bio-Pd(0)Rhodobacter,

confirming that the background matrix was essentially chloride free and that palladisation did not

permit chloride release from biomass.

These preliminary tests showed that both biomass-supported catalysts were superior to Chem-Pd(0),

while Bio-Pd(0)Desulfovibrio was overall more effective than Bio-Pd(0)Rhodobacter for reductive

dehalogenation of chlorinated aromatics at a loading of 25% Pd(0) w/w.
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DISCUSSION

Cell-surface localisation of Pd(0) deposits was similar on cells of R. sphaeroides and D. desulfuricans

(Figure 1). A periplasmic origin for Pd(0) crystals in D. desulfuricans was shown previously to derive

from an involvement of periplasmic hydrogenases in the reduction of sorbed Pd(II) and hydrogenase

activity was confirmed throughout the incubation period under H2 [11]. The TEM study (Figure 1)

demonstrated an origin for Pd(0) crystals in the periplasm of R. sphaeroides, suggesting that periplasm-

orientated reductase activity may also initiate Pd(II) reduction in this species.

It was observed that the frequency of Pd(0) deposits was lower, and less Pd(0) was visible on cells of

R. sphaeroides than on D. desulfuricans, although the ratio of Pd:biomass (w/w) was maintained

constant. The TEM evidence excludes the presence of significant internal Pd(0) deposits, but it is

possible that with R. sphaeroides a proportion of the Pd(0) deposits were below the limit of resolution.

Use of biomass as a support in catalyst preparation augmented catalytic activity, which indicates the

increased availability of palladium catalytic surface. This was previously attributed to reduced particle

size [13], while a further contributing factor may be the increased dispersion of the overall material and

stabilisation of nanoparticles on the biomass. As the Pd(0) loading decreased, the material became more

readily held in suspension (unpublished observations), which may have improved mixing in the reactors,

thus increasing access to Pd(0). The evidence from Bio-Pd(0)Rhodobacter supports the hypothesis that an

increased proportion of support could lead to increased access to Pd(0), because in the hypophosphite

test, activity increased while Pd(0) loading decreased from 100% (Chem-Pd(0)) to 25% to 5% (w/w).

However, for Bio-Pd(0)Desulfovibrio there was less activity at 5% than at 25% Pd(0) (w/w), suggesting that

other factors were also important.

For catalytic testing in reductive dehalogenation of chlorinated aromatic compounds, the Bio-Pd(0)

loadings were set at 25% Pd(0) (w/w). Different chlorinated aromatic compounds have different

industrial uses (see introduction) and a catalyst targeting a specific waste would be highly beneficial.

These studies show that in the case of PCBs Desulfovibrio-supported catalyst was superior, whereas in

the case of pentachlorophenol, although the overall activity of both biomass-supported catalysts was

similar, the Bio-Pd(0)Rhodobacter could offer a significant advantage for the treatment of industrial waste

streams where a rapid rate would reduce the flow residence time. In contrast, for ‘historical’ problems

such as PCP-contaminated soil, where the timescale is less important, Rhodobacter- and Desulfovibrio-

supported catalysts would be equally useful.

The effect of Pd(0) loading on dehalogenation activity was not investigated, but the results of the

hypophosphite test suggest these effects may be species-specific. Future studies will focus on such

optimisation of the biocatalyst for PCB dehalogenation and also examine other bacterial species with

metal reductase activity.
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APPARATUS AND METHOD FOR BIOHYDROGEN PRODUCTION 
 
The present invention relates to the production of hydrogen using bacteria (biohydrogen 
production).  More specifically, it relates to an apparatus and a method for biohydrogen 
production by fermentation of sugars by bacteria such as Escherichia coli, and photofermentation 
of the resulting organic acids by photoheterotrophic bacteria such as Rhodobacter sphaeroides.  
The present invention further relates to a method to improve biohydrogen production, and the 
uses of electric current in such methods to control ammonium transport and to improve 
biohydrogen production.  
 
Biohydrogen is anticipated to play an important role in the future hydrogen economy, as it can be 
produced from readily available renewable substrates.  Sugars are promising substrates for 
biological H2 production, being readily and renewably available and potentially giving a high 
yield of H2 (Equation I). 
 
 C6H12O6 + 6 H2O  12 H2 + 6 CO2 (I) 
 
The stoichiometric yield of 12 mol H2 per mol hexose represents the ultimate target for 
biohydrogen production.  No single organism is capable of performing the conversion with this 
efficiency.  In fact, the thermodynamic maximum yield for dark fermentation is 4 mol/mol (the 
Thauer limit) as illustrated in Equation II: 
 
Fermentation: 
 C6H12O6 + 2 H2O  4 H2 + 2 CH3COOH + 2 CO2 (II) 
 
In order to improve the H2 production efficiency of the process, therefore, it is necessary to 
further convert the organic acids of Equation II, theoretically producing a further 8 mol of H2: 
 
Photofermentation: 
 2 CH3COOH + 4 H2O  8 H2 +4 CO2 (III) 
 
Equations II and III describe an ideal situation in which all carbon substrate is processed along 
the appropriate pathways and none is diverted to the formation of biomass or alternative 
metabolites.  In practice, fermentation will produce a range of organic compounds, according to 
the precise fermentation conditions used.  In order to maximise the efficiency of the process, it is 
necessary that as many as possible of these organic compounds can be converted to produce 
hydrogen gas. 
 
Similarly, although the fermentation of Equation II is shown acting on a simple hexose, in 
practice a sugar feed solution may also contain more complex carbohydrates.  In order to 
maximise the efficiency of the process, it is necessary that different hexoses and more complex 
carbohydrates can be converted to produce hydrogen gas. 
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According to a first aspect of the present invention, there is provided an apparatus for 
biohydrogen production, comprising a cell having an anion-selective membrane dividing the cell 
into first and second compartments, the first compartment having a cathode, and the second 
compartment having an anode, wherein the first compartment is in fluid communication with a 
bacterial fermentation culture, and the second compartment is in fluid communication with a 
photoheterotrophic bacterial culture. 
 
In one embodiment, the apparatus additionally comprises a first reactor for fermentation, in fluid 
communication with the first compartment of the cell.  This reactor may store the majority of the 
bacterial fermentation culture, with culture medium from the first reactor being pumped to the 
first compartment of the cell and then returning to the first reactor.  This allows the volume of 
culture medium to be varied, whilst maintaining the same design of cell.  It also reduces the 
proportion of time for which any given bacterium is subject to the effects of the electric field 
within the cell; exposure to electric field is thought to reduce the viability of cell cultures. 
 
In one embodiment, the apparatus additionally comprises a second reactor for photoheterotrophy, 
in communication with the second compartment of the cell.  This reactor may store the majority 
of the photoheterotrophic bacterial culture, with culture medium from the second compartment of 
the cell being pumped to the second reactor, and then returning to the second compartment of the 
cell.  As above, this allows for flexibility in the volume of culture medium used, and reduces the 
proportion of time for which the individual bacteria of this culture are exposed to the electric 
field within the cell. 
 
According to a second aspect of the present invention there is provided a method for biohydrogen 
production, comprising: 

a) providing an apparatus comprising a cell having an anion-selective membrane dividing 
the cell into first and second compartments, the first compartment having a cathode, and 
the second compartment having an anode, wherein the first compartment is in fluid 
communication with a bacterial fermentation culture, and the second compartment is in 
fluid communication with a  photoheterotrophic bacterial culture; 

b) supplying the bacterial fermentation culture with an aqueous solution of at least one 
fermentable carbohydrate, such that the bacterial fermentation culture ferments the 
fermentable carbohydrate and produces at least one organic acid; 

c) supplying the first compartment of the cell with culture medium from the bacterial 
fermentation culture; 

d) applying a potential difference between the anode and the cathode to cause the at least 
one organic acid to cross the anion-selective membrane from the first compartment of the 
cell to the second compartment of the cell; 

e) supplying the photoheterotrophic bacterial culture with fluid from the second 
compartment of the cell, such that the photoheterotrophic culture ferments the at least 
one organic acid and produces hydrogen gas; 

f) collecting hydrogen gas produced by the bacterial fermentation culture and by the 
photoheterotrophic bacterial culture. 
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This process involves a first fermentation stage, in which fermentable sugar is converted into 
organic acids.  Although some hydrogen may be produced by this stage, the accumulation of 
other fermentation products (such as organic acids) can reduce or halt fermentation, even in an 
excess of substrate.  Furthermore, the presence of the organic acids in the residual medium would 
present difficulties when disposing of the medium.  According to the process of the present 
invention, therefore, organic acids produced by fermentation in the first stage are extracted from 
the fermentation medium (by means of the anion-selective membrane) and passed to a second 
photoheterotrophic stage in which the organic acids are further converted to H2.  Utilization of 
fermentation end-products for further H2 production in a second stage increases the economic 
potential of the process by improving the H2 yield and reducing the organic content of the final 
waste. 
 
In one embodiment, the bacterial fermentation culture also produces hydrogen. 
 
In one embodiment, the fermentation culture medium after step b) comprises dissolved 
ammonium.  Such ammonium ions may be produced by the bacterial fermentation culture as part 
of the fermentation process.  Alternatively, the ammonium may have been present in the initial 
fermentable carbohydrate solution, or may have been formed by the bacterial fermentation 
culture by reduction of nitrate or nitrite present in the fermentable carbohydrate solution. 
 
Although the culture medium from the first (“fermentation”) stage of the process is able, 
following pH adjustment, to directly support growth of photoheterotrophic bacteria, the present 
inventors have surprisingly found that when the fermentation culture medium after step b) 
comprises ammonium, little or no hydrogen production occurs in the absence of the apparatus 
and method of the current invention.  It is thought that nitrogenase (the enzyme thought to be 
responsible for H2 production in the second, heterotrophic phase) is inhibited by the ammonium.  
However, by utilising the anion-selective membrane of the present invention, the majority of the 
ammonium is separated from the organic acids required for the second stage photoheterotrophic 
fermentation, allowing H2 production to take place, as required. 
 
One example of a membrane-equipped cell suitable for use in the present invention is described 
in International (PCT) Patent Application WO 2004/046351.  The cell described in this document 
has an anion-selective membrane (Neosepta ACM) separating the Bio-Reaction Chamber 
(equivalent to the first compartment of the present invention) from the Product Concentrate 
Chamber (equivalent to the second compartment).  The teaching of that document is incorporated 
herein by reference. 
 
According to a third aspect of the present invention, there is provided a method for biohydrogen 
production, comprising: 

a) providing an apparatus comprising a cell having an anion-selective membrane dividing 
the cell into first and second compartments, the first compartment having a cathode, and 
the second compartment having an anode, wherein the first compartment is in fluid 
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communication with a bacterial fermentation culture, and the second compartment is in 
fluid communication with a  photoheterotrophic bacterial culture; 

b) supplying the bacterial fermentation culture with an aqueous solution of at least one 
fermentable carbohydrate, such that the bacterial fermentation culture ferments the 
fermentable carbohydrate and produces at least one organic acid, and the resulting 
culture medium comprises dissolved ammonium; 

c) supplying the first compartment of the cell with culture medium from the bacterial 
fermentation culture; 

d) applying a potential difference between the anode and the cathode to cause an electric 
current to flow between the anode and the cathode, and thereby to cause the at least one 
organic acid to cross the anion-selective membrane from the first compartment of the cell 
to the second compartment of the cell; 

e) regulating the electric current flowing between the anode and the cathode such that 
ammonium is transferred across the anion-selective membrane from the first cell 
compartment to the second cell compartment; 

f) supplying the photoheterotrophic bacterial culture with culture medium from the second 
compartment of the cell, such that the photoheterotrophic culture ferments the at least 
one organic acid and produces hydrogen gas; 

g) collecting hydrogen gas produced by the bacterial fermentation culture and by the 
photoheterotrophic bacterial culture. 

 
Although phototrophic H2 production by anoxygenic photosynthetic bacteria (APB) is thought to 
be inhibited by ammonium, it is known that small quantities of a nitrogen source such as the 
ammonium ion are in fact essential for the growth of the bacteria.  The inventors have 
surprisingly found that, by ensuring that the current density across the membrane is maintained 
within certain limits, it is possible to cause small quantities of ammonium to cross the membrane, 
in spite of the opposing potential difference.  Thus, by regulation of the current density, it is 
possible to regulate the supply of ammonium ion to the bacteria in the photobioreactor and hence 
to maximise H2 production. 
 
In general, the rate of ammonium transfer decreases exponentially with increasing current 
density, as can be seen from Figure 3.  Although generally it is desirable to maximise the current 
density and thereby maximise the transfer of organic acids from the first to the second 
compartment of the cell, in the method of this aspect of the present invention, the current is 
regulated to allow ammonium transport. 
 
The precise ranges of current density will vary according to the system, but can be readily 
determined by the skilled man by measuring ammonium transfer for different current densities.  
Ammonium transfer can be measured by any appropriate method, such as for example by using 
the cell of the present invention without the bacterial cell cultures.  The first cell compartment 
may then be filled with a solution of ammonium sulphate, the second cell compartment filled 
with an ammonium-free solution, and a known electric current passed through the cell.  Samples 
taken from the second cell compartment at regular intervals may be tested for ammonium 
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concentration (for example, using the indophenol blue method, Nessler method or, for real-time 
measurement, an ammonium probe) 
 
In one embodiment, the electric current flowing through the cell is varied between a maximum 
level at which substantially no ammonium is transferred from the first cell compartment to the 
second cell compartment across the anion-selective membrane, to a minimum level at which 
ammonium is so transferred. 
 
The quantity of ammonium transferred from the first cell compartment to the second cell 
compartment in step e) should be sufficient to enable detectable growth of bacteria of the 
photoheterotrophic bacterial culture.  Such growth may be measured by any appropriate means, 
such as for example by measuring optical density. 
 
In one embodiment, the bacterial fermentation culture also produces hydrogen. 
 
A further benefit of the methods according to the present invention is that the electrokinetic cell 
acts as a microfiltration unit, retaining the bacterial fermentation culture in the first stage of the 
process, while extracting water to maintain a constant culture volume, despite the continuous 
addition of feed and titrant to the culture.  Water transport across the membrane occurs as a result 
of electrodialysis.  In a single stage process, this effect would normally be considered a 
disadvantage, since it limits the concentration of extracted product (e.g. the organic acids) which 
is achievable.  However, in the present invention, this effect helps to carry the acids to the second 
stage. 
 
According to a fourth aspect of the current invention, there is provided the use of an electrical 
current applied through the anion-selective membrane of the apparatus of the third aspect of the 
present invention, in order to regulate the transfer of ammonium from the first cell compartment 
to the second cell compartment through the membrane. 
 
In one embodiment, the use comprises varying the magnitude of the electric current. 
 
According to a fifth aspect of the present invention, there is provided the use of direct electrical 
current to improve gaseous hydrogen production by dark fermenting bacteria capable of 
anaerobic fermentation of sugars to produce organic acids and hydrogen, the use comprising 
applying the current to a bacterial fermentation culture. 
 
In one embodiment, the bacterial fermentation culture comprises E. coli. 
 
The following optional embodiments apply to all aspects of the present invention. 
 
As used herein, the term “bacterial fermentation culture” refers to a bacterial culture which 
comprises any bacterial strain capable of anaerobic fermentation of sugars to produce organic 
acids.  In one embodiment, the bacterial fermentation culture comprises at least one bacterial 
strain capable of anaerobically fermenting sugars to produce organic acids and hydrogen. In a 
further embodiment, the bacterial fermentation culture comprises E. coli.  In a further 
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embodiment still, the bacterial fermentation culture comprises the hydrogen-overproducing E. 
coli strain HD701 (M. Sauter et al., Mol Microbiol 1992, vol. 6, p.1523–32).  Alternatively or 
additionally, the properties of the bacterial culture may be altered in any manner known to the 
skilled man, including by genetic engineering, and may for example include genetic 
modifications known to increase the hydrogen production of bacterial cultures. 
 
As used herein, the term “photoheterotrophic bacterial culture” refers to a bacterial culture which 
comprises any bacterial strain capable of anaerobic fermentation of organic acids under the action 
of light to produce hydrogen gas.  Such bacteria may be known as anoxygenic photosynthetic 
bacteria (APB).  In one embodiment, the photoheterotrophic bacterial culture comprises R. 
sphaeroides. 
 
According to one embodiment of the present invention, hydrogen production of the 
photoheterotrophic bacterial culture is inhibited by presence of ammonium.  This is true for all 
wild-type anoxygenic photosynthetic bacteria although some genetically engineered strains are 
known in which this behaviour is suppressed or removed. 
 
According to one embodiment of the present invention, hydrogen gas is also collected from the 
cathode of the electrokinetic cell. 
 
The inventions of the present application will now be illustrated by the following specific 
examples with reference to the Figures, in which: 
 
Figure 1 represents a schematic diagram of an apparatus suitable for use in the present invention; 
Figure 2 shows the results of a method according to the second aspect of the present invention;  
Figure 3 shows the effect of current density in the electrokinetic cell on ammonium transport 
across an anion-selective membrane (area 200 cm2); and 
Figure 4 shows the results of a method according to the second aspect of the present invention. 
 
Example 1 
 
Apparatus 
Referring to Figure 1, the biohydrogen production system 1 comprises a dark fermentation vessel 
2 (6 litre, Electrolab, UK), a cell 3, and a photobioreactor 4. 
 
Cell 3 is divided into first and second compartments 3a and 3b by means of an anion-selective 
membrane 10 (Neosepta AHA).  The first compartment 3a is fitted with a stainless steel cathode 
11, whilst the second compartment 3b is fitted with a platinum-coated anode 12; both electrodes 
are connected to a power supply (not shown).  Culture medium from the fermentation vessel 2 is 
pumped through the first cell compartment 3a and then returned to the vessel 2; within the first 
cell compartment 3a the culture medium is protected from the cathode 11 by a bipolar membrane 
13 (BP-1E).  Within the bipolar membrane, the cathode 11 is immersed in a circulating solution 
of 0.5M sodium sulphate (not shown). 
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Pumps are connected to supply the fermentation vessel 2 with sugar feed 20 and pH titrants 21 as 
necessary. 
 
Fluid is circulated through the second cell compartment 3b from a permeate vessel 25; within the 
second cell compartment 3b, the fluid is protected from the anode 12 by a cation-selective 
membrane 26.  Within the cation-selective membrane 26, the anode 12 is immersed in a 
circulating solution of 0.5M sodium sulphate (not shown). 
 
Pumps are connected to supply the permeate vessel 25 with basal medium 27 and pH titrants 21 
as necessary.  Basal medium 27 supplies the photobioreactor 4 with all growth requirements 
(including a nitrogen source) except for organic acids, which are acquired from the second cell 
compartment 3b. 
 
Fluid from the permeate vessel 25 (including that which has circulated through the second cell 
compartment 3b) is supplied to the photobioreactor 4.  Excess fluid from the photobioreactor 4 is 
separately discharged to waste 30. 
 
Hydrogen gas 31 is collected from both the fermentation vessel 2 and the photobioreactor 4. 
 
Pre-culture of E. coli 
The H2-overproducing strain Escherichia coli HD701 was kindly provided by Professor A. Böck 
(Lehrstuhl für Mikrobiologie, Munich, Germany) and cultured aerobically on nutrient broth 
(Oxoid) supplemented with 0.5 % sodium formate (w/w) (1 litre, 16 h, 200 rpm, 0.002% 
inoculum v/v).  A standard temperature of 30 °C was upheld for all growth stages and 
fermentations. 
 
Feeding regime for dark fermentation 
The fermentation vessel 2 was autoclaved with 2.8 litres of aqueous fermentation medium as 
shown in Table 1. 
 

 

Table 1: Fermentation medium (2.8 L, pH 5.5) 

Na2SO4 42.6 g 
K2HPO4 10.456 g 

 
The fermentation vessel 2 (in fluid communication with the 1st cell compartment 3a) contained 
initially 2.8 litres of complete fermentation medium (above).  E. coli cells (2 litres) were 
harvested from the pre-growth medium by centrifugation (4435 x g, 20 ºC, 10 min) resuspended 
in 200 ml saline (NaCl 0.85 % (w/w), pH 7.0) and inoculated into the fermentation vessel 2.  

KH2PO4 0.204 g 
Sterilised as 2.8 L 

(NH4)2SO4 0.198 g 
1M MgSO4 6 ml 
trace elements solution* 9 ml 

Sterilised 
individually and 
added separately 2M glucose 30 ml 
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Thus, the initial glucose concentration was 20 mM.  The complete culture was purged with argon 
for 30 minutes before the commencement of gas measurement.  Electrodialysis (400 mA, ca. 4V) 
was activated on the medium 1 hour prior to inoculation. 
 
The permeate vessel 25 (in fluid communication with the 2nd cell compartment 3b) contained 
initially 1 litre of basal medium (described below). 
 
The addition of feed solution 1 to the fermentation vessel 2 commenced 24 h following the 
initiation of dark fermentation (100 mL/day, 0.6 M glucose, 0.015 M (NH4)2SO4).  This point 
coincided with the continuous addition of basal medium 27 (1 litre/day) to the permeate vessel 25 
to generate organic-acid enriched medium.  At the same point the contents of the permeate vessel 
25 were continuously supplied to the photobioreactor 4 (1 litre/day). 
 
Pre-culture of R. sphaeroides 
R. sphaeroides was pre-cultured in 15 mL water-jacketed vials filled with sterile succinate 
medium (Hoekema et al., International Journal of Hydrogen Energy, 2002, vol. 27(11-12), 
p.1331-1333) under tungsten illumination (30 ºC, 72 h). 
 
Photobioreactor specifications 
Photofermentation was carried out in a cylindrical glass photobioreactor 4 (internal diameter, 105 
mm).  The illuminated surface area was 0.107 m2 and the average intensity of photosynthetically 
active radiation at the culture surface was 117.4 µE/m2/s, which was provided by 3 clear tungsten 
filament bulbs arranged externally along the length of the photobioreactor.  The cylinder was 
surrounded in a reflective tube (diameter 35 cm).  The culture (3.0±0.5 litre) was stirred using a 
magnetic stirrer and follower (1200 rpm) located at the base of the photobioreactor.  A 
temperature of 30.0±0.2 ºC was maintained using a submerged cooling coil. 
 
Feeding/dilution regime for photofermentation 
The photobioreactor 4 was autoclaved and filled with 3 litres of mixed organic acid growth 
medium (below), inoculated with 30 ml pre-culture (above) and sparged with argon for 30 min.  
After growing for 72 h, the contents of the permeate vessel 25 were continuously added to the 
photobioreactor 4 (1 litre/day) and the contents of the photobioreactor 4 were continuously 
withdrawn into the outflow vessel 30.  This point coincided with the continuous addition of feed 
solution 1 to the fermentation vessel 2 (100 ml/day). 
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Acetate 16 mM 
Succinate 14 mM 
Lactate 8 mM 
Butyrate 5 mM 
KH2PO4 1.466  g/litre 
K2HP04   1.732 g/litre 
Yeast extract   1.00 g/litre 
Vitamins solution* 2 ml 
Macroelements solution* 50 ml 
Microelements solution* 10 ml 

Table 2: Mixed organic acid growth medium for R. sphaeroides 
* as described by Hoekema et al., International Journal of Hydrogen Energy, 2002, vol. 27(11-
12), p.1331-1333 
 
The composition of basal medium 27 was identical to that of the mixed organic acid growth 
medium except for the absence of organic acids (acetate, succinate, butyrate and lactate). 
 
Figure 2 demonstrates the effect of the invention on hydrogen production in the fermentation 
vessel 2.  Control experiments (closed squares) were carried out using a simple fermentation 
vessel without the electrokinetic cell of the present invention.  As can be seen, hydrogen 
production dropped to zero after approximately 10 days.  A second control (open triangles) was 
performed using the configuration shown in Figure 1 except that the anion selective membrane 
10 was replaced with an inactive membrane (the membrane no longer transported organic acids 
because it was aged or fouled).  Thus, under the influence of direct current without the extraction 
of organic acids, hydrogen production had ceased by approximately 8 days.  However, in the 
experiment involving electrodialysis (open circles) according to the present invention, the rate of 
hydrogen production remained high even after approximately 20 days.  The dotted line drawn at 
120.3 mL/h indicates a 100 % yield - the H2 production rate given a yield of 2 mol H2/mol 
glucose and a glucose load of 60 mmol/day. 
 
Figure 4 demonstrates the effect of the invention on hydrogen production in the photobioreactor 
vessel 4.  Control experiments (closed squares) were performed using the configuration shown in 
Figure 1 except that the anion selective membrane 10 was replaced with an inactive membrane 
(the membrane no longer transported organic acids because it was aged or fouled).  There is a 
peak in hydrogen production at around day 3 as the bacteria are allowed to grow in the growth 
medium.  After day 3 the medium is diluted, as described above and hydrogen production tails 
off. There is very little or no hydrogen production from day 8.  However, in the experiment 
involving electrodialysis (open circles) the hydrogen production continues beyond day 8.  This 
can be attributed to organic acid transport across the membrane 10 and its subsequent 
photofermentation. 
 
Ammonium transport 
Ammonium transport across the anion-selective membrane was measured and the results are 
shown in Figure 3.  It can be seen that the ammonium flux over 200 cm2 membrane varies from 
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0-6.5 µmol/min for current densities in the range 10-0 mA/cm2, adhering closely to an 
exponential function.  Thus, at higher current densities, when organic acid transport is most 
efficient, the level of ammonium transport is very low.  At lower current densities, the 
ammonium transport level increases up to a maximum. 
 
Example 2:  
The method of Example 1 was repeated, except that in this example the nitrogen requirements of 
the photofermentation were provided entirely through the transfer of ammonium ion from the 
first stage dark fermentation via the electrodialysis cell, rather than being added separately via the 
basal medium. 
 
The apparatus shown in Figure 1 was modified by inclusion of a feedback turbidostat circuit in 
which a decrease in the optical density of the photoheterotrophic bacterial culture in the 
photobioreactor 4 prompts a period of decreased current applied to the cell 3, causing increased 
ammonium ion transfer through the anion-selective membrane 10.  This in turn produces a period 
of growth, causing the turbidity of the photoheterotrophic bacterial culture to increase. 
 
In addition, growth supplements (trace elements and vitamins) of negligible volume were 
supplied directly to the photobioreactor 4, in place of the supply of basal medium to the permeate 
vessel 25.  The direct addition of growth supplements to the photobioreactor 4 means that the 
bacteria are not dependent on a supply from the permeate vessel 25 and so the fluid flow rate can 
be adjusted as required.  A minimum flow rate is required in order to transport ammonium ion 
and organic acid from cell compartment 3b, via the permeate vessel 25 to the photobioreactor 4 
but since the photobioreactor is of finite size, any excess fluid must be discharged as waste 30.  
 
Turbidity measurements were taken to determine the required quantity of growth and hence the 
required quantity of ammonium.  Current was then reduced to supply it over a short period, after 
which the current was returned to the original high setting. 
 
In accordance with Example 1 the photofermentation was required to process an estimated 250 
mmol carbon/day as a mixture of organic acids.  This requires ca. 3.55 g R. sphaeroides biomass 
(dry weight), which is 8.73 % N (w/w) (published value).  The supply of ammonium ion 
necessary to support this culture is dependent upon the dilution rate of the photofermentation 
culture.  The apparatus of this experiment was designed to minimise the dilution rate of the 
photobioreactor, and hence minimise the necessary ammonium supply.  The dilution rate is an 
uncontrolled variable equal to the sum of water transport via the electrokinetic cell from the dark 
fermentation and the addition of pH titrant to the permeate chamber.  Growth supplements added 
to the photobioreactor are of negligible volume.  A typical dilution rate would be 150 ml/day 
(Hydraulic retention time, HRT = 20 days), necessitating a daily nitrogen supply of 15.5 mg/day, 
equal to 0.763 µmol ammonium ion/min. 
 
Nitrogen supply regime 
To maximise current for organic acid transfer, the ammonium ion transfer was conducted in short 
periods of low current.  For example a current of 0.1 mA/ cm2 would be used to supply the daily 
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requirement of 1.10 mmol ammonium ion in 3.04 hours, the remainder of the period being 
dedicated to organic acid transport employing a higher current. 
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4.2.2 Publications in which the author was involved 

• Penfold DW, Redwood MD, Yong P, Stratton-Campbell D, Skibar W, Macaske LE (2007) 
Microbial H2 and electricity from wastes. Proceedings of the 7th Hydrogen - Power and 
Theoretical Engineering Solutions International Symposium (HyPoThESIS VII), Merida, 
Mexico.  CICY ISBN:968-6114-21-1 
Role: Assistance with GC analysis and operation of fermentations.   
Authored by DW Penfold  
Reproduced within section 4.2.2 
 

• Harrad S, Robson M, Hazrati S, Baxter-Plant VS, Deplanche K, Redwood MD, Macaskie LE 
(2007) Dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers 
using a hybrid bioinorganic catalyst. Journal of Environmental Monitoring. 9:314-318. 
Role: Production of bioinorganic catalysts and carrying out dehalogenation reactions.  
Authored by S Harrad  
Reproduced within section 4.2.2 
 

• Harriet Lugg, Rachel L. Sammons, Peter M. Marquis, Christopher J. Hewitt, Ping Yong, 
Marion Paterson-Beedle, Mark D. Redwood, Artemis Stamboulis, Mitra Kashani, Mike 
Jenkins and Lynne E. Macaskie. Polyhydroxybutyrate accumulation by a Serratia sp. 
Biotechnology Letters, accepted subject to minor reviewers comments 
Role: Analysis of sequence data relating to butyrate metabolism (see chapter 2.2) to augment 
and enhance discussion. 
Authored by LE Macaskie 

 
Abstract: A strain of Serratia sp. showed intracellular electron-transparent inclusion bodies 

when incubated in the presence of citrate and glycerol 2-phosphate without nitrogen source 

following pre-growth under carbon-limitation in continuous culture.  1.3 mmoles of citrate 

were consumed per 450 mg of biomass, giving a calculated yield of maximally 55% of 

stored material per g of biomass dry weight. The inclusion bodies were stained with Sudan 

Black and Nile Red, suggesting a lipid material which was confirmed as 

polyhydroxybutyrate (PHB) by analysis of molecular fragments by gas chromatography and 

by FTIR spectroscopy of isolated bio-PHB in comparison with reference material. Multi-

parameter flow cytometry in conjunction with Nile Red fluorescence, and electron 

microscopy, showed that not all cells contained heavy PHB bodies, suggesting the potential 

for increased overall yield. The economic attractiveness is enhanced by the co-production of 

nanoscale hydroxyapatite (HA), a possible high-value precursor for bone replacement 

materials.
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MICROBIAL H2 AND ELECTRICITY PRODUCTION FROM WASTES 
 
1D.W. PENFOLD, 1M.D. REDWOOD, 1P. YONG, 2D. STRATTON-CAMPBELL, 2W. 
SKIBAR AND 1L.E. MACASKIE 
1 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. 
2 C-Tech Innovation Ltd, Capenhurst Technology Park, Capenhurst, Chester, CH1 6EH, UK. 
 
Keywords: Escherichia coli, biohydrogen, fuel cell 
 
Abstract  
HD701 was tested for its ability to utilise different food wastes for H2 production using 
conditions optimised previously using 100 mM glucose at pH 5.5 and ca. 9 l of H2 was produced 
over 47 h: a yield of ~1 mol H2/mol glucose. H2 was not produced from starch, cellulose or fats. 
Ohmic heating was evaluated as a hydrolytic method to increase the fermentable sugar content 
prior to fermentative bio-H2 production. Fruit wastes were the best substrate (1.6 l of bio-H2 in 21 
h), attributable to the high reducing sugar content (292 mM). GC analysis showed only H2 + N2 
in the off gas, and no catalyst poisons. Accordingly, bio-H2 produced from confectionery waste 
supported electricity production in a PEM fuel cell. E. coli biomass was also used after 
palladisation for electrode fabrication for the PEM fuel cell, and electricity production was 
supported, showing potential biomass bifunctionality. 
 
1. INTRODUCTION 
1.1. From raising awareness with British Council’s ‘zerocarboncity’ initiative to the building of 
the world’s first sustainable city-China’s Dongtan: Eco-city, the response to global warming is 
changing. Car companies such as BMW already manufacture hydrogen fuel cell concept cars in 
response to depleting reserves of fossil fuels and the need for environmentally friendly 
technology. To ease this transition hybrid car technology is now developed, an interim mix of 
current combustion and future fuel cell technology. The global response to greenhouse gas 
production has become more urgent since publication of the Stern Review [1,2] which concludes 
that if no action is taken on emissions then there is more than a 75% chance of global 
temperatures rising between 2-3 °C over the next 50 years causing: the global economy to shrink 
by as much as 20%, a decline in crop yields, particularly in Africa and a rise in sea levels which 
will leave more than 200 million people permanently displaced and up to 40% of species facing 
extinction. Against this background, green renewable energy is a topic of extensive research. 
Hydrogen is seen as one of the most promising contenders as its only combustion product is 
water and it can be directly used to produce electricity through fuel cells. One method of 
manufacturing this hydrogen is via microbial production from carbohydrate materials (and other 
biodegradable waste) via fermentation. Fermentation can thus be used to reduce the amount of 
waste to be land filled, in accordance with current EU directives and with the added benefit of 
producing a sustainable energy carrier (hydrogen). 
 
1.2. Although numerous studies have been carried out using various microorganisms, Escherichia 
coli has been neglected even though its well-defined genetic background facilitates strain 
improvement for increased H2 production. E. coli evolves hydrogen by dark fermentation. In the 
absence of external electron acceptors (oxygen, nitrate etc), it ferments available sugars into 
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ethanol and a range of organic acids. This causes a drop in the pH and, in a homeostatic response 
to this toxic acidity, the E. coli converts the organic acid formate into hydrogen and carbon 
dioxide (which is carbon neutral as it was fixed from atmospheric CO2 into sugar by plants). An 
E. coli strain, HD701, has been identified which lacks the hyc A repressor of the formate 
hydrogenlyase (FHL) enzyme system responsible for cleaving formate into hydrogen and carbon 
dioxide and is therefore up-regulated with respect to hydrogen production [3]. Penfold et al. [4] 
showed that resting cells of E. coli HD701 produced H2 from glucose solution and confectionery 
wastes. To increase the utility of the process, the range of utilisable substrates needs to be as 
broad as possible. Genes for utilisation of additional substrates and metabolic versatility can be 
introduced into the genetic background if required [5].  In order to determine the substrate 
limitations of strain HD701 this study investigates the use of household food wastes and food 
constituents as substrates for hydrogen production by strain HD701 and the generation of 
electricity using a fuel cell made with commercial components and electrodes derived from the E. 
coli biomass itself. 
 
2. MATERIALS AND METHODS 
2.1 Bacterial strains, media and pre-growth 
The strain used, E. coli HD701, is a derivative of E. coli MC4100 that lacks the Hyc A regulator 
of the formate hydrogenlyase system (FHL) (MC4100∆hycA) and is up-regulated with respect to 
H2 evolution [4]. Cultures were maintained on nutrient agar plates (Oxoid, UK) and pre-grown in 
shake-flask cultures at 30 ºC in nutrient broth no. 2 (Oxoid, UK) [4].  
 
2.2 Hydrogen evolution experiments 
Experiments used a 6 l fermenter (Electrolab, UK) containing 1.6 l isotonic saline (8.5g/l NaCl), 
overnight E. coli broth culture (2 l) and 400 ml of waste (as stated: 4 l final volume). Cultures 
were gassed with argon for 1 h and stirred continually (600 rpm) at 30 ºC. The pH, (previously 
determined to be optimal), was maintained at 5.5 using an automated pH control system 
(Electrolab, UK) (1 M HCl/1 M NaOH). 1 M NaOH was used as a carbon dioxide trap. 
Experiments were done in duplicate; data are shown as means ± SEM. Error were within ± 5% 
throughout. 

 
2.3 Sample preparation 
2.3.i. Example wastes: Caramel waste was obtained and analysed as described previously[6]. It 
comprised: total soluble sugars (w/w) 53.0 %; total reducing sugars (w/w) 25.5 %; total protein 
content (w/w) 1.9 %; ammonium ion (mg/ l) 2.2. For use, the waste was diluted 1:10 into the 
fermenter (4 l final volume), to give a reducing sugar concentration of 140 mM.  Kitchen wastes 
(case studies: segregated at source into fruits, vegetables and milk/milk products/bread/cakes 
(‘sugary waste’)) were collected over several days from approx. 15-20 households, together with 
miscellaneous segregated paper and cardboard waste, and grass cuttings. The samples were 
liquidised (Philips Cucina domestic liquidiser: 3-5 min). The sugary waste was used without 
further liquid addition and the liquid fraction was obtained by centrifugation. The fruit waste 
(apples, bananas, tangerines) and vegetable waste (leeks, potatoes, carrots, lettuce, cabbage) and 
other wastes were mixed with enough water to give a thick slurry on homogenisation. The liquid 
fraction was obtained by squeezing through muslin cloth (fruit waste) or by filtration (vegetable 
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waste and other wastes). Reducing sugar contents (determined by the dinitrosalicylic assay as 
described by Chaplin and Kennedy [7]) were as follows: sugary waste: 227 mM; fruit waste 292 
mM; vegetable waste 60 mM; grass waste 15 mM; cardboard waste < 1 mM. For use 300 ml of 
each waste was diluted 1:10 into the fermenter (3 l final volume) to give reducing sugar 
concentrations of ca. 23, 29, 6 and 1.5 mM, respectively. The caramel waste stock was stored at 4 
oC; the high sugar content (1.4M) prevented spoilage. The other waste homogenates were stored 
frozen in a domestic freezer until use (within 1-2 weeks). 
2.3. (ii). Model food waste: 18kg of food (comprising a mixture of potatoes, carrots, lettuce, 
white bread and bananas and 4.5l milk) was liquidised using a waste disposal unit with water 
added to form a slurry. The final volume was 33 l. A 400 ml sample (unheated) was used in the 
bioreactor. The remainder was heated in an ohmic heater at C-Tech Innovation Ltd. 
2.3. (iii). Real food waste:  Food (vegetables, cake, and fruit) collected from staff at C-Tech 
Innovation Ltd. was prepared as above- 40.4kg of waste was used and the final volume was 61 l. 
Reducing sugars were analysed in all wastes according to Chaplin and Kennedy [7]. 
 
2.4. GC analysis 
Gas samples were stored under glass and over a small volume (<5ml) of water.  1 ml samples 
were withdrawn using a gas-tight syringe and injected into a gas chromatograph fitted with a 
shincarbon ST column (micropacked, length: 2m, ID: 1mm, Resteck) and a thermal conductivity 
detector TCD).  The carrier gas was helium (485 ml min-1) and the oven temperature was held at 
40 °C for the first 4 min, increased by 10 °C min-1 up to 150 °C, and held for 5 min.  
 
2.5. Preparation of palladised biomass for electrodes, and electrode preparation 
Cells of E. coli HD701 were harvested and palladised as described previously [6]. The ‘bio-Pd’ 
(5% Pd (0)/biomass w/w) was harvested by centrifugation and washed with deionised water three 
times and then with acetone. Samples were dried at room temperature and then transferred to 10 
ml alumina ceramic crucibles. The crucibles were transferred to a furnace with a temperature 
control program. The temperature was increased gradually from room temperature to 700 oC 
within 4 h and held at 700 oC for a further 4 h. The samples were cooled to room temperature in 
the furnace.  Reference material, treated in parallel, was commercial Pd powder (submicron, 
Aldrich Chem. Co, Germany). Reference Pd (0) and bio-manufactured Pd(0) (20 mg of each, as 
metal) were mixed separately with pure activated carbon powder (80 mg; BDH Chemicals Ltd, 
UK).  Nafion® (0.21ml; 10 wt % in water, Sigma-Aldrich) and water (0.2 ml) were added to each 
sample containing 20% of Pd and 80% of carbon (plus the residual biomass component). The 
sample was mixed well and applied homogeneously by painting onto 16 cm2

 teflon treated carbon 
paper (Fuel Cell Scientific, USA), and dried at room temperature. 
 
2.6. Testing Pd-electrodes in a proton exchange membrane (PEM) fuel cell system 
A fuel cell system (“ECO” H2/O2 fuel cell, H-tec, Hydrogen Energy Systems, Luebeck, 
Germany) was used to test the laboratory-made electrodes (i.e., containing commercial Pd 
powder (C-Pd) and bio-manufactured Pd from E-coli HD701 (E-Pd). A standard Pt electrode (as 
supplied by the manufacturer) was used as the cathode for all the tests. The ECO H2/O2 unit 
contains a spotlight, a PEM electrolyser (where H2 and O2 are produced by the electrolysis of 
water, using solar power or artificial illumination) and a PEMFC Kit (a self-assembly fuel cell). 
The electrolysed H2 and O2 are fed into the PEM fuel cell via the anode (H2 stream) and cathode 
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(O2 stream). Current (I) and voltage (V) were measured and recorded against resistance (R) from 
R= ∞ to R= 0 Ω gradually as described by Voigt et al. [8]. P (output power in watts (W)) = I 
(current in amperes (A)) x V (voltage in volts (V)).  
 
2.7. Bioenergy generating system 
The proton exchange membrane (PEM) fuel cell (above) was connected to a motorised fan (H-
tec, Germany). Bio-H2 from fermentation of caramel waste was fed into the fuel cell through a 1 
M NaOH carbon dioxide trap. The assembly was used to generate electricity with an electrical 
load.  [9]. 
 
3. RESULTS AND DISCUSSION 
 
3.1. Model Food constituents 
3.1.1. Previous studies have established that the biohydrogen process can be used with simple 
sugars such as glucose and fructose and industrial confectionery waste as substrates for hydrogen 
production [4]. However, for the process to have commercial application, a wider substrate base 
needs to be identified. A range of food constituent surrogates was therefore tested to evaluate the 
potential for using household food-waste for hydrogen production by E. coli HD701 (Table 1).  
 
Table 1. Hydrogen evolved from various food constituents  
Food constituent Volume of H2 evolved (ml) Time course (h) 
Tryptone (6.25 g/l) 1380 50 
Lactose (18 g/l) 0 50 
Maltose (18 g/l) 3635 53 
Maltodextrin (18 g/l) 3840 50 
Cellulose (18 g/l) 0 96 
Pectin (18 g/l) 1480 26 
Fats/fatty acids (18g/l) 0 53 
Glycerol (100 mM) 2950 70 
Starch (14 g/l) 0 70 
Starch, cellulose and fats did not promote any hydrogen production after 95 and 53 h, 
respectively. This was not unexpected since E. coli does not possess exocellular enzymes to 
degrade β-glucan linkages (cellulose) and its debranching activity towards 1, 6-α-linkages (starch 
branch points) is low (if present at all) and the native polymers are too large to enter the cells. 
Lactose could not be utilised since E. coli HD701 is a lac- strain [3]. 
 
3.1.2. Since E. coli strain HD701 was unable to use starch as a substrate for biohydrogen 
production, commercially available amylase and isoamylase (debranching enzyme) were tested in 
an upstream reactor for their ability to break down starch into a utilisable form for the E. coli. 
Using published methods it was shown that the commercial amylase was highly active (0.5 mmol 
of reducing sugar released/min/unit of enzyme). However, the reducing sugar produced from 
starch (14g/l) hydrolysis was only 17 mM over one hour using 100 U of amylase. Addition of this 
hydrolysate to the hydrogen-evolving reactor (final reducing sugar concentration of 1.7 mM) 
gave 80 ml of hydrogen over a period of 10 h. Upstream enzymatic hydrolysis of waste would 
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clearly limit concentration of available sugar and also the rate of hydrolysis of available 
polyglucose. Therefore, ohmic heating was evaluated as an alternative hydrolytic method in 
subsequent processes involving food wastes (see later). 
 
3.1.3. Both maltodextrins and maltose are hydrolysis products of starch. Using the same mass of 
these as was used as glucose in previous experiments (72 g/reactor), ca. 4 l of hydrogen was 
evolved from both compounds, less than half  the total volume as obtained previously from 
glucose [D.W. Penfold, unpublished]. The optimum pH for H2 evolution from glucose was pH 
5.5 (D.W. Penfold, unpublished) but since other studies have shown that the mal genes are 
upregulated at alkaline pH [10, 11] more work is needed to obtain the optimum pH for 
maltodextrin utilisation. 
 
3.1.4. Approximately 3 l of hydrogen was evolved from 100 mM glycerol after 78 h but with a 
lag of ca. 24 h before onset of hydrogen production. Addition of 10 mM glycerol to the 
preculture completely prevented hydrogen production. This experiment was repeated in duplicate 
with the same result being obtained in all cases. This lag could be attributed to inhibition of 
glycerol kinase by the presence of glucose. Consequently E. coli may not utilise glycerol until all 
of the glucose is consumed. However, the cause of the complete inhibition of hydrogen 
production by addition of glycerol to the preculture requires further investigation 
 
3.1.5. A similar lag was observed with tryptone (produced from the tryptic digest of casein). 
Twenty five grams of tryptone was added per reactor and this resulted in ca. 1.4 l (1380 ± 220 
ml) hydrogen being evolved over 50 h after a lag phase of 8 h. The presence of a nitrogenous 
compound causes the formation of amines as suggested by an observed increase in pH into 
alkalinity (pH 9.5). Hydrogen production occurred after cessation of the increase in pH and 
readjustment of the pH to neutrality. 
 
3.2. Biohydrogen production from sample wastes  
3.2.1. As seen in above, enzymatic pre-hydrolysis of the complex carbohydrates did not liberate 
simple sugars at a rate sufficiently high to sustain effective H2 production. Thermal treatment 
techniques are able to break down complex wastes to smaller molecules and therefore ohmic 
heating was used as a potential alternative pre-treatment method. This method overcomes the 
problem of uneven heat distribution associated with conventional heating processes (caused by 
them only heating the surface of the product) by generating internal heat within the product. 
Ohmic heating is a direct method of heating where an alternating current is passed through the 
sample and the resistance of the sample causes it to heat up. Alternating current is used to prevent 
electrolysis of the sample. Comparison of unheated and treated food wastes was therefore carried 
out in the study of bio-H2 production from real waste samples (Table 2) 
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Table 2. Free reducing sugar content and hydrogen production from waste 
Free reducing 
sugar (mM) 

Volume of 
H2 (ml) 

Time 
(hours) Sample 

Untreated milk, milk products, bread (sugary waste) 228 2750 28 
Heat treated milk, milk products, bread (sugary waste) 260 990 28 
Untreated vegetable waste 60 800 23 
Heat treated vegetable waste  137 500 23 
Untreated fruit waste 292 3570 70 
Heat treated fruit waste 303 1570 70 
Untreated paper and cardboard waste 0.5 10 29 
Heat treated paper and cardboard waste 0.8 0 29 
Untreated grass waste 15 505 52 
Heat treated grass waste 28 5 52 
Industrial caramel waste 1400 3100 10 

Using sugary waste the heating process resulted in a change of colour of the solution from a 
whitish colour to a brown colour.  Reducing sugar assays on the treated and untreated waste 
showed the reducing sugar concentration of the treated and untreated waste to be ca. 260 and 230 
mM, respectively. The saturating concentration producing the maximal velocity of H2 production 
from a glucose solution was 100 mM (final concentration in the reactor), demonstrated using 
glucose [4]. Hydrogen evolution from the sugary waste samples was monitored. After 28 h, this 
was approximately 2.75 and 1 l (Table 2). Therefore, despite the liberation of additional sugar, 
ohmic-heat treatment of the waste solution supported less that half the volume of hydrogen 
production compared to the untreated sample. One possible reason for the lower amount of 
hydrogen produced from the treated waste is caramelisation of the sugars in the heating process, 
which is well known to be growth inhibitory [12]. The same effect was seen in all of the wastes 
examined (Table 2) where bio-H2 production from the ohmically-treated samples was approx. 
halved, except for the grass waste where the inhibition was almost complete. 
 
3.2.2. The best substrate for volumetric hydrogen production was fruit waste (untreated) with ca. 
3.5 l of hydrogen evolved over 50 h, as expected since this contained the highest free sugar 
(Table 2).  

 
3.2.3. Vegetable and grass wastes supported less hydrogen production as expected according to 
their lower free sugar contents (and paper/ cardboard waste none at all). Despite the release of 
additional sugar by ohmic heat treatment no benefit of this approach was realised in any of the 
samples tested. It was concluded that further work is required to establish the optimum conditions 
for ohmic heat treatment concomitant with the lowest production of inhibitory agents. 
Incorporation of ascorbic acid (a free radical scavenger) after ohmic heating had no beneficial 
effect and the inhibitory agent(s) remain unidentified [12]. 
 
3.2.4. GC analysis of head gases 
Hydrogen production from heat-treated and untreated model and real waste was investigated. 
Apart from argon, hydrogen was the only gas detected. GC analysis of the gas evolved from the 
heat-treated model waste showed that less hydrogen was present than in the unheated waste. This 
is consistent with previous heat-treated results in this study where less hydrogen was evolved via 
an effect presumed to be a result of caremelisation [12]. Furthermore, GC analysis of gas 
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produced from the unheated real waste and both the heat-treated/untreated model waste 
confirmed that only hydrogen, nitrogen and argon were present. The absence of carbon dioxide 
validated the efficacy of the 1 M NaOH scrubber. 
 
3.2.5. Use of biohydrogen in a fuel cell 
Since culture head gas contained H2 and CO2, and no catalyst poisons (CO, H2S) detectable by 
GC analysis (above) it was tested directly for use in a fuel cell. Biohydrogen generated from both 
glucose and confectionery waste by E. coli HD701 was used in conjunction with proton exchange 
membrane (PEM) fuel cell (connected to a motorised fan) to investigate if the gas could be used 
to generate electricity (Figure 1). Sufficient electricity (Table 3) was produced to power the fan 
for approximately 15 h. Notably, the system was found to work effectively without a NaOH scrub 
showing that CO2 was not inhibitory to fuel cell action. 

 
Figure 1. Bio-H2 production at the expense of caramel waste using the bioreactor with exit gas 
passed into a proton exchange membrane (PEM) fuel cell (left) and the PEM fuel cell (right) 
which comprises anodic and cathodic layers comprising precious metal (usually Pt) nanocatalyst 
on carbon particles.  H2 is oxidised; e- are used for the electric current and H+ passes through 
the proton conducting layer to make water (with air) at the cathode. The working system is 
shown at  http://www.biochemsoctrans.org/bst/033/0076/bst0330076.htm. 
 
3.2.6. Use of palladised E. coli HD701 as fuel cell electrode material 
For sustainability a process should be ‘zero discharge’ and spent biomass would comprise a high 
BOD waste for landfilling or other disposal. PEM fuel cells contain precious metals in the 
catalytic electrodes; the function of the anodic layer is to split H2 to provide electrons to power 
the electrical load (Figure 1). Other studies have shown that E. coli can be used to scavenge 
precious metals from industrial wastes and scrap [13]. In a final series of tests the ability of E. 
coli strain HD701 to support palladium metal nanoparticles and function as a catalyst in a PEM 
fuel cell was evaluated as shown in Figure 2 and Table 3. These preliminary studies showed that 
the E. coli-Pd (0) supported electricity production, although this was lower than that obtained 
using commercial Pd (0) powder (Figure 2). The power output (Table 3) was 33% of the 
commercial reference. However other studies [14] have shown that palladium supported on 
another type of Gram negative biomass perform comparable to commercial fuel cell materials 

 273



4.2.2 Appendices – Additional publications – Penfold et al. (2007) HyPoThESIS VII, Merida, Mexico. 

[14] and that the efficacy is critically dependent on the preparation conditions for each biomass 
type (unpublished work). The preliminary tests with E. coli are sufficiently promising to warrant 
further development. 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.   Comparison of performance of anodes: (left) prepared with commercial Pd powder 
(submicron, Aldrich Chem. Co Germany) (C-Pd); and (right) prepared with bio-Pd from E-coli 
HD701. (E-Pd) The commercial cathode used in all experiments was provided with the ECO 
H2/O2 fuel cell system. All experiments were done twice with two separate preparations and the 
agreement was within 5%., : power (P). : current (A). 
Table 3. Maximum Power generation (R = 1 Ω) using commercial Pd (0) and palladised cells of 
E. coli HD701  
 

 
4. CONCLUSIONS 
This feasibility study indicates that the biohydrogen production process can be used for  clean 
hydrogen production that can support a fuel cell. It has shown that the majority of food waste 
constituents tested can be used for hydrogen production apart from (ligno) cellulosics and fats. 
However, additional experiments need to be carried out to realise the potential benefits of ohmic 
heating on real food wastes. Biohydrogen supports electricity production using a PEM fuel cell 
and the biomass can also be further processed into PEM fuel cell electrode materials towards 
process sustainability 
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4.2.3 Conference posters 

• International Hydrogen Energy Congress (IHEC), July 2005, Istanbul, Turkey, 
Title: A two-organism system for biohydrogen from glucose 
Reproduced within section 4.2.3 

 
• HYdrogen POwer and THEoretical Engineering SolutIonS (HYPOTHESIS VII), March 

2007, Merida, Mexico. 
Title: Microbial Hydrogen and Energy Production 
Reproduced within section 4.2.3 

 
4.2.4 Conference presentations 

• Conference speaker: Redwood MD, Penfold DW and Macaskie LE. Microbial production of 
hydrogen and energy.  in: Recovering value from liquid and solid wastes. 4th July 2007, 
Sheffield, UK. www.aqua-enviro.net 
o Process strategies 
o Mechanisms and organisms 
o Potential for energy generation 

 
• Conference speaker: HYdrogen POwer and THEoretical Engineering SolutIonS 

(HYPOTHESIS VII), March 2007, Merida, Mexico. 
Title: Microbial Hydrogen and Energy Production (see poster) 
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6 : Results and discussion

Paper number: 203   Mark D. Redwood, David W. Penfold and Lynne E. Macaskie                                          
e-mail: mdr391@bham.ac.uk address: School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT.

A two-stage system for biohydrogen from glucose

1 : Introduction
Hydrogen (H2) is likely to play a key role in the future energy economy.  H2 is not an 
energy source but an energy vector, acting as a store for the abundant energy which is 
available from renewable sources such as organic wastes.  Sugars found in organic 
wastes are promising substrates for H2 production, yielding a maximum of 12 moles H2
per mole hexose.

C6H12O6 +  6 H2O  12 H2 +  6 CO2 (1 kg hexose 1659 litres H2)

Fermentation (e.g. by Escherichia coli) is a prevalent approach as H2 can be produced 
at a high rate and on a large scale.  However, the yield is thermodynamically limited to 4 
mol H2 per mol hexose.  The remaining energy is used by the cell to dissipate reducing 
power in the formation of organic end-products.  

This poses two challenges:

· Remediation of E. coli fermentation waste to be acceptable for final discharge.

· Extraction of remaining energy bound in fermentation end-products (as H2).

Purple non-sulphur bacteria (e.g. Rhodobacter spp.) have the metabolic capacity to 
address both problems.  Members of this group are capable of photoheterotrophy, 
whereby anoxygenic photosynthesis captures light energy to oxidise simple organic 
compounds (e.g. fermentation end-products).  H2 is produced under nitrogen-limitation 
as a by-product of nitrogenase activity. Hence, the removal of fixed nitrogen sources 
(e.g. ammonia) is prerequisite to H2 formation. [1,2]

7 : Conclusions
R. sphaeroides was able to grow on fermentation waste (after slight increase of pH), 
simultaneously removing organic components and neutralising the pH, to render the 
medium more suitable for disposal into the environment.  Nitrogenase activity (H2
production) was inhibited by the high nitrogen content, but was shown in nitrogen-free 
medium.  Future work will aim to meet the second objective via the use of nitrogenase 
derepressed mutants.

8 : References
[1]  Hillmer P & Gest H (1977) J. Bacteriol. 129(2):724-731.

[2]  Koku H et al. (2002) International J. Hydrogen Energy, 27:1315-1329 .

[3]  Chaplin MF & Kennedy JF (1986) Carbohydrate analysis: a practical approach. IRL Press, Oxford.

[4]  Mendam J et al. (2000). Vogel's Textbook of Quantitative Chemical Analysis 6th Edn. Longman, New York.

[5] Penfold DW et al. (2003) Enzyme and Microbial Technology, 2003. 33(2-3):185-189. 

[6]  Fascetti E & Todini O (1995), Appl. Microbiol. Biotechnol. 44 (3-4):300-305.

[7] Zinchenko VV (1991) Genetika 27(6):991-999.

2 : Overall scheme
Primary E. coli fermentation followed by                                       
secondary R. sphaeroides
photofermentation

3 : Metabolic overview
Rhodobacter sphaeroides 

R. sphaeroides 
Photofermentation

E. coli 
Fermentation

H2

TCA 
cycle

e-

Photosynthesis

ATP

H+

Glucose

H2

5 : Properties of fermentation waste (supernatant)

Fermentation of glucose was performed over 24 hours at 30 ºC by E. coli HD701 [5].  
60% of glucose was fermented (leaving a residual glucose concentration of 40 mM)

Fermentation end-products

• ethanol (2 C) : 20 mM

• organic acids    

acetate (2 C) :  20 mM

lactate (3 C) : 15 mM

succinate (4 C) : 3 mM

The properties of low turbidity, high organics content and high nitrogenous content make 
fermentation waste a promising substrate for cultivation of R. sphaeroides.  

General

• pH : ~ 4.5

• low turbidity

• ammonia : 4.4 mM (nil NO3, nil NO2)

• protein : 2.30 g/L

• chloride : 1.63 g/L  (46 mM)

• phosphate : 5.2 mM

4 : Experiment
Controlled factors

Bacteria :   R. sphaeroides O.U.001 (DSMZ 5864) grown on succinate at 30 ºC.                                                              
Test medium : Fermentation waste supernatant, diluted 50% with H2O, filter-sterilised.  
Inoculum :  5% v/v of a 4 g/L (dry mass) suspension of log-phase cells (to 0.2 g/L).       
Light : 10 μE/m2/s (47 W/m2) photosynthetically active radiation fluorescent lamps.     
Reactors : 200 mL anaerobic bottles, stirred magnetically.                       
Atmosphere :   Anaerobic (under argon).

Measured variables

H2 formation :   by displacement of 1 M NaOH from a graduated glass tube.   
pH change :  in twice-daily samples.                                                  
Culture growth :   OD660 converted to g dry weight/L using a determined calibration.

Analysis of growth media :  Supernatants were stored at -20 ºC before analyses: 
anion HPLC for organic acids and NO3/NO2 ;
colorimetric dinitrosalicylic acid assay for glucose [3] ;                                   
colorimetric Nessler assay for ammonia [4] ;                                        
colorimetric bicinchoninic acid assay for protein (Sigma procedure TPR0562).

Organic                              
end-products

Light 
energy

Growth of R. sphaeroides on fermentation liquor                 
and effect of initial pH

Left: Growth of R. sphaeroides on liquor from E. coli fermentation 
adjusted to different pHs prior to inoculation

Right: pH profile during growth starting at different pHs.

R. sphaeroides was grew rapidly on fermentation liquor after the 
pH was increased from 4.5 to at least 5.5 (Growth rate: 0.20 
g/L/day).  The growth-associated neutralisation of pH, improved 
the disposability of the liquor.

Removal of glucose and organic acids

Glucose and acetate were the two primary 
carbon sources in this experiment, while 
lactate was removed at a lower rate and 
succinate was not consumed.

Nitrogenase

Light 
energy

Hydrogen production

Theoretical expectation of H2 production :  The acetate, lactate and 
succinate present in 1 L fermentation waste could yield 0.194 mol 
(4.83 L) H2.

Observed H2 production : Despite removal of organic acids, H2
formation was not observed using fermentation liquor.  A positive 
control was performed using a synthetic medium lacking 
nitrogenous components, but containing glucose, ethanol and 
organic acids in identical concentrations to the fermentation waste.  
H2 was produced at a rate of 124 mL H2/L culture/day (10.5 mL/h/g 
dry mass).  

Interpretation : The lack of H2 evolution from fermentation liquor 
was attributed to the presence of fixed nitrogen sources.  
Repressive concentrations of ammonia were present in the 
fermentation liquor (along with significant protein) and the rate of 
ammonia removal was insufficient to overcome repression of 
nitrogenase activity.

Outlook : A high feedstock C/N ratio is necessary for 
photoheterotrophic H2 production due to repression of the 
nitrogenase system in the presence of fixed nitrogen sources.  The 
problem of a low C/N ratio (or excessive nitrogen) may be 
overcome by the use of denitrification techniques, two-stage 
photobioreactors [6], or mutant/engineered strains [7].

Units Initial rate of removal 
(units/h/g dry cell mass)

Glucose mM 2.388
Acetate mM 2.774
Lactate mM 0.875
Ammonia mM 0.042
Protein g/l 0
Succinate mM 0
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Hypothesis 1:                                                   
R. sphaeroides can remove organic compounds from fermentation waste

Hypothesis 2:                                                   
R. sphaeroides can produce H2 at the expense of fermentation waste



Photofermentation
• Rhodobacter sphaeroides O.U.001 

• A wild-type strain (DSMZ 5864)

• 30 ºC, Tungsten illumination

• Continuous operation

• Photobioreactor volume: 3 L 

• Dilution rate: 1 L/day

• Load: variable (dependent upon electrodialysis)

Mark D. Redwood, David W. Penfold and Lynne E. Macaskie       e-mail: mdredwood@googlemail.com address: School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT.

Microbial Hydrogen and Energy Production

Summary
The combination of dark fermentation and photofermentation increases the volume of hydrogen 
generated and eliminates the disposal issue of organic acid residues from a single-stage dark 
fermentation.  The two bioreactions are kept separate because they function optimally under 
different environmental conditions.  The method of transferring fermentation products between 
reactors is crucial.  Electrodialysis actively removes organic acids from the fermentation culture, 
while restricting the passage of  ammonium ion which would inhibit nitrogenase-mediated H2
production in the photofermentation. 

The integrated dual system to produce hydrogen energy from glucose is a laboratory-scale model 
for a potentially applicable industrial process.  The integrated electrodialysis makes the process 
adaptable to the use of any sugary feedstock, and the process also produces two kinds of 
biomass which are both useful for the production of PEM-fuel cell catalyst.

Metabolic overview: Photofermentation
Organic acids  +  light energy   H2 +  CO2

H2

TCA 
cycle

e-

Photosynthesis

ATP

H+Organic                              
acids

Nitrogenase

Light 
energy

Organic Acid Transfer 

HP-11

Metabolic overview : Mixed acid fermentation
Glucose H2 + organic acids

FHL

Glucose

Pyruvate

Acetyl-CoA

Ethanol Acetate

Lactate Succinate

Formate H2

Experimental process

Dark
Fermentation

E. coli
Extraction
chamber

- +

Photo-
Fermentation

R. sphaeroides

BASE MEDIUM
1 L/day

1 g/L yeast extract 
+ minerals

FEED
100 mL/day
60 mmol glucose/day
1.5 mmol NH4

+/day

outflow

Electrodialysis
cell with

anion-selective 
membrane

Process summary

Raw
wastes

Upstream
processing

Sugar
feed

H2

Energy

2 wastes 2 products (no wastes)

Organic
acids

ED

Photofermentation

PEM-FCMetal
wastes

Bacterial
cells

Sorption &
reduction Catalyst

FermentationConclusions
Stage 1 dark fermentation = 1.6 mol H2/mol sugar, plus waste organic acids

Stage 2 photofermentation = Consumption of stage 1 organic acids to make additional H2
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Dark Fermentation
• Escherichia coli HD701 (derived from MC4100)

• Genotype: ΔhycA

• Phenotype: H2-overproduction

• Fermenter volume : 3-5 L

• Fed-batch/continuous operation

• Dilution rate: 100 mL/day

• Load: 60 mmol glucose/day (or sugary waste)

• pH controlled at 5.50

H2 production by E. coli HD701
• Control experiments represent 
conventional dark fermentation without 
electrodialysis.  H2 production stopped 
by day 10 due to organic acid toxicity.

• ‘DC only’ experiments used an inactive 
membrane in the cell to investigate the  
effect of direct current on E. coli without 
electrodialysis.

• With functioning electrodialysis H2
production was stable and continuous 
due to the removal or organic acids.

• 120.3 mL/h represents 100% efficiency 
given a maximum yield of 2 mol H2/mol 
glucose.
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Electrodialysis
• Transfer of organic acids from E. coli fermenter to 
R. sphaeroides photobioreactor to maximise H2-
yield (mol/mol).

• Organic acids migrate from cathode to anode 
under a direct current (2 mA/cm2).

• An anion-selective membrane (Neosepta AHA) 
separates the E. coli fermentation from the 
extraction chamber.

• The extraction rate varies for different organic 
acids.  Depending on the molecular mass and 
charge.

• Succinate, a 4-carbon divalent organic acid is 
transported as quickly as formate, a 1-carbon 
monovalent organic acid.
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H2 production by R. sphaeroides
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E. coli via electrodialysis

•R. sphaeroides was cultured to 
establish a H2-producing culture 
before dilution started after day 3.

• When the culture was diluted with 
a medium lacking organic acids, H2
production ceased by day 8 due to 
the washout of organic acids.

• When the culture was diluted with 
a medium enriched with E. coli
fermentation products crossfed by 
electrodialysis, H2 production was 
stable and continuous.

Problem: No single microorganism can achieve total conversion of sugars to hydrogen.  Objective: To develop a two stage artificial symbiosis for efficient and continuous production of hydrogen from sugary wastes

Waste biomass is
metallised to make 

catalytic materials for use 
in the fuel cell.



4.3 Appendices – Video 

4.3 Video showing operational dual system 
The recording (located on the enclosed disc) corresponds to the dual system as described in 

chapter 2.6 and illustrated in Figure 2.6-a. Narrative to video: The opening view focuses on 

the E. coli fermenter, also showing the permeate chamber (MA) in the foreground.  The view 

moves right to show the illuminated PBR (R. sphaeroides culture) with the reflective tube in 

place.  Next, the view moves up and right to show the two large H2 collection vessels (see 

Figure 4.1-a, part C), with a digital camera positioned for time-lapse photography.  Looking 

down, we see the plastic container for the PBR outflow, containing red culture.  The view 

then zooms out to show the dual bioreactor system.  Next we look left to see the power supply 

providing 400 mW to the electrodialysis cell below, and also the 4-channel pump circulating 

solutions and E. coli culture to the 4 chambers of the electrodialysis cell.  Next, the recording 

shows a bio-fabricated PEM-FC connected to the fuel-cell testing apparatus (see chapter 2.8), 

generating power from H2 to run an electric fan.  Finally, we step back to view the entire 

assembly. 
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