49 research outputs found

    Highlighting when animals expend excessive energy for travel using dynamic body acceleration

    Get PDF
    Travel represents a major cost for many animals so there should be selection pressure for it to be efficient – at minimum cost. However, animals sometimes exceed minimum travel costs for reasons that must be correspondingly important. We use Dynamic Body Acceleration (DBA), an acceleration-based metric, as a proxy for movement-based power, in tandem with vertical velocity (rate of change in depth) in a shark (Rhincodon typus) to derive the minimum estimated power required to swim at defined vertical velocities. We show how subtraction of measured DBA from the estimated minimum power for any given vertical velocity provides a “proxy for power above minimum” metric (PPAmin), highlighting when these animals travel above minimum power. We suggest that the adoption of this metric across species has value in identifying where and when animals are subject to compelling conditions that lead them to deviate from ostensibly judicious energy expenditure

    Making sense of ultrahigh-resolution movement data: A new algorithm for inferring sites of interest

    Get PDF
    Decomposing the life track of an animal into behavioral segments is a fundamental challenge for movement ecology. The proliferation of high‐resolution data, often collected many times per second, offers much opportunity for understanding animal movement. However, the sheer size of modern data sets means there is an increasing need for rapid, novel computational techniques to make sense of these data. Most existing methods were designed with smaller data sets in mind and can thus be prohibitively slow. Here, we introduce a method for segmenting high‐resolution movement trajectories into sites of interest and transitions between these sites. This builds on a previous algorithm of Benhamou and Riotte‐Lambert (2012). Adapting it for use with high‐resolution data. The data’s resolution removed the need to interpolate between successive locations, allowing us to increase the algorithm’s speed by approximately two orders of magnitude with essentially no drop in accuracy. Furthermore, we incorporate a color scheme for testing the level of confidence in the algorithm's inference (high = green, medium = amber, low = red). We demonstrate the speed and accuracy of our algorithm with application to both simulated and real data (Alpine cattle at 1 Hz resolution). On simulated data, our algorithm correctly identified the sites of interest for 99% of “high confidence” paths. For the cattle data, the algorithm identified the two known sites of interest: a watering hole and a milking station. It also identified several other sites which can be related to hypothesized environmental drivers (e.g., food). Our algorithm gives an efficient method for turning a long, high‐resolution movement path into a schematic representation of broadscale decisions, allowing a direct link to existing point‐to‐point analysis techniques such as optimal foraging theory. It is encoded into an R package called SitesInterest, so should serve as a valuable tool for making sense of these increasingly large data streams

    Why did the animal turn? Time‐varying step selection analysis for inference between observed turning‐points in high frequency data

    Get PDF
    1. Step selection analysis (SSA) is a fundamental technique for uncovering the drivers of animal movement decisions. Its typical use has been to view an animal as ‘selecting’ each measured location, given its current (and possibly previous) locations. Although an animal is unlikely to make decisions precisely at the times its locations are measured, if data are gathered at a relatively low frequency (every few minutes or hours) this is often the best that can be done. Nowadays, though, tracking data are increasingly gathered at very high frequencies, often ≄1 Hz, so it may be possible to exploit these data to perform more behaviourally‐meaningful step selection analysis. 2. Here, we present a technique to do this. We first use an existing algorithm to determine the turning‐points in an animal's movement path. We define a ‘step’ to be a straight‐line movement between successive turning‐points. We then construct a generalised version of integrated SSA (iSSA), called time‐varying iSSA (tiSSA), which deals with the fact that turning‐points are usually irregularly spaced in time. We demonstrate the efficacy of tiSSA by application to data on both simulated animals and free‐ranging goats Capra aegagrus hircus, comparing our results to those of regular iSSA with locations that are separated by a constant time‐interval. 3. Using (regular) iSSA with constant time‐steps can give results that are misleading compared to using tiSSA with the actual turns made by the animals. Furthermore, tiSSA can be used to infer covariates that are dependent on the time between turns, which is not possible with regular iSSA. As an example, we show that our study animals tend to spend less time between successive turns when the ground is rockier and/or the temperature is hotter. 4. By constructing a step selection technique that works between observed turning‐points of animals, we enable step selection to be used on high‐frequency movement data, which are becoming increasingly prevalent in modern biologging studies. Furthermore, since turning‐points can be viewed as decisions, our method places step selection analysis on a more behaviourally‐meaningful footing compared to previous techniques

    Dead-reckoning animal movements in R: a reappraisal using Gundog.Tracks

    Get PDF
    BackgroundFine-scale data on animal position are increasingly enabling us to understand the details of animal movement ecology and dead-reckoning, a technique integrating motion sensor-derived information on heading and speed, can be used to reconstruct fine-scale movement paths at sub-second resolution, irrespective of the environment. On its own however, the dead-reckoning process is prone to cumulative errors, so that position estimates quickly become uncoupled from true location. Periodic ground-truthing with aligned location data (e.g., from global positioning technology) can correct for this drift between Verified Positions (VPs). We present step-by-step instructions for implementing Verified Position Correction (VPC) dead-reckoning in R using the tilt-compensated compass method, accompanied by the mathematical protocols underlying the code and improvements and extensions of this technique to reduce the trade-off between VPC rate and dead-reckoning accuracy. These protocols are all built into a user-friendly, fully annotated VPC dead-reckoning R function; Gundog.Tracks, with multi-functionality to reconstruct animal movement paths across terrestrial, aquatic, and aerial systems, provided within the Additional file 4 as well as online (GitHub).ResultsThe Gundog.Tracks function is demonstrated on three contrasting model species (the African lion Panthera leo, the Magellanic penguin Spheniscus magellanicus, and the Imperial cormorant Leucocarbo atriceps) moving on land, in water and in air. We show the effect of uncorrected errors in speed estimations, heading inaccuracies and infrequent VPC rate and demonstrate how these issues can be addressed.ConclusionsThe function provided will allow anyone familiar with R to dead-reckon animal tracks readily and accurately, as the key complex issues are dealt with by Gundog.Tracks. This will help the community to consider and implement a valuable, but often overlooked method of reconstructing high-resolution animal movement paths across diverse species and systems without requiring a bespoke application

    A História da Alimentação: balizas historiogråficas

    Full text link
    Os M. pretenderam traçar um quadro da HistĂłria da Alimentação, nĂŁo como um novo ramo epistemolĂłgico da disciplina, mas como um campo em desenvolvimento de prĂĄticas e atividades especializadas, incluindo pesquisa, formação, publicaçÔes, associaçÔes, encontros acadĂȘmicos, etc. Um breve relato das condiçÔes em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biolĂłgica, a econĂŽmica, a social, a cultural e a filosĂłfica!, assim como da identificação das contribuiçÔes mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histĂłrica, foi ela organizada segundo critĂ©rios morfolĂłgicos. A seguir, alguns tĂłpicos importantes mereceram tratamento Ă  parte: a fome, o alimento e o domĂ­nio religioso, as descobertas europĂ©ias e a difusĂŁo mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rĂĄpido balanço crĂ­tico da historiografia brasileira sobre o tema

    Highlighting when animals expend excessive energy for travel using dynamic body acceleration

    Get PDF
    Travel represents a major cost for many animals so there should be selection pressure for it to be efficient – at minimum cost. However, animals sometimes exceed minimum travel costs for reasons that must be correspondingly important. We use Dynamic Body Acceleration (DBA), an acceleration-based metric, as a proxy for movement-based power, in tandem with vertical velocity (rate of change in depth) in a shark (Rhincodon typus) to derive the minimum estimated power required to swim at defined vertical velocities. We show how subtraction of measured DBA from the estimated minimum power for any given vertical velocity provides a “proxy for power above minimum” metric (PPAmin), highlighting when these animals travel above minimum power. We suggest that the adoption of this metric across species has value in identifying where and when animals are subject to compelling conditions that lead them to deviate from ostensibly judicious energy expenditure
    corecore