17 research outputs found

    Plant defense elicitors: plant fitness versus wheat stem sawfly

    Get PDF
    The wheat stem sawfly (WSS), Cephus cinctus Norton, is an important wheat pest in the Northern Great Plains of the USA. No single control measure effectively suppresses WSS damage. This study provides information on the effects on the WSS adult settling preference behavior on wheat plants under laboratory conditions from treatment with both synthetic plant defense elicitors (Actigard® and cis-jasmone) and a botanical insecticide (Azadirachtin®). In addition, field experiments were performed to determine whether these chemicals impact the WSS fitness (larval mortality and larval body weight), winter wheat plant fitness (infestation, stem lodging, yield, and quality), adult population of WSS and Bracon spp., and larval parasitism levels. Our lab results showed that there were no significant differences in adult settling behavior on plants exposed separately to each chemical and control. In contrast, when adults were exposed simultaneously to treated and untreated plants, there was a significant reduction in the percentage of adults settling on Actigard® and Azadirachtin® treated plants compared to plants sprayed with water in the same cage. However, in field situations, regardless of application timing and field location, none of the chemicals significantly reduced adult population or stems damage. The exception was two times applications of Actigard® had significantly lower WSS infested stem damage levels at 30 days after initial treatment applications at Knees and 50 days at Choteau locations compared to control, but without effect at the Conrad location. The field study indicated that two times applications of Actigard® significantly increased diapausing larval mortality percentages and lowered stem lodging levels compared to untreated controls at Knees and Choteau locations, while no effects at Conrad location. Larval body weight was significantly lower in plots treated with Actigard® at Knees and Conrad, but no effects at Choteau. No significant differences were found in wheat yield and quality in plots treated with chemicals and controls at any location. Bracon spp. adult population and parasitism levels were not negatively affected by the use of chemicals. In conclusion, this study offers insights on what treatments should be emphasized in more detail despite variable findings

    New mite species associated with certain plant species from Guam

    No full text
    Several new mite species have been reported from certain plants from Guam. Most remarkably, the spider mite, <em>Tetranychus marianae </em>(Prostigmata: Tetranychidae) and the predatory mite <em>Phytoseius horridus </em>(Mesostigmata: Phytoseiidae) (<em>Solanum melongena</em>) have been found on eggplant. The noneconomically important species of <em>Brevipalpus californicus</em>(Banks) Prostigmata: Tenuipalpidae),<em>Eupodes </em>sp. (Acarina: Eupodidae) and predator <em>Cunaxa </em>sp. (Prostigmata: Cunaxidae) have been reported on guava (<em>Psidium guajava </em>L.). Also, the non-economically important species <em>Brevipalpus californicus</em> Prostigmata: Tenuipalpidae), <em>Lepidoglyphus destructor</em> (Astigmata: Glycyphagidae) and a predator<em> Amblyseius obtusus</em>, species group Amblyseius near <em>lentiginosus </em>(Mesostigmata: Phytoseiidae), have been recorded on cycad (<em>Cycas micronesica</em>)

    Data from: Entomopathogenic Nematodes Combined with Adjuvants Presents a New Potential Biological Control Method for Managing the Wheat Stem Sawfly, Cephus cinctus (Hymenoptera: Cephidae)

    No full text
    The wheat stem sawfly, (Cephus cinctus Norton) Hymenoptera: Cephidae, has been a major pest of winter wheat and barley in the northern Great Plains for more than 100 years. The insect's cryptic nature and lack of safe chemical control options make the wheat stem sawfly (WSS) difficult to manage; thus, biological control offers the best hope for sustainable management of WSS. Entomopathogenic nematodes (EPNs) have been used successfully against other above-ground insect pests and adding adjuvants to sprays containing EPNs has been shown to improve their effectiveness. We tested the hypothesis that adding chemical adjuvants to sprays containing EPNs will increase the ability of EPNs to enter wheat stems and kill diapausing WSS larvae. This is the first study to test the ability of EPNs to infect the WSS, C. cinctus, and test EPNs combined with adjuvants against C. cinctus in both the laboratory and the field. Infection assays showed that three different species of EPNs caused 60-100% mortality to WSS larvae. Adding Penterra, Silwet L-77, Sunspray 11N, or Syl-Tac to solutions containing EPNs resulted in higher WSS mortality than solutions made with water alone. Field tests showed that sprays containing S. feltiae added to 0.1% Penterra increased WSS mortality up to 29.1%. These results indicate a novel control method for WSS, and represent a significant advancement in the biological control of this persistent insect pest

    Evaluation of toxicity of biorational insecticides against larvae of the alfalfa weevil

    Get PDF
    The alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), is a major pest of alfalfa Medicago sativa L. (Fabaceae). While H. postica usually causes the most damage before the first cutting, in summer of 2015 damaging levels of the pest persisted in Montana well after the first harvest of alfalfa. Although conventional insecticides can control H. postica, these chemicals have adverse effects on non-target organisms including pollinators and natural enemy insects. In this context, use of biorational insecticides would be the best alternative options, as they are known to pose less risk to non-target organisms. We therefore examined the six commercially available biorational insecticides against H. postica under laboratory condition: Mycotrol® ESO (Beauveria bassiana GHA), Aza-Direct® (Azadirachtin), Met52® EC (Metarhizium brunneum F52), Xpectro OD® (B. bassiana GHA + pyrethrins), Xpulse OD® (B. bassiana GHA + Azadirachtin) and Entrust WP® (spinosad 80%). Concentrations of 0.1, 0.5, 1.0, and 2.0 times the lowest labelled rates were tested for all products. However, in the case of Entrust WP, additional concentrations of 0.001 and 0.01 times the lowest label rate were also assessed. Mortality rates were determined at 1–9 days post treatment. Based on lethal concentrations and relative potencies, this study clearly showed that Entrust was the most effective, causing 100% mortality within 3 days after treatment among all the tested materials. With regard to other biorational, Xpectro was the second most effective insecticide followed by Xpulse, Aza-Direct, Met52, and Mycotrol. Our results strongly suggested that these biorational insecticides could potentially be applied for H. postica control. Keywords: Low risk insecticides, Insect pathogenic fungi, Efficacy, Lethal concentration, Mortality rat

    Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?

    Get PDF
    The principle of similarity (Thompson, 1917) states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A), density (ρ), length (L), thickness (T), and weight (W). Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3)/2 ≈ A9/8, where b approximates −3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants
    corecore