297 research outputs found

    School Health Scoliosis Referrals: A Descriptive Study of the Diagnosis, Treatment and Follow Up Rate of Scoliosis in Relation to Age, Sex and Ethnicity of Sixth Grade Students in the Rochester City School

    Get PDF
    This research was designed to assess the effectiveness of a school screening program for scoliosis among 294 sixth grade students in the Rochester City School District during the 1978-1979 school year. Data was collected regarding sex, ethnicity, age, follow up status, diagnosis, and treatment of the referred. More females (172) were referred than males (122). Whites comprised half of the study (135), with Blacks (128) next, followed by Spanish (25), and Orientals (6), respectively. Of the total number referred, only 143, or forty-eight and sixth tenths (48.6) percent, had follow up. This percentage of follow up is quite low, but other studies assessing the effectiveness of school health referrals report similar statistics. Only 52 of those seen by their health care provider actually were diagnosed as having scoliosis. The range of age was from nine to sixteen with forty-eight (48) percent, or 142 students, being 12-13 years old which is the average age of a sixth grader. The mean age was approximately the same in each follow up category and it was concluded that age was not an important variable in this study. A chi-square test was applied to the interrelationship between the sex of the referred and their follow up care to ascertain if one sex tended to seek evaluation more than the other. The hypothesis was rejected as there was a difference in the sexes, males having a greater follow up rate than females. The correlation between the follow up status of the referred and ethnicity was accepted after a chi-square analysis revealed that one ethnic group did not tend to seek follow up care more than any other group. However, percentage distributions indicated a greater no follow up rate in the Black and Puerto Rican ethnic groups. Over half of those seen by their health care provider had a normal diagnosis. The connection between the sex and diagnosis was questioned and statistically there was a relationship between sex of followed up students and diagnosis, females having scoliosis more often than males. Data collected regarding diagnosis of those followed up and their ethnicity demonstrated that ethnic groups did not tend to have one diagnosis more than the other. There was no difference in the treatment of scoliosis between males and females. A Fisher-exact test was used to test the interrelationship between these two variables and the hypothesis was accepted. The last hypothesis inquired as to the connection between ethnic groups and treatment, and when a Fisher-exact test was applied to the data, ethnicity had nothing to do with the prescribed treatment

    The multifunctional poly(A)-binding protein (PABP) 1 is subject to extensive dynamic post-translational modification, which molecular modelling suggests plays an important role in co-ordinating its activities

    Get PDF
    PABP1 [poly(A)-binding protein 1] is a central regulator of mRNA translation and stability and is required for miRNA (microRNA)-mediated regulation and nonsense-mediated decay. Numerous protein, as well as RNA, interactions underlie its multi-functional nature; however, it is unclear how its different activities are co-ordinated, since many partners interact via overlapping binding sites. In the present study, we show that human PABP1 is subject to elaborate post-translational modification, identifying 14 modifications located throughout the functional domains, all but one of which are conserved in mouse. Intriguingly, PABP1 contains glutamate and aspartate methylations, modifications of unknown function in eukaryotes, as well as lysine and arginine methylations, and lysine acetylations. The latter dramatically alter the pI of PABP1, an effect also observed during the cell cycle, suggesting that different biological processes/stimuli can regulate its modification status, although PABP1 also probably exists in differentially modified subpopulations within cells. Two lysine residues were differentially acetylated or methylated, revealing that PABP1 may be the first example of a cytoplasmic protein utilizing a ‘methylation/acetylation switch’. Modelling using available structures implicates these modifications in regulating interactions with individual PAM2 (PABP-interacting motif 2)-containing proteins, suggesting a direct link between PABP1 modification status and the formation of distinct mRNP (messenger ribonucleoprotein) complexes that regulate mRNA fate in the cytoplasm

    A global model perturbed parameter ensemble study of secondary organic aerosol formation

    Get PDF
    A global model perturbed parameter ensemble of 60 simulations was used to explore how combinations of six parameters related to secondary organic aerosol (SOA) formation affect particle number concentrations and organic aerosol mass. The parameters represent the formation of organic compounds with different volatilities from biogenic and anthropogenic sources. The most plausible parameter combinations were determined by comparing the simulations against observations of the number concentration of particles larger than 3 nm diameter (N3), the number concentration of particles larger than 50 nm diameter (N50), and the organic aerosol (OA) mass concentration. The simulations expose a high degree of model equifinality in which the skill of widely different parameter combinations cannot be distinguished against observations. We therefore conclude that, based on the observations we have used, a six-parameter SOA scheme is under-determined. Nevertheless, the model skill in simulating N3 and N50 is clearly determined by the low-volatility and extremely low-volatility compounds that affect new particle formation and growth, and the skill in simulating OA mass is determined by the low-volatility and semi-volatile compounds. The biogenic low-volatility class of compounds that grow nucleated clusters and condense on all particles is found to have the strongest effect on the model skill in simulating N3, N50, and OA. The simulations also expose potential structural deficiencies in the model: we find that parameter combinations that are best for N3 and N50 are worst for OA mass, and the ensemble exaggerates the observed seasonal cycle of particle concentrations – a deficiency that we conclude requires an additional anthropogenic source of either primary or secondary particles

    Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Microbiology 18 (2016): 1970–1987, doi:10.1111/1462-2920.13173.Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor.National Aeronautics and Space Administration Grant Number: NNX09AB756; Alfred P. Sloan Foundation; NSF Grant Number: OCE10618

    Library Design in Combinatorial Chemistry by Monte Carlo Methods

    Full text link
    Strategies for searching the space of variables in combinatorial chemistry experiments are presented, and a random energy model of combinatorial chemistry experiments is introduced. The search strategies, derived by analogy with the computer modeling technique of Monte Carlo, effectively search the variable space even in combinatorial chemistry experiments of modest size. Efficient implementations of the library design and redesign strategies are feasible with current experimental capabilities.Comment: 5 pages, 3 figure

    Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model

    Get PDF
    In the most advanced aerosol-climate models it is common to represent the aerosol particle size distribution in terms of several log-normal modes. This approach, motivated by computational efficiency, makes assumptions about the shape of the particle distribution that may not always capture the properties of global aerosol. Here, a global modal aerosol microphysics module (GLOMAP-mode) is evaluated and improved by comparing against a sectional version (GLOMAP-bin) and observations in the same 3-D global offline chemistry transport model. With both schemes, the model captures the main features of the global particle size distribution, with sub-micron aerosol approximately unimodal in continental regions and bi-modal in marine regions. Initial bin-mode comparisons showed that the current values for two size distribution parameter settings in the modal scheme (mode widths and inter-modal separation sizes) resulted in clear biases compared to the sectional scheme. By adjusting these parameters in the modal scheme, much better agreement is achieved against the bin scheme and observations. Annual mean surface-level mass of sulphate, sea-salt, black carbon (BC) and organic carbon (OC) are within 25% in the two schemes in nearly all regions. Surface level concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), surface area density and condensation sink also compare within 25% in most regions. However, marine CCN concentrations between 30° N and 30° S are systematically 25–60% higher in the modal model, which we attribute to differences in size-resolved particle growth or cloud-processing. Larger differences also exist in regions or seasons dominated by biomass burning and in free-troposphere and high-latitude regions. Indeed, in the free-troposphere, GLOMAP-mode BC is a factor 2–4 higher than GLOMAP-bin, likely due to differences in size-resolved scavenging. Nevertheless, in most parts of the atmosphere, we conclude that bin-mode differences are much less than model-observation differences, although some processes are missing in these runs which may pose a bigger challenge to modal schemes (e.g., boundary layer nucleation and ultra-fine sea-spray). The findings here underline the need for a spectrum of complexity in global models, with size-resolved aerosol properties predicted by modal schemes needing to be continually benchmarked and improved against freely evolving sectional schemes and observations

    Seafloor incubation experiment with deep-sea hydrothermal vent fluid reveals effect of pressure and lag time on autotrophic microbial communities

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fortunato, C. S., Butterfield, D. A., Larson, B., Lawrence-Slavas, N., Algar, C. K., Zeigler Allen, L., Holden, J. F., Proskurowski, G., Reddington, E., Stewart, L. C., Topçuoğlu, B. D., Vallino, J. J., & Huber, J. A. Seafloor incubation experiment with deep-sea hydrothermal vent fluid reveals effect of pressure and lag time on autotrophic microbial communities. Applied and Environmental Microbiology, 87, (2021): e00078-21, https://doi.org/10.1128/AEM.00078-21Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed a remotely operated vehicle (ROV)-powered incubator instrument to carry out and compare results from in situ and shipboard RNA stable isotope probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes, suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations, suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, the results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under nearly native conditions in the ocean.This work was funded by Gordon and Betty Moore Foundation grant GBMF3297; the NSF Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564), contribution number 562; NOAA/PMEL, contribution number 5182; and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA cooperative agreement NA15OAR4320063, contribution number 2020-1113. The RNA-SIP methodology used in this work was developed during cruise FK010-2013 aboard the R/V Falkor supported by the Schmidt Ocean Institute. The NOAA/PMEL supported this work with ship time in 2014 and through funding to the Earth Ocean Interactions group. NSF provided ship time for the 2015 expedition through OCE-1546695 to D.A.B. and OCE-1547004 to J.F.H

    Global and regional trends in particulate air pollution and attributable health burden over the past 50 years

    Get PDF
    Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry diameter of < 2.5 μm) is a major risk factor to the global burden of disease. Previous studies have focussed on present day or future health burdens attributed to ambient PM2.5. Few studies have estimated changes in PM2.5 and attributable health burdens over the last few decades, a period where air quality has changed rapidly. Here we used the HadGEM3-UKCA coupled chemistry-climate model, integrated exposure-response relationships, demographic and background disease data to provide the first estimate of the changes in global and regional ambient PM2.5 concentrations and attributable health burdens over the period 1960 to 2009. Over this period, global mean population-weighted PM2.5 concentrations increased by 38%, dominated by increases in China and India. Global attributable deaths increased by 89% to 124% over the period 1960 to 2009, dominated by large increases in China and India. Population growth and ageing contributed mostly to the increases in attributable deaths in China and India, highlighting the importance of demographic trends. In contrast, decreasing PM2.5 concentrations and background disease dominated the reduction in attributable health burden in Europe and the United States. Our results shed light on how future projected trends in demographics and uncertainty in the exposure–response relationship may provide challenges for future air quality policy in Asia

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Current opinions and recommendations of paediatric healthcare professionals - The importance of tablets:Emerging orally disintegrating versus traditional tablets

    Get PDF
    The appropriate prescribing of paediatric dosage forms is paramount in providing the desired therapeutic effect alongside successful medication adherence with the paediatric population. Often it is the opinion of the healthcare practitioner that dictates which type of dosage form would be most appropriate for the paediatric patient, with liquids being both the most commonly available and most commonly used. Orally disintegrating tablets (ODTs) are an emerging dosage form which provide many benefits over traditional dosage forms for paediatric patients, such as rapid disintegration within the oral cavity, and the reduction in the risk of choking. However the opinion and professional use of healthcare practitioners regarding ODT's is not known. This study was designed to assess the opinions of several types of healthcare professionals (n = 41) regarding ODTs, using a survey across two hospital sites. Results reaffirmed the popularity of liquids for prescribing in paediatrics, with 58.0% of participants preferring this dosage form. ODTs emerged as the second most popular dosage form (30.0%), with healthcare practitioners indicating an increasing popularity amongst patients in the hospital setting, belief with 63.0% of practitioners agreeing that many liquid formulations could be substituted with a suitable ODT. The desired properties of an ideal ODT were also identified by healthcare practitioners preferring a small, fast disintegrating tablet (90.2% and 95.1% respectively), with the taste, disintegration time and flavour being the three most important attributes identified (29.5%, 28.7% and 21.7% respectively). This study provided a pragmatic approach in assessing healthcare professional's opinions on ODTs, highlighting the ideas and thoughts of practitioners who are on the frontline of paediatric prescribing and treatment and gave an indication to their preference for ODT properties
    corecore