77 research outputs found

    Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents

    Get PDF
    High quality 1 ÎŒm thick a-plane MgxZn1−xO layers were produced by molecular beam epitaxy with Mg contents higher than 50%. Resonant Rutherford backscattering spectrometry combined with ion channeling revealed a uniform growth in both composition and atomic order. The lattice-site location of Mg, Zn and O elements was determined independently, proving the substitutional behaviour of Mg in Zn-sites of the wurtzite lattice. X-Ray diffraction pole figure analysis also confirms the absence of phase separation. Optical properties at such high Mg contents were studied in Schottky photodiodes

    Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures

    Full text link
    This Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period provided that all the terms of the licence are adhered toThe effect of the oxidation of gallium nanoparticles (Ga NPs) on their plasmonic properties is investigated. Discrete dipole approximation has been used to study the wavelength of the out-of-plane localized surface plasmon resonance in hemispherical Ga NPs, deposited on silicon substrates, with oxide shell (Ga2O3) of different thickness. Thermal oxidation treatments, varying temperature and time, were carried out in order to increase experimentally the Ga2O3 shell thickness in the NPs. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed, barely affecting the intensity of the plasmon resonance. A controllable increase of the Ga2O3 thickness as a consequence of the thermal annealing is achieved. In addition, simulations together with ellipsometry results have been used to determine the oxidation rate, whose kinetics is governed by a logarithmic dependence. These results support the tunable properties of the plasmon resonance wavelength in Ga NPs by thermal oxidation at low temperatures without significant reduction of the plasmon resonance intensityThis research is supported by the MINECO (CTQ2014-53334-C2-2-R and MAT2016-80394-R) and Comunidad de Madrid (NANOAVANSENS ref. S2013/MIT-3029) projects. ARC acknowledges Ramón y Cajal program (under contract number RYC-2015-18047). FN acknowledges support from Marie Sklodowska-Curie grant agreement No 641899 from the European Union’s Horizon 2020 research and innovation programm

    Analytical simulation of RBS spectra of nanowire samples

    Full text link
    Almost all, if not all, general purpose codes for analysis of Ion Beam Analysis data have been originally developed to handle laterally homogeneous samples only. This is the case of RUMP, NDF, SIMNRA, and even of the Monte Carlo code Corteo. General-purpose codes usually include only limited support for lateral inhomogeneity. In this work, we show analytical simulations of samples that consist of a layer of parallel oriented nanowires on a substrate, using a model implemented in NDF. We apply the code to real samples, made of vertical ZnO nanowires on a sapphire substrate. Two configurations of the nanowires were studied: 40 nm diameter, 4.1 ÎŒm height, 3.5% surface coverage; and 55 nm diameter, 1.1 ÎŒm height, 42% surface coverage. We discuss the accuracy and limits of applicability of the analysisAuthors thank funding from projects CTQ2014-53334-C2-2-R (MINECO, Spain) and NANOAVANSENS S2013/MIT 3029 (Comunidad de Madrid). A.R.C. acknowledges Juan de la Cierva program (under contract number JCI-2012-14509). This work was partially funded by Fundação para a CiĂȘncia e Tecnologia under grant UID/Multi/04349/201

    Plasmonic coupling in closed-packed ordered gallium nanoparticles

    Full text link
    Plasmonic gallium (Ga) nanoparticles (NPs) are well known to exhibit good performance in numerous applications such as surface enhanced fluorescence and Raman spectroscopy or biosensing. However, to reach the optimal optical performance, the strength of the localized surface plasmon resonances (LSPRs) must be enhanced particularly by suitable narrowing the NP size distribution among other factors. With this purpose, our last work demonstrated the production of hexagonal ordered arrays of Ga NPs by using templates of aluminium (Al) shallow pit arrays, whose LSPRs were observed in the VIS region. The quantitative analysis of the optical properties by spectroscopic ellipsometry confirmed an outstanding improvement of the LSPR intensity and full width at half maximum (FWHM) due to the imposed ordering. Here, by engineering the template dimensions, and therefore by tuning Ga NPs size, we expand the LSPRs of the Ga NPs to cover a wider range of the electromagnetic spectrum from the UV to the IR regions. More interestingly, the factors that cause this optical performance improvement are studied with the universal plasmon ruler equation, supported with discrete dipole approximation simulations. The results allow us to conclude that the plasmonic coupling between NPs originated in the ordered systems is the main cause for the optimized optical responseThe research is supported by the MINECO (CTQ2014-53334-C2-2-R, CTQ2017-84309-C2-2-R and MAT201676824-C3-1-R) and Comunidad de Madrid (P2018/NMT4349 and S2018/NMT-4321 NANOMAGCOST) projects. ARC acknowledges Ramón y Cajal program (under contract number RYC-2015-18047

    Zinc nitride thin films: Basic properties and applications

    Full text link
    A. Redondo-Cubero, M. GĂłmez-Castaño, C. GarcĂ­a NĂșñez, M. DomĂ­nguez, L. VĂĄzquez, J. L. Pau , "Zinc nitride thin films: basic properties and applications", Oxide-based Materials and Devices VIII, Proc. SPIE 10105, 101051B (24 February 2017); doi: 10.1117/12.2253044. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibitedProceedings of VIII Oxide-based Materials and Devices Conference (San Francisco, California, United States)Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.This research is supported by the MINECO (CTQ2014-53334-C2-2-R) and Comunidad de Madrid (NANOAVANSENS ref. S2013/MIT-3029). ARC acknowledges RamĂłn y Cajal program (under contract number RYC-2015-18047

    Breakdown of anomalous channeling with ion energy for accurate strain determination in gan-based heterostructures

    Get PDF
    The influence of the beam energy on the determination of strain state with ion channeling in GaN-based heterostructures (HSs) is addressed. Experimental results show that anomalous channeling may hinder an accurate analysis due to the steering effects at the HS interface, which are more intense at lower ion energies. The experimental angular scans have been well reproduced by Monte Carlo simulations, correlating the steering effects with the close encounter probability at the interface. Consequently, limitations in the determination of the strain state by ion channeling can be overcome by selecting the adequate beam energy

    Aluminium incorporation in AlGaN/GaN heterostructures: a comparative study by ion beam analysis and X-ray diffraction

    Full text link
    The Al content in AlxGa1 − xN/GaN heterostructures has been determined by X-ray diffraction (XRD) and contrasted with absolute measurements from ion beam analysis (IBA) methods. For this purpose, samples with 0.1bxb0.3 grown by metal organic chemical vapour deposition on sapphire substrates have been studied. XRD and IBA corroborate the good epitaxial growth of the AlGaN layer, which slightly deteriorates with the incorporation of Al for xN0.2. The assessment of Al incorporation by XRD is quite reliable regarding the average value along the sample thickness. However, XRD analysis tends to overestimate the Al fraction at low contents, which is attributed to the presence of strain within the layer. For the highest Al incorporation, IBA detects a certain Al in-depth compositional profile that should be considered for better XRD data analysis
    • 

    corecore