216 research outputs found

    A comparative study on the hatching of common carp eggs in hapa and hatchery (model CIFE D-80)

    Get PDF
    Common carp (Cyprinus carpio) eggs were incubated to study the efficiency of hatching in hapa and hatchery. During incubation the recorded temperature was 21-28 degree C and 20-31 degree C, dissolved oxygen 6-9 ppm. and 3-5 ppm., total alkalinity 180-250 ppm. and 28-62 ppm. respectively in the hatchery (model C.I.F.E. D-80) and hapa. CO sub(2) was totally absent in the hatchery, but recorded 3-10 ppm. in the hapa. The flow of water was maintained at 1.25 l/minute/jar in the hatchery. Under the above environmental conditions the eggs hatched in 42-51 hrs. in the hatchery and 61-81 hrs. in the hapa from egg to spawn thereby establishing the hatchery to be a better hatching system for carp eggs

    Consciousness Levels Detection Using Discrete Wavelet Transforms on Single Channel EEG Under Simulated Workload Conditions

    Get PDF
    EEG signal is one of the most complex signals having the lowest amplitude which makes it challenging for analysis in real-time. The different waveforms like alpha, beta, theta and delta were studied and selected features were related with the consciousness levels. The consciousness levels detection is useful for estimating the subjects’ performance in certain selected tasks which requires high alertness. This estimation was performed by analyzing signal properties of the EEG using features extracted through discrete wavelet transform with a moving window of 10 seconds with 90% overlap. The EEG signal is decomposed in to wavelets and the average energy and power of the coefficients related to the EEG bands is taken as the features. The data is collected from standard EEG machine from the volunteers as per the protocol. C3 and C4 locations (unipolar) of the standard 10-20 electrode system were selected. The central region of the brain is most optimal location for the consciousness levels detection. The estimation of the data using Discrete Wavelet Transform (DWT) energy, power features provided better accuracy when the central regions were chosen. An accuracy of 99% was achieved when the algorithm was implemented using a classifier based on linear kernel support vector machines (SVM)

    An Effective Data Privacy Mechanism through Secure Session Key Exchange Model for MANET

    Get PDF
    Data privacy in the mobile ad-hoc network is a problem due to wireless medium, frequent node movement and lack of any centralized infrastructure support. In such case, it is very important to build a reliable and secure network and achieve high throughput in MANET. The reliability and security of a network depend on whether the network remains linked to different failures and malicious activities, which is the fundamental issue that needs to be focused when designing a secure routing protocol in MANET. This paper proposes an effective privacy mechanism to handle data security through a novel secure session key exchange model, which provides the node data privacy and network stability for a longer period of time and prevents abnormal behavior changes due to malicious behavior and different type of attacks in the network. The simulation results show improvement in throughput with nominal overhead and end-to-end delay in different malicious conditions against existing protocols

    Characteristics of masonry units from iron ore tailings

    Get PDF
    This paper deals with an experimental study on masonry units made of iron ore tailings in compressed earth block. Compressed earth blocks (CEB) or stabilised mud blocks (SMB) are widely accepted as energy efficient alternatives to burnt clay bricks. Natural river sand is often used to obtain optimum soil gradation in the production of SMB. In order to reduce adverse impacts of indiscriminate mining of natural sand, iron ore tailings (IOT), which is a mine waste, is used as an alternate to the natural river sand. Based on the gradation of soil used for production of SMB, optimum mix proportion of soil, sand and cement was fixed and the sand fraction was replaced by IOT at 25%, 50% and 100%. The block characteristics like wet compressive strength, water absorption, initial rate of absorption and linear elongation were examined and discussed. From the experimental results it is found that considerable amount of sand can be replaced by IOTwithout compromising desirable characteristics of SMB used for masonr

    A compact design of a balanced 1×4 optical power splitter based on silicon on insulator slot waveguides

    Get PDF
    In this paper, a compact design of a balanced 1×4 optical power splitter based on coupled mode theory (CMT) is presented. The design consists of seven vertically slotted waveguides based on the silicon-on-insulator platform. The 1×4 OPS is modelled using commercial finite element method (FEM) simulation tool COMSOL Multiphysics 5.1. The optimized OPS is capable of working across the whole C-band with maximum ~39 % of power decay in the wavelength range 1530 – 1565 nm.This work was partially financially supported by Ministry of Education and Science of Russian Federation, Russian Foundation for Basic Research (RFBR) (16-47-630677, 16-29-11744) and by the Federal Agency for Scientific Organizations (agreement No. 007-G7/C3363/26)

    Asymmetric apodization for the comma aberrated point spread function

    Get PDF
    This paper deals with the study of light flux distributions in the point spread function formed by an optical system with a one-dimensional aperture under the influence of the coma aberration. The traditional design of an asymmetric optical filter improves the resolution of a diffraction-limited optical imaging system. In this approach we explore the control of monochromatic aberrations through pupil engineering with asymmetric apodization. This technique employs the amplitude and phase apodization for the mitigation of the effects of third-order aberrations on the diffracted image. On introducing the coma wave aberration effect, the central peak intensity in the field of diffraction is a function of the edge strips width and the amplitude apodization parameter of a one-dimensional pupil filter, whereas the magnitude of the reduction of optical side-lobes is a function of the degree of phase apodization at the periphery of the aperture. The analytically computed results are illustrated graphically in terms of point spread function curves under various considerations of the coma aberrations and a different degree of amplitude and phase apodization. Hence, for the optimum values of apodization, the axial resolution has been analyzed using well-defined quality criteria.This work was partially financially supported by Ministry of Education and Science of Russian Federation and Russian Foundation for Basic Research (RFBR) (16-29-11698, 16-29-11744)

    Design and simulation of a SOI based mems differential accelerometer

    Get PDF
    In this paper, the design and analysis of a differential MEMS capacitive accelerometer is presented. The device is designed to be compatible for SOI based fabrication process. The outstanding mechanical and electrical properties of silicon on insulator (SOI) wafers make it popular for high-performance MEMS sensors such as accelerometers. The operating range of the designed device is 0-10g with its sense axis in the in-plane direction. The movable comb fingers attached to the proof mass form capacitors with the fixed electrode fingers. The movable and fixed fingers are spaced with unequal gaps to form the differential capacitive sensing configuration. The base capacitance of this configuration is about 0.77pF and the sensitivity in response to acceleration input is about 0.776 fF/g. The resonance frequency of the structure in the sensing mode is found to be 7.138 kHz.The work was partially funded by the Russian Federation Ministry of Education and Science

    Sources of resistance to tobacco streak virus in Wild Arachis (Fabaceae: Papilionoidae) Germplasm

    Get PDF
    Article purchasedStem necrosis disease caused by Tobacco streak virus (TSV), first recognized in 2000, has emerged as a potential threat to peanut (Arachis hypogaea) in southern states of India. The virus induces severe necrosis of shoots leading to death of the plant, and plants that survive are malformed, with severe reduction in pod yield. All the currently grown peanut cultivars in India are highly susceptible to the virus. Therefore, wild relatives of peanut were evaluated to identify potential sources of resistance to TSV infection. In all, 56 germplasm accessions from 20 wild Arachis spp. in four sections (Arachis, Erectoides, Procumbente, and Rhizomatosae), along with susceptible peanut cultivars (JL 24 and K 1375), were evaluated for resistance to TSV under greenhouse conditions using mechanical sap inoculations. Systemic virus infection, determined by enzyme-linked immunosorbent assay (ELISA), in the test accessions ranged between 0 and 100%. Twenty-four accessions in section Arachis that had 0 to 35% systemically infected plants were retested, and systemic infection was not detected in eight of these accessions in repeated trials in the greenhouse. These are International Crops Research Institute for the Semi-Arid Tropics groundnut (ICG) accession nos. 8139, 8195, 8200, 8203, 8205, and 11550 belonging to A. duranensis; ICG 8144 belonging to A. villosa; and ICG 13210 belonging to A. stenosperma. Even though the resistant accessions had 0 to 100% TSV infection in inoculated leaves, TSV was not detected in the subsequently emerged leaves. This is the first report of TSV resistance in Arachis spp. The eight TSV resistant accessions are cross compatible with A. hypogaea for utilization in breeding for stem necrosis disease resistance

    Development of a Floating Dosage Form of Ranitidine Hydrochloride by Statistical Optimization Technique

    Get PDF
    The objective of this study was to evaluate the effect of formulation variables on the release properties, floating lag time, and hardness, when developing floating tablets of Ranitidine hydrochloride, by the statistical optimization technique. The formulations were prepared based on 32 factorial design, with polymer ratio (HPMC 100 KM: Xanthan gum) and the amount of aerosil, as two independent formulation variables. The four dependent (response) variables considered were: percentage of drug release at the first hour, T50% (time taken to release 50% of the drug), floating lag time, and hardness of the tablet. The release profile data was subjected to a curve fitting analysis, to describe the release mechanism of the drug from the floating tablet. An increase in drug release was observed with an increase in the polymer ratio, and as the amount of aerosil increased, the hardness of the tablet also increased, without causing any change in the floating lag time. The desirability function was used to optimize the response variables, each having a different target, and the observed responses were in accordance with the experimental values. The results demonstrate the feasibility of the model in the development of floating tablets containing Ranitidine hydrochloride

    Regulation of Plant Developmental Processes by a Novel Splicing Factor

    Get PDF
    Serine/arginine-rich (SR) proteins play important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. We have previously isolated a unique plant SR protein (SR45) with atypical domain organization. However, the biological and molecular functions of this novel SR protein are not known. Here, we report biological and molecular functions of this protein. Using an in vitro splicing complementation assay, we showed that SR45 functions as an essential splicing factor. Furthermore, the alternative splicing pattern of transcripts of several other SR genes was altered in a mutant, sr45-1, suggesting that the observed phenotypic abnormalities in sr45-1 are likely due to altered levels of SR protein isoforms, which in turn modulate splicing of other pre-mRNAs. sr45-1 exhibited developmental abnormalities, including delayed flowering, narrow leaves and altered number of petals and stamens. The late flowering phenotype was observed under both long days and short days and was rescued by vernalization. FLC, a key flowering repressor, is up-regulated in sr45-1 demonstrating that SR45 influences the autonomous flowering pathway. Changes in the alternative splicing of SR genes and the phenotypic defects in the mutant were rescued by SR45 cDNA, further confirming that the observed defects in the mutant are due to the lack of SR45. These results indicate that SR45 is a novel plant-specific splicing factor that plays a crucial role in regulating developmental processes
    corecore