2,020 research outputs found

    Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    Full text link
    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do not. We set the conditions under which the correlations satisfy the QRT. We illustrate the theory in two different cases; first, solving an exact model for which the MTCF are explicitly given, and second, presenting the results of a numerical integration for a system coupled with a dissipative environment through a non-diagonal interaction.Comment: Submitted (04 Jul 04

    Quantum Smoluchowski equation: A systematic study

    Full text link
    The strong friction regime at low temperatures is analyzed systematically starting from the formally exact path integral expression for the reduced dynamics. This quantum Smoluchowski regime allows for a type of semiclassical treatment in the inverse friction strength so that higher order quantum corrections to the original quantum Smoluchowski equation [PRL 87, 086802 (2001), PRL 101, 11903 (2008)] can be derived. Drift and diffusion coefficients are determined by the equilibrium distribution in position and are directly related to the corresponding action of extremal paths and fluctuations around them. It is shown that the inclusion of higher order corrections reproduces the quantum enhancement above crossover for the decay rate out of a metastable well exactly.Comment: 15 pages, 4 figure

    Evidence from K2 for rapid rotation in the descendant of an intermediate-mass star

    Get PDF
    Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR telescope show that the star (SDSSJ0837+1856, EPIC 211914185) is a 13,590(340) K, 0.87(03) solar-mass white dwarf. This is the highest mass measured for any pulsating white dwarf with known rotation, suggesting a possible link between high mass and fast rotation. If it is the product of single-star evolution, its progenitor was a roughly 4.0 solar-mass main-sequence B star; we know very little about the angular momentum evolution of such intermediate-mass stars. We explore the possibility that this rapidly rotating white dwarf is the byproduct of a binary merger, which we conclude is unlikely given the pulsation periods observed.Comment: 5 pages, 4 figure, 1 table; accepted for publication in The Astrophysical Journal Letter

    Transport properties of double-walled carbon nanotube quantum dots

    Full text link
    The transport properties of quantum dot (QD) systems based on double-walled carbon nanotube (DWCNT) are investigated. The interplay between microscopic structure and strong Coulomb interaction is treated within a bosonization framework. The linear and nonlinear G-V-V_g characteristics of the QD system is calculated by starting from the Liouville equation for the reduced density matrix. Depending on the intershell couplings, an 8-electron periodicity of the Coulomb blockade peak spacing in the case of commensurate DWCNT QDs and a 4-electron periodicity in the incommensurate case are predicted. The contribution of excited states of DWCNTs to the nonlinear transport is investigated as well.Comment: 18 pages, 7 figure

    Rapid Dissipation of Primordial Gas from the AU Microscopii Debris Disk

    Full text link
    The disk around AU Microscopii, an M1 star in the Beta Pictoris Moving Group, is extraordinarily well-suited for comparison to the Beta Pic debris disk (type A5V). We use far-UV absorption spectroscopy of AU Mic to probe its edge-on disk for small amounts of molecular hydrogen, the primary constituent of gas giant planets. Our conservative upper limit on the line-of-sight H_2 column density is 1.7 x 10^{19} cm^{-2}, which is 18.5 times lower than the limit obtained from non-detection of sub-mm CO emission (Liu et al. 2004). In addition, there is a hint of H_2 absorption at a column density an order of magnitude or more below our upper limit. The H_2-to-dust ratio in the AU Mic disk is < 6:1, similar to that in the Beta Pic disk. This shows that the primordial gas has largely been dissipated in less than about 12 Myr for both disks, despite their very different stellar masses and luminosities. It is extremely difficult to form a giant planet around AU Mic with current core-accretion scenarios in such a short time.Comment: 5 pages, 3 color figures. Accepted for publication in ApJ Letter

    A Stochastic Liouville Equation Approach for the Effect of Noise in Quantum Computations

    Full text link
    We propose a model based on a generalized effective Hamiltonian for studying the effect of noise in quantum computations. The system-environment interactions are taken into account by including stochastic fluctuating terms in the system Hamiltonian. Treating these fluctuations as Gaussian Markov processes with zero mean and delta function correlation times, we derive an exact equation of motion describing the dissipative dynamics for a system of n qubits. We then apply this model to study the effect of noise on the quantum teleportation and a generic quantum controlled-NOT (CNOT) gate. For the quantum CNOT gate, we study the effect of noise on a set of one- and two-qubit quantum gates, and show that the results can be assembled together to investigate the quality of a quantum CNOT gate operation. We compute the averaged gate fidelity and gate purity for the quantum CNOT gate, and investigate phase, bit-flip, and flip-flop errors during the CNOT gate operation. The effects of direct inter-qubit coupling and fluctuations on the control fields are also studied. We discuss the limitations and possible extensions of this model. In sum, we demonstrate a simple model that enables us to investigate the effect of noise in arbitrary quantum circuits under realistic device conditions.Comment: 36 pages, 6 figures; to be submitted to Phys. Rev.

    Ground-based near-IR observations of the secondary eclipse of CoRoT-2b

    Full text link
    We present the results of a ground-based search for the secondary eclipse of the 3.3 Mjup transiting planet CoRoT-2b. We performed near infrared photometry using the LIRIS instrument on the 4.2 m William Herschel Telescope, in the H and K_s filters. We monitored the star around two expected secondary eclipses in two nights under very good observing conditions. For the depth of the secondary eclipse we find in H-band a 3 sigma upper limit of 0.17%, whereas we detected a tentative eclipse with a depth of 0.16+-0.09% in the K_s-band. These depths can be translated into brightness temperatures of T_H<2250 K and T_{K_s} = 1890(+260-350) K, which indicate an inefficient re-distribution of the incident stellar flux from the planet's dayside to its nightside. Our results are in agreement with the CoRoT optical measurement (Alonso et al. 09) and with Spitzer 4.5 and 8 micron results (Gillon et al. 09c).Comment: Astronomical Journal, accepte

    Density-operator approaches to transport through interacting quantum dots: Simplifications in fourth-order perturbation theory

    Get PDF
    Various theoretical methods address transport effects in quantum dots beyond single-electron tunneling while accounting for the strong interactions in such systems. In this paper we report a detailed comparison between three prominent approaches to quantum transport: the fourth-order Bloch-Redfield quantum master equation (BR), the real-time diagrammatic technique (RT), and the scattering rate approach based on the T-matrix (TM). Central to the BR and RT is the generalized master equation for the reduced density matrix. We demonstrate the exact equivalence of these two techniques. By accounting for coherences (nondiagonal elements of the density matrix) between nonsecular states, we show how contributions to the transport kernels can be grouped in a physically meaningful way. This not only significantly reduces the numerical cost of evaluating the kernels but also yields expressions similar to those obtained in the TM approach, allowing for a detailed comparison. However, in the TM approach an ad hoc regularization procedure is required to cure spurious divergences in the expressions for the transition rates in the stationary (zero-frequency) limit. We show that these problems derive from incomplete cancellation of reducible contributions and do not occur in the BR and RT techniques, resulting in well-behaved expressions in the latter two cases. Additionally, we show that a standard regularization procedure of the TM rates employed in the literature does not correctly reproduce the BR and RT expressions. All the results apply to general quantum dot models and we present explicit rules for the simplified calculation of the zero-frequency kernels. Although we focus on fourth-order perturbation theory only, the results and implications generalize to higher orders. We illustrate our findings for the single impurity Anderson model with finite Coulomb interaction in a magnetic field.Comment: 29 pages, 12 figures; revised published versio
    • …
    corecore