53,274 research outputs found
Finite element solver for 3-D compressible viscous flows
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed
A finite element solver for 3-D compressible viscous flows
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers
DESAP 2: A structural design program with stress and buckling constraints. Volume 3: Program listing
For abstract, see N77-18472
DESAP 1: A structural design program with stress and displacement constraints. Volume 1: Theoretical and user's manual
A finite element program is presented for computer-automated, minimum weight design of elastic structures with constraints on stresses (including local instability criteria) and displacements. Volume 1 of the report contains the theoretical and user's manual of the program. Sample problems and the listing of the program are included in Volumes 2 and 3. The element subroutines are organized so as to facilitate additions and changes by the user. As a result, a relatively minor programming effort would be required to make DESAP 1 into a special purpose program to handle the user's specific design requirements and failure criteria
DESAP 1: A structural design program with stress and displacement constraints. Volume 2: Sample problems
For abstract, see N77-18469
Optimisation of distributed feedback laser biosensors
A new integrated optical sensor chip is proposed, based on a modified distributed- feedback (DFB) semiconductor laser. The semiconductor layers of different refractive indices that comprise a laser form the basis of a waveguide sensor, where changes in the refractive index of material at the surface are sensed via changes in the evanescent field of the lasing mode. In DFB lasers, laser oscillation occurs at the Bragg wavelength. Since this is sensitive to the effective refractive index of the optical mode, the emission wavelength is sensitive to the index of a sample on the waveguide surface. Hence, lasers are modelled as planar waveguides and the effective index of the fundamental transverse electric mode is calculated as a function of index and thickness of a thin surface layer using the beam propagation method. We find that an optimised structure has a thin upper cladding layer of ~0.15 mum, which according to this model gives detection limits on test layer index and thickness resolution of 0.1 and 1.57 nm, respectively, a figure which may be further improved using two lasers in an interferometer-type configuration
DESAP 2: A structural design program with stress and buckling constraints. Volume 2: Sample problems
For abstract, see N77-18472
- …
