42 research outputs found

    Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deciphering the metabolome is essential for a better understanding of the cellular metabolism as a system. Typical metabolomics data show a few but significant correlations among metabolite levels when data sampling is repeated across individuals grown under strictly controlled conditions. Although several studies have assessed topologies in metabolomic correlation networks, it remains unclear whether highly connected metabolites in these networks have specific functions in known tissue- and/or genotype-dependent biochemical pathways.</p> <p>Results</p> <p>In our study of metabolite profiles we subjected root tissues to gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) and used published information on the aerial parts of 3 <it>Arabidopsis </it>genotypes, Col-0 wild-type, <it>methionine over-accumulation 1 </it>(<it>mto1</it>), and <it>transparent testa4 </it>(<it>tt4</it>) to compare systematically the metabolomic correlations in samples of roots and aerial parts. We then applied graph clustering to the constructed correlation networks to extract densely connected metabolites and evaluated the clusters by biochemical-pathway enrichment analysis. We found that the number of significant correlations varied by tissue and genotype and that the obtained clusters were significantly enriched for metabolites included in biochemical pathways.</p> <p>Conclusions</p> <p>We demonstrate that the graph-clustering approach identifies tissue- and/or genotype-dependent metabolomic clusters related to the biochemical pathway. Metabolomic correlations complement information about changes in mean metabolite levels and may help to elucidate the organization of metabolically functional modules.</p

    An in-silico & in-vitro tournament for protein engineering

    Get PDF
    Please click Additional Files below to see the full abstrac

    rosettR: protocol and software for seedling area and growth analysis

    Get PDF
    Growth is an important parameter to consider when studying the impact of treatments or mutations on plant physiology. Leaf area and growth rates can be estimated efficiently from images of plants, but the experiment setup, image analysis, and statistical evaluation can be laborious, often requiring substantial manual effort and programming skills. Here we present rosettR, a non-destructive and high-throughput phenotyping protocol for the measurement of total rosette area of seedlings grown in plates in sterile conditions. We demonstrate that our protocol can be used to accurately detect growth differences among different genotypes and in response to light regimes and osmotic stress. rosettR is implemented as a package for the statistical computing software R and provides easy to use functions to design an experiment, analyze the images, and generate reports on quality control as well as a final comparison across genotypes and applied treatments. Experiment procedures are included as part of the package documentation. Using rosettR it is straight-forward to perform accurate, reproducible measurements of rosette area and relative growth rate with high-throughput using inexpensive equipment. Suitable applications include screening mutant populations for growth phenotypes visible at early growth stages and profiling different genotypes in a wide variety of treatments

    A minimal model of peptide binding predicts ensemble properties of serum antibodies

    Get PDF
    <p/> <p>Background</p> <p>The importance of peptide microarrays as a tool for serological diagnostics has strongly increased over the last decade. However, interpretation of the binding signals is still hampered by our limited understanding of the technology. This is in particular true for arrays probed with antibody mixtures of unknown complexity, such as sera. To gain insight into how signals depend on peptide amino acid sequences, we probed random-sequence peptide microarrays with sera of healthy and infected mice. We analyzed the resulting antibody binding profiles with regression methods and formulated a minimal model to explain our findings.</p> <p>Results</p> <p>Multivariate regression analysis relating peptide sequence to measured signals led to the definition of amino acid-associated weights. Although these weights do not contain information on amino acid position, they predict up to 40-50% of the binding profiles' variation. Mathematical modeling shows that this position-independent ansatz is only adequate for highly diverse random antibody mixtures which are not dominated by a few antibodies. Experimental results suggest that sera from healthy individuals correspond to that case, in contrast to sera of infected ones.</p> <p>Conclusions</p> <p>Our results indicate that position-independent amino acid-associated weights predict linear epitope binding of antibody mixtures only if the mixture is random, highly diverse, and contains no dominant antibodies. The discovered ensemble property is an important step towards an understanding of peptide-array serum-antibody binding profiles. It has implications for both serological diagnostics and B cell epitope mapping.</p

    Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverage metabolomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing awareness of limitations to natural resources has set high expectations for plant science to deliver efficient crops with increased yields, improved stress tolerance, and tailored composition. Collections of representative varieties are a valuable resource for compiling broad breeding germplasms that can satisfy these diverse needs.</p> <p>Results</p> <p>Here we show that the untargeted high-coverage metabolomic characterization of such core collections is a powerful approach for studying the molecular backgrounds of quality traits and for constructing predictive metabolome-trait models. We profiled the metabolic composition of kernels from field-grown plants of the rice diversity research set using 4 complementary analytical platforms. We found that the metabolite profiles were correlated with both the overall population structure and fine-grained genetic diversity. Multivariate regression analysis showed that 10 of the 17 studied quality traits could be predicted from the metabolic composition independently of the population structure. Furthermore, the model of amylose ratio could be validated using external varieties grown in an independent experiment.</p> <p>Conclusions</p> <p>Our results demonstrate the utility of metabolomics for linking traits with quantitative molecular data. This opens up new opportunities for trait prediction and construction of tailored germplasms to support modern plant breeding.</p

    Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories

    Get PDF
    Computational systems biology methods enable rational design of cell factories on a genome-scale and thus accelerate the engineering of cells for the production of valuable chemicals and proteins. Unfortunately, the majority of these methods’ implementations are either not published, rely on proprietary software, or do not provide documented interfaces, which has precluded their mainstream adoption in the field. In this work we present cameo, a platform-independent software that enables <i>in silico</i> design of cell factories and targets both experienced modelers as well as users new to the field. It is written in Python and implements state-of-the-art methods for enumerating and prioritizing knockout, knock-in, overexpression, and down-regulation strategies and combinations thereof. Cameo is an open source software project and is freely available under the Apache License 2.0. A dedicated Web site including documentation, examples, and installation instructions can be found at http://cameo.bio. Users can also give cameo a try at http://try.cameo.bio

    The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces.

    Get PDF
    The Orthologous Matrix (OMA) is a leading resource to relate genes across many species from all of life. In this update paper, we review the recent algorithmic improvements in the OMA pipeline, describe increases in species coverage (particularly in plants and early-branching eukaryotes) and introduce several new features in the OMA web browser. Notable improvements include: (i) a scalable, interactive viewer for hierarchical orthologous groups; (ii) protein domain annotations and domain-based links between orthologous groups; (iii) functionality to retrieve phylogenetic marker genes for a subset of species of interest; (iv) a new synteny dot plot viewer; and (v) an overhaul of the programmatic access (REST API and semantic web), which will facilitate incorporation of OMA analyses in computational pipelines and integration with other bioinformatic resources. OMA can be freely accessed at https://omabrowser.org

    Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    Get PDF
    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms

    PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments

    Get PDF
    BACKGROUND: Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. RESULTS: Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs. PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis. PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at . CONCLUSION: PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments
    corecore