25 research outputs found

    Fatigue response evaluation of stainless steel SS 304 L(N) and SS 316 L(N) through cyclic ball indentation studies

    Get PDF
    This paper presents the results of an experimental investigation of fatigue response of stainless steel SS 304 L(N) and SS 316 L(N) using cyclic ball indentation test method. A Tungsten Carbide (WC) spherical ball of 1.57 mm diameter is used for applying compression-compression fatigue cycling on the test specimen having a nominal thickness of 5 mm; the displacement response is monitored as a function of every cycle of loading. The study focused on cases where the stainless steel specimens were welded by two different welding processes – Activated flux TIG welding and conventional multi-pass TIG welding. Fatigue response was monitored at locations of weld zone, heat affected zone (HAZ) and base metal to identify the effect of microstructure variation on fatigue response. It is observed that there is a steady increase in depth of penetration of the spherical indenter due to fatigue cycling; however, after a number of cycles, there is a sudden increase in depth of penetration which indicates the failure of the material beneath the indenter. The specimens after cyclic ball indentation were examined using a scanning electron microscope and one could observe the presence of secondary cracking in the penetrated region of the specimen

    Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures

    Get PDF
    Phenology reflects the interplay of climate and biological development. Early spring phenological phenomena are particularly important because the end of diapause or dormancy is related not only to heat accumulation in the early spring but also probably to winter low temperatures. Although a warmer winter can reduce overwintering mortality in many insects and plants, it also reduces the accumulation of chilling time that often triggers the end of diapause or dormancy. We examined a continuous 67-year time series of the first flowering date of cherry trees and compared three phenological models based on the temperature-dependent developmental rate: (i) the accumulated degree days (ADD) method, (ii) the number of days transferred to a standardized temperature (DTS) method, and (iii) the accumulated developmental progress (ADP) method. The ADP method performed the best but only slightly better than the DTS method. We further explained the residuals from the ADP method by an additive model using the mean winter minimum daily temperatures, the number of days with low temperatures (represented by daily minimum temperature) below a critical low temperature, and the minimum annual extreme temperature. These three temperature variables explained more than 57.5% deviance of the ADP model residuals. Increased mean winter low temperatures can delay the blooming of cherry trees by reducing the accumulation of chilling time, whereas reduced numbers of cold days can shift the blooming to become earlier. Overall, rising winter low temperatures will delay the flowering time, while rising early spring temperatures directly shift earlier the flowering time. The flowering time has been shifted to earlier, and the balance from the opposing effects of rising winter low temperatures and early spring temperatures explains this shift

    Capturing wheat phenotypes at the genome level

    Get PDF
    Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence

    Fortuitous Introduction of Two Natural Enemies of Lantana camara to Chuuk

    Get PDF
    Scientific note.Ophiomyia lantanae (Froggatt) and the Calycomyza lantanae Frick were recorded from Lantana camara L. in Chuuk Islands. Both of these agromyzids are native to tropical Americas and were not intentionally introduced and this is the second report of fortuitous introduction of natural enemies of L. camara in to the Chuuk State possibly from Pohnpei State within the Federal States of Micronesia

    Studies on the Sex pheromone of the diamondback moth Plutella xylostella

    No full text

    Chromolaena odorata (L.) King and Robinson (Asteraceae)

    No full text
    Chromolaena, or Siam weed, is a serious problem in several tropical and sub-tropical areas around the world. In our own region, it is a serious weed in New Guinea, East Timor and Indonesia and is also under an eradication regime in North Queensland. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and control of the weed. Biological control has been a major multinational initiative against this weed in recent years and these efforts are described in some detail. Interestingly agents have not been universally effective because of weed biotype differences and climate. Considerable success has been achieved in New Guinea, principally with the tephritid fly Cecidocares connex and by the efforts of Michael Day, Rachel McFadyen and Graham Donnelly from Alan Fletcher Research Station
    corecore