33 research outputs found
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors
We have performed a search for bursts of gravitational waves associated with the very bright gamma ray burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80 - 2048 Hz), and we specifically targeted signals shorter than 150ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational-wave signal strength larger than a predetermined threshold. We report frequency-dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around 250Hz, our root-sum-square (RSS) gravitational-wave strain sensitivity for optimally polarized bursts was better than hRSS 6×10-21Hz-1/2. Our result is comparable to the best published results searching for association between gravitational waves and gamma ray bursts. © 2005 The American Physical Society
Limits on gravitational-wave emission from selected pulsars using LIGO data
We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10-24. These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10-5 for the four closest pulsars. © 2005 The American Physical Society
Pig effluent-P application can increase risk of P transport: two case studies
Land application of piggery effluent (containing urine, faeces, water, and wasted feed) is under close scrutiny as a potential source of water resource contamination with phosphorus (P). This paper investigates two case studies of the impact of long-term piggery effluent-P application to soil.
A Natrustalf (Sodosol) at P1 has received a net load of 3700 kg effluent P/ha over 19 years. The Haplustalf (Dermosol) selected (P2) has received a net load of 310 000 kg P/ha over 30 years. Total, bicarbonate extractable, and soluble P forms were determined throughout the soil profiles for paired (irrigated and unirrigated) sites at P1 and P2, as well as P sorption and desorption characteristics.
Surface bicarbonate (PB, 0 - 0.05 m depth) and dilute CaCl2 extractable molybdate-reactive P (PC) have been significantly elevated by effluent irrigation (P1: PB unirrigated 23±1, irrigated 290±6; PC unirrigated 0.03±0.00, irrigated 23.9±0.2. P2: PB unirrigated 72±48, irrigated 3950±1960; PC unirrigated 0.7±0.0, irrigated 443±287 mg P/kg; mean±s.d.). Phosphorus enrichment to 1.5 m, detected as PB, was observed at P2. Elevated concentrations of CaCl2 extractable organic P forms (POC; estimated by non-molybdate reactive P in centrifuged supernatants) were observed from the soil surface of P1 to a depth of 0.4 m. Despite the extent of effluent application at both of these sites, only P1 displayed evidence of significant accumulation of POC.
The increase in surface soil total P (0 - 0.05 m depth) due to effluent irrigation was much greater than laboratory P sorption (>25 times for P1; >57 times for P2) for a comparable range of final solution concentrations (desorption extracts ranged from 1-5 mg P/L for P1 and 50-80 mg P/L for P2). Precipitation of sparingly soluble P phases was evidenced in the soils of the P2 effluent application area
Sludge-Derived Cu and Zn in a Humic-Gley Soil: Effect of Dissolved Metal-Organic Matter Complexes on Sorption and Partitioning
A sequential extraction scheme was combined with sorption isotherm analysis in order to investigate sorption of sewage sludge-derived Cu and Zn to the A-horizon of a humic-gley soil as a whole, and to the operationally defined exchangeable (1 M MgCl2), carbonate (1 M NaOAc), Fe/Mn oxide (0.04 M NH2OH.HCl), and organic (0.02 M HNO3+ 30% H2O2) soil fractions. Sorption parameters were compared for a sample of sludge leachate (with 97.4% of Cu and 63.2% of Zn present as dissolved metal-organic matter complexes, as calculated by geochemical modeling involving MINTEQA2 and verified using an ion exchange resin method) with that of a reference solution exhibiting the same chemical characteristics as the leachate, except for the presence of dissolved organic material. Dissolved metal-organic matter complexes were found to significantly (P < 0.05) depress sorption to the bulk soil and each fraction. The greatest depression of Cu and Zn sorption was observed for the exchangeable, carbonate, and Fe/Mn oxide fractions, while the organic fraction of the soil was the least affected. This reflects a greater affinity for the exchangeable, carbonate, and Fe/Mn oxide fractions by the free divalent metal (Cu2+, Zn2+), with sorption by these fractions attributed to cation exchange, chemisorption, and co-precipitation processes. The sorption characteristics of the organic fraction indicated that Cu and Zn sorption by soil organic matter mostly involved dissolved metal-organic matter complexes. This may be attributed to hydrophobic interactions between non-polar regions of the dissolved metal-organic matter complexes and solid-phase soil organic matter
Estimating sludge loadings to land based on trace metal sorption in soil: effect of dissolved organo-metallic complexes
This paper describes the results of research examining the effect of dissolved organo-metallic complexes of copper (Cu) and zinc (Zn) from sewage sludge leachate on sorption by a humic-gley soil A-horizon, and the influence of such complexes on resultant sludge loading estimates. Sorption was described with Linear, Freundlich or Langmuir equations, and compared between a sample of sludge leachate (containing 97.4% of Cu and 63.2% of Zn as dissolved organo-metallic complexes) and a reference solution (which mimicked the leachate, except for a lack of dissolved organic material). This comparison revealed that dissolved organo-metallic complexes significantly depressed Cu and Zn sorption in the study soil. The isotherm equations were then used to estimate sludge-derived Cu and Zn loadings to soil in order to result in an "allowable" output concentration from the soil solution to the surrounding environment. These loadings, together with soil bulk density and "availability" of sludge Cu and Zn, were incorporated in a preliminary model to estimate sludge application rates which are acceptable in terms of off-site movement of these metals through leaching losses. In the absence of dissolved organo-metallic complexes (sorption from the reference solution), levels of Cu and Zn sorption in the study soil indicated a sludge application rate of approximately 3500 kg/ha. However, when Cu and Zn sorption from the sludge leachate with dissolved organo-metallic complexes was considered, calculated loading rates were reduced to approximately 690 kg-sludge/ha. This suggests that for sludge loading estimates based on soil sorption characteristics to be relevant to environmental protection, the sorption depressing effect of dissolved organo-metallic complexes should be quantitatively considered
Enhancing the P trapping of pasture filter strips: Successes and pitfalls in the use of water supply residue and polyacrylamide
In intensive pastoral systems the landscape at ground level is clad in dense, filtering vegetation – yet phosphorus losses in overland flow do occur, and pollution of surface waters is a serious consequence. The use of pre-applied polyacrylamide (PAM) or chitosan to trap particulate phosphorus (PP) and P-sorbing potable water treatment alum residue (PWTR) to enhance vegetative filtering effects is examined here using field and laboratory overland flow simulation (flows from 0.43 to 0.34 litres s−1 (m width)−1) and analysis.
Fitted equations suggest that up to 40% of dissolved reactive P applied (0.75 mg P litre−1) in overland flow could be captured in a flow length of 2.1 m (1 kg PWTR m−2). Unfortunately, drying decreased PWTR effectiveness, though little of the P captured was readily desorbed. This effect did not appear to be the result of gibbsite formation. Compared with the other treatments, there was a strong treatment effect of pre-applied PAM on the change in PP losses (P < 0.001) over time, though evidence suggests the PAM effect declined during a 44 minute flow period.
We showed that the investigated two-pronged approach to the enhancement of the effectiveness of P trapping by pasture had limitations. Laboratory sheet-flow simulations suggest that a field-stable P sorber with sorption characteristics similar to those of the un-dried PWTR could be an effective retention enhancer for dissolved P. Pre-applied PAM can have an effect on particulate-P trapping but was rapidly dissolved and removed by flow
Manure and sorbent fertilisers increase on-going nutrient availability relative to conventional fertilisers
The key to better nutrient efficiency is to simultaneously improve uptake and decrease losses. This study sought to achieve this balance using sorbent additions and manure nutrients (spent poultry litter; SL) compared with results obtained using conventional sources (Conv; urea nitrogen, N; and phosphate–phosphorus; P). Two experiments were conducted. Firstly, a phosphorus pot trial involving two soils (sandy and clay) based on a factorial design (Digitaria eriantha/Pennisetum clandestinum). Subsequently, a factorial N and P field trial was conducted on the clay soil (D. eriantha/Lolium rigidum). In the pot trial, sorbent additions (26.2 g of hydrotalcite [HT] g P− 1) to the Conv treatment deferred P availability (both soils) as did SL in the sandy soil. In this soil, P delivery by the Conv treatments declined rapidly, and began to fall behind the HT and SL treatments. Addition of HT increased post-trial Colwell P. In the field trial low HT-rates (3.75 and 7.5 g of HT g P− 1) plus bentonite, allowed dry matter production and nutrient uptake to match that of Conv treatments, and increased residual mineral-N. The SL treatments performed similarly to (or better than) Conv treatments regarding nutrient uptake. With successive application, HT forms may provide better supply profiles than Conv treatments. Our findings, combined with previous studies, suggest it is possible to use manures and ion-exchangers to match conventional N and P source productivity with lower risk of nutrient losses
How effective are broad-scale nutrient mass balances for determining the sustainability of lot-feed manure application?
Nutrient mass balances have been used to assess a variety of land resource scenarios, at various scales. They are widely used as a simple basis for policy, planning, and regulatory decisions but it is not clear how accurately they reflect reality. This study provides a critique of broad-scale nutrient mass balances, with particular application to the fertiliser use of beef lot-feeding manure in Queensland. Mass balances completed at the district and farm scale were found to misrepresent actual manure management behaviour and potentially the risk of nutrient contamination of water resources. The difficulties of handling stockpile manure and concerns about soil compaction mean that manure is spread thickly over a few paddocks at a time and not evenly across a whole farm. Consequently, higher nutrient loads were applied to a single paddock less frequently than annually. This resulted in years with excess nitrogen, phosphorus, and potassium remaining in the soil profile. This conclusion was supported by evidence of significant nutrient movement in several of the soil profiles studied. Spreading manure is profitable, but maximum returns can be associated with increased risk of nutrient leaching relative to conventional inorganic fertiliser practices. Bio-economic simulations found this increased risk where manure was applied to supply crop nitrogen requirements (the practice of the case study farms, 200-5000 head lot-feeders). Thus, the use of broad-scale mass balances can be misleading because paddock management is spatially heterogeneous and this leads to increased local potential for nutrient loss. In response to the effect of spatial heterogeneity policy makers who intend to use mass balance techniques to estimate potential for nutrient contamination should apply these techniques conservatively
Soil N availability, rather than N deposition, controls indirect N2O emissions
Ammonia volatilised and re-deposited to the landscape is an indirect NO emission source. This study established a relationship between NO emissions, low magnitude NH deposition (0-30 kgNha), and soil moisture content in two soils using in-vessel incubations. Emissions from the clay soil peaked
