
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Ecology and Evolution

                                    

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa48121

_____________________________________________________________

 
Paper:

Munden, R., Börger, L., Wilson, R., Redcliffe, J., Loison, A., Garel, M. & Potts, J. (2018).  Making sense of ultrahigh-

resolution movement data: A new algorithm for inferring sites of interest. Ecology and Evolution

http://dx.doi.org/10.1002/ece3.4721

 

 

 

 

 

 
This is an open access article under the terms of the Creative Commons Attribution License.

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/187088676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa48121
http://dx.doi.org/10.1002/ece3.4721
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Ecology and Evolution. 2018;1–10.	 		 	 | 	1www.ecolevol.org

 

Received:	29	May	2018  |  Revised:	30	August	2018  |  Accepted:	3	September	2018
DOI:	10.1002/ece3.4721

O R I G I N A L  R E S E A R C H

Making sense of ultrahigh‐resolution movement data: A new 
algorithm for inferring sites of interest

Rhys Munden1  | Luca Börger2 | Rory P. Wilson2 | James Redcliffe2 |  
Anne Loison3 | Mathieu Garel4 | Jonathan R. Potts1

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2018	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1School	of	Mathematics	and	
Statistics,	University	of	Sheffield,	Sheffield,	
UK
2Department	of	Biosciences,	College	of	
Science,	Swansea	University,	Swansea,	
Wales,	UK
3Laboratoire	d’Ecologie	Alpine,	UMR	CNRS	
5553,	Université	de	Savoie,	Le	Bourget‐du‐
Lac,	France
4Office	National	de	la	Chasse	et	de	la	Faune	
Sauvage,	Unité	Ongulés	Sauvages,	Gières,	
France

Correspondence
Rhys	Munden,	School	of	Mathematics	and	
Statistics,	University	of	Sheffield,	Sheffield,	
UK.
Email:	rdmunden1@sheffield.ac.uk

Funding information
Swansea	University;	Leverhulme	Trust;	
National	Environmental	Research	Council,	
Grant/Award	Number:	NE/R001669/1

Abstract
Decomposing	the	life	track	of	an	animal	into	behavioral	segments	is	a	fundamental	
challenge	for	movement	ecology.	The	proliferation	of	high‐resolution	data,	often	col‐
lected	many	 times	per	 second,	offers	much	opportunity	 for	understanding	animal	
movement.	However,	the	sheer	size	of	modern	data	sets	means	there	is	an	increasing	
need	for	rapid,	novel	computational	techniques	to	make	sense	of	these	data.	Most	
existing	methods	were	designed	with	smaller	data	sets	in	mind	and	can	thus	be	pro‐
hibitively	slow.	Here,	we	introduce	a	method	for	segmenting	high‐resolution	move‐
ment	trajectories	into	sites	of	interest	and	transitions	between	these	sites.	This	builds	
on	a	previous	algorithm	of	Benhamou	and	Riotte‐Lambert (2012).	Adapting	it	for	use	
with	high‐resolution	data.	The	data’s	resolution	removed	the	need	to	interpolate	be‐
tween	successive	locations,	allowing	us	to	increase	the	algorithm’s	speed	by	approxi‐
mately	two	orders	of	magnitude	with	essentially	no	drop	in	accuracy.	Furthermore,	
we	incorporate	a	color	scheme	for	testing	the	level	of	confidence	in	the	algorithm’s	
inference	(high	=	green,	medium	=	amber,	low	=	red).	We	demonstrate	the	speed	and	
accuracy	of	our	algorithm	with	application	to	both	simulated	and	real	data	 (Alpine	
cattle	at	1	Hz	resolution).	On	simulated	data,	our	algorithm	correctly	identified	the	
sites	of	interest	for	99%	of	“high	confidence”	paths.	For	the	cattle	data,	the	algorithm	
identified	the	two	known	sites	of	interest:	a	watering	hole	and	a	milking	station.	It	
also	identified	several	other	sites	which	can	be	related	to	hypothesized	environmen‐
tal	drivers	 (e.g.,	 food).	Our	algorithm	gives	an	efficient	method	 for	 turning	a	 long,	
high‐resolution	movement	path	into	a	schematic	representation	of	broadscale	deci‐
sions,	allowing	a	direct	link	to	existing	point‐to‐point	analysis	techniques	such	as	op‐
timal	 foraging	 theory.	 It	 is	 encoded	 into	 an	R	 package	 called	SitesInterest,	 so	
should	 serve	 as	 a	 valuable	 tool	 for	making	 sense	 of	 these	 increasingly	 large	 data	
streams.

K E Y W O R D S

animal	movement,	biologging,	high‐resolution	data,	movement	ecology,	site	fidelity
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1  | INTRODUC TION

The	life	track	of	an	animal	has	the	potential	to	reveal	important	in‐
formation	about	its	behavior,	as	well	as	the	surrounding	environment	
(Kays,	Crofoot,	Jetz,	&	Wikelski,	2015;	Nathan	et	al.,	2008).	Modern,	
high‐resolution	biologging	data	 (≥1	Hz	 resolution)	 give	 insight	 into	
the	 fine‐grained	 structure	 of	 this	 life	 track	 (Bidder	 et	 al.,	 2015;	
Brown,	Kays,	Wikelski,	Wilson,	&	Klimley,	 2013;	Noda,	Kawabata,	
Arai,	Mitamura,	&	Watanabe,	2014;	Walker	et	al.,	2015;	Williams	et	
al.,	2017;	Wilmers	et	al.,	2015;	Wilson,	Shepard,	&	Liebsch,	2008).	
However,	these	data	are	often	so	big	and	detailed	that	extracting	the	
important	information	is	a	formidable	task.

Many	studies	have,	in	varying	ways,	suggested	that	the	life	track	
should	be	broken	down	into	different	scales,	each	representing	dif‐
ferent	behavioral	modes	of	animal	movement	(e.g.,	figure	1	in	Nathan	
et	 al.	 (2008)).	 For	 example,	 state‐space	modeling	 splits	 paths	 into	
predefined	 behavioral	 stages	 of	 movement,	 such	 as	 exploratory/
encamped	(Morales,	Haydon,	Frair,	Holsinger,	&	Fryxell,	2004),	for‐
aging/migrating	 (Jonsen,	 Flemming,	 &	Myers,	 2005),	 or	 transient/
resident	(Patterson,	Thomas,	Wilcox,	Ovaskainen,	&	Matthiopoulos,	
2008).	 Behavioral	 changepoint	 analysis	 segments	 a	 path	 into	 sec‐
tions	 with	 different	 statistical	 features	 (Buchin,	 Driemel,	 Kreveld,	
&	Sacristán,	2011;	Gurarie	et	al.,	2016;	Gurarie,	Andrews,	&	Laidre,	
2009)	and	can	be	used	to	classify	these	segments	into	distinct	be‐
haviors	(Nams,	2014).	Optimal	foraging	theory	starts	with	the	idea	
that	paths	can	be	described	as	movements	either	between	or	within	
foraging	patches,	and	examines	why	animals	make	between‐patch	
movements	at	the	particular	times	they	have	been	observed	to	do	so	
(Charnov,	1976;	Pyke,	1984).	There	are	also	more	general	techniques	
for	path	segmentation	that	have	arisen	in	subject	areas	beyond	ecol‐
ogy	(Demšar	et	al.,	2015).

The	modern	era	of	high‐resolution	data	offers	a	great	opportu‐
nity	 to	make	better	 inference	of	 such	behavioral	modes.	However,	
the	 sheer	 size	 of	most	modern	 data	 sets	makes	 statistical	 analysis	
tricky	to	perform	in	a	reasonable	time	frame.	Furthermore,	for	a	path	
where	 locations	are	recorded	many	times	per	second,	the	animal	 is	
often	simply	continuing	to	carry	out	a	decision	made	some	time	pre‐
viously.	Therefore,	an	important	part	of	the	behavioral	information	is	
contained	within	a	small	subset	of	the	data	stream	(Potts	et	al.,	2018).

The	 development	 of	 techniques	 to	 infer	 behavioral	 decisions	
from	high‐resolution	data	is	thus	timely	and	necessary.	Here,	we	aim	
to	describe	an	animal	track	as	a	sequence	of	“sites	of	interest,”	which	
are	areas	where	the	animal	spends	a	disproportionately	 long	time,	
together	with	movements	between	these	sites.	Our	algorithm	breaks	
a	long	data	stream	down	into	a	simple	Markov‐process	description	
of	movement	(similar	to	a	“semantic	trajectory”	from	movement	an‐
alytics	Demšar	et	al.	(2015)),	which	has	the	potential	to	be	analyzed	
using	 existing	 point‐to‐point	 techniques	 such	 as	 optimal	 foraging	
theory	(Pyke,	1984)	or	step	selection	analysis	 (Avgar,	Potts,	Lewis,	
&	Boyce,	2016;	Fortin	et	al.,	2005;	Merkle,	Fortin,	&	Morales,	2014).	
Our	algorithm	is	based	broadly	on	a	site	fidelity	algorithm	developed	
by	 Barraquand	 and	 Benhamou	 (2008)	 and	 Benhamou	 and	 Riotte‐
Lambert	(2012),	but	adapted	for	use	with	large,	high‐resolution	data.	

This	adaptation	requires	finding	ways	of	speeding	up	the	algorithm,	
but	we	can	take	advantage	of	the	fact	that	there	is	no	need	to	inter‐
polate	between	data	points	when	they	are	only	a	few	seconds	apart,	
or	less.	We	supply	a	method	for	assigning	a	level	of	confidence	to	our	
inference	of	the	number	of	sites	for	an	entire	trajectory,	displayed	
as	a	traffic‐light	color.	This	 indicates	when	further	analysis	may	be	
necessary	and	gives	an	ad	hoc	goodness‐of‐fit	test:	something	that	
is	often	missing	from	statistical	studies	of	animal	movement	(Potts,	
Auger‐Méthé,	Mokross,	&	Lewis,	2014).

We	 apply	 our	 algorithm	 to	 both	 simulated	 data,	 where	 the	
sites	of	interest	are	known,	and	dead‐reckoned	1	Hz	tracks	of	cat‐
tle	movement	in	the	Alps	(Bidder	et	al.,	2015).	For	the	latter	data	
set,	we	 already	 know	 two	 places	 that	 ought	 to	 be	 identified	 as	
sites	of	interest	–	a	milking	station	and	a	watering	hole.	Thus,	we	
can	test	both	whether	our	algorithm	can	find	these	sites,	and	also	
if	any	other	areas	are	uncovered	that	are	of	particular	interest	to	
the	cattle.	We	show	how	our	algorithm	can	be	used	to	describe	a	
complex	movement	path	as	a	sequence	of	visits	to	sites	and	tran‐
sitions	between	those	sites.	The	algorithm	is	freely	available	as	an	
R	package	SitesInterest,	available	as	Supporting	Information	
and	 also	 on	 CRAN (https://cran.r‐project.org/web/packages/
SitesInterest/index.html).	 This	 package	 will	 enable	 users	 to	 ex‐
tract	fundamental	movement	information	from	long,	high‐resolu‐
tion	data	streams.

2  | METHODS

2.1 | The “sites of interest” algorithm

Our	algorithm	uses	a	sliding‐disk	method	to	infer	areas	of	space	where	
an	animal	spends	most	of	its	time	(this	is	similar	to	the	method	used	by	
Benhamou	and	Riotte‐Lambert	(2012)	to	calculate	“residence	time”).	
In	 particular,	 our	 method	 is	 designed	 to	 be	 used	 on	 large	 sets	 (of	
order 105	points)	of	≥1	Hz	resolution	data.	Like	previous	approaches	
(Barraquand	 &	 Benhamou,	 2008;	 Benhamou	 &	 Riotte‐Lambert,	
2012),	our	method	involves	sliding	a	disk	of	radius	R	along	the	animal’s	
path,	looking	for	disks	where	the	animal	spends	a	disproportionately	
long	 time	 (see	Figure	1	of	Barraquand	and	Benhamou	 (2008)	 for	 a	
visual	illustration).	Modern	high‐resolution	paths	can	contain	millions	
of	locations.	This	is	considerably	more	than	those	for	which	the	algo‐
rithm	of	Benhamou	and	Riotte‐Lambert	(2012)	was	developed	(a	few	
thousand).	As	such,	this	algorithm	proves	to	be	prohibitively	slow	for	
high‐resolution	data	(Supporting	Information	Appendix	S1).

To	deal	with	this	speed	issue,	we	do	two	things,	which	we	sum‐
marize	here,	leaving	the	details	for	Supporting	information	Appendix	
S1.	First,	we	do	not	slide	the	disk	over	every	recorded	point	 in	the	
path:	potentially	millions	of	disks.	Rather,	we	start	with	a	disk	cen‐
tered	at	the	first	data	point,	then	each	subsequent	disk	is	centered	at	
the	first	recorded	location	after	the	animal	first	leaves	the	previous	
disk,	meaning	that	we	only	need	to	analyze	a	relatively	small	number	
of	disks	(approximately	the	length	of	the	track	divided	by	R	for	rela‐
tively	straight	trajectories	and	less	if	the	tortuousity	is	higher).	This	
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dramatically	reduces	the	number	of	disks	examined	by	the	algorithm,	
while	ensuring	all	of	the	space	that	the	animal	covers	is	analyzed.

Second,	when	looking	for	the	places	at	which	the	animal	being	
studied	entered	and	left	a	disk,	we	subsample	our	data	at	every	s‐th	
location	(see	Supporting	information	Appendix	S1).	Once	an	entry‐	
or	exit‐point	is	identified,	say	between	the	i‐th	and	(i + s)‐th	location,	
we	use	the	full	path	between	points	i	and	i + s	to	identify	the	exact	
position	 of	 entry	 or	 exit.	 The	 larger	we	 choose	 s,	 the	 quicker	 the	
algorithm.	However,	if	we	choose	s	to	be	too	high,	we	are	in	danger	
of	missing	information	if	the	animal	moves	in	and	out	of	a	disk	within	
s	time	steps.	Therefore,	there	is	a	trade‐off	in	choice	of	s,	which	ul‐
timately	depends	on	the	data	being	analyzed.	For	our	1	Hz	data,	we	
found	that	s	=	10	gave	rapid	yet	accurate	results	(Supporting	infor‐
mation	Tables	S4	and	S5).

Having	calculated	the	usage time	for	each	disk,	defined	to	be	the	
amount	of	time	spent	in	each	disk	across	the	whole	time‐period	over	
which	 the	path	 is	measured,	we	 rarefy	 the	 set	of	disks	 further	by	
removing	any	disk	that	overlaps	with	another	disk	of	higher	usage	
time	 (Supporting	 information	Appendix	 S1,	 Figure	1b).	 The	 salient	

information	from	the	resulting	collection	of	nonoverlapping	disks	is	
displayed	 in	 a	 histogramme	of	 decreasing	 usage	 times	 (Figure	1c).	
This	is	superficially	similar	to	a	scree	plot	from	principle	component	
analysis,	and	we	use	similar	ideas	to	analyse	the	plot	(Jolliffe,	1986).

In	essence,	we	want	to	find	a	point	at	which	the	heights	of	the	
bars	in	the	histogramme	“drop‐off”	rapidly,	separating	out	compara‐
tively	well‐used	sites	(to	the	left)	from	transitory	ones	(to	the	right).	
We	 look	at	each	adjacent	pair	of	bars	on	the	histogramme	for	 the	
greatest	percentage	difference	 in	the	usage	times.	This	 is	 referred	
to	as	the	maximum percent drop	(MPD).	The	sites	of	interest	are	de‐
fined	to	be	disks	corresponding	to	the	bars	to	the	left	of	this	MPD	
(Figure	1c).

The	 resulting	 set	 of	 identified	 sites	 depends	 very	 much	 on	 the	
choice	 of	R,	 the	 disk	 radius.	As	 such,	we	need	 criteria	 to	 determine	
which	value	of	R	is	“best”	for	accurate	identification	of	sites.	In	practice,	
we	 found	 that	no	 single	 criterion	works	perfectly	 in	every	 situation.	
Instead,	we	give	a	technique	for	determining	a	value	of	R,	together	with	
a	 traffic‐light	 color	 (Red,	 Amber,	Green)	 denoting	 the	 level	 of	 confi‐
dence	we	have	in	our	algorithm	having	found	the	actual	sites	of	interest	

F I G U R E  1  Demonstration	of	the	algorithm	applied	to	simulated	data.	Panel	(a)	shows	the	path	of	a	switching	Ornstein‐Uhlenbeck	(OU)	
simulation	(Simulation	14	in	Supporting	information	Tables	S3	and	S7).	Panel	(b)	shows	the	same	path	overlaid	with	the	disks	we	examined	
for	sites	of	interest.	Maroon	circles	bound	the	disks	identified	as	sites	of	interest.	Of	the	remaining	circles,	those	left	after	overlapping	disks	
have	been	removed	are	given	as	orange	colored	and	the	others	are	yellow.	Panel	(c)	gives	a	histogramme	of	the	maroon	and	orange	colored	
disks	in	ranked	order.	MPD	is	the	value	of	the	maximum	percent	drop.	Panel	(d)	displays	the	maximum	percent	drop	and	number	of	identified	
sites	as	a	function	of	the	disk	radius,	R
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for	the	animal,	where	Green	is	high,	Amber	is	intermediate,	and	Red	is	
low.	We	then	suggest	 that	 the	user	supplements	 this	with	biological	
intuition,	especially	in	the	Red	and	Amber	cases,	to	check	that	the	algo‐
rithm	has	returned	a	reasonable	estimate	of	the	actual	sites	of	interest.

The	 starting	 point	 for	 finding	R	 is	 to	 calculate	 the	MPD	 for	 a	
variety	of	different	Rs,	plotted	 in	Figure	1d,	 and	 look	 for	 the	 first	
local	maximum	of	this	graph,	which	we	denote	RLM.	Local	maximal‐
ity	suggests	that	the	sites	of	interest	can	be	identified	more	clearly	
with	R	=	RLM	than	with	close‐by	values	of	R.	We	choose	the	first local 
maximum,	rather	than	the	global	maximum,	because	the	MPD	tends	
to	100%	as	R	becomes	large	enough	so	that	the	most	oft‐used	disk	
contains	almost	all	of	the	path.	We	then	apply	two	further	criteria.

The	first	criterion	 insists	that	the	MPD	must	be	greater	than	a	
predefined	threshold	value,	TMPD.	This	can	be	chosen	either	as	a	fixed	
value	 or	 as	 TMPD	=	min(MPD)	+	k(max(MPD)	–	min(MPD)),	 where	
k	 is	 a	 constant,	 referred	 to	 as	 the	 adaptive threshold	 value.	 Here,	
min(MPD)	and	max(MPD)	are,	respectively,	the	minimum	and	maxi‐
mum	MPDs	for	all	values	of	R	tested	(see	e.g.,	Figure	1d).	Brownian	
motion	 simulations	 can	 be	 used	 to	 derive	 a	 lower	 bound	 for	 the	
threshold	value	(Supporting	information	Appendix	S1).

The	 second	 is	 a	 stability	 criterion,	 meaning	 that	 if	 the	 radius	 is	
changed	slightly	 from	R	=	RLM,	 the	number	of	sites	 identified	will	 re‐
main	unchanged.	Based	on	the	results	of	these	two	criteria,	a	color	is	
assigned	depending	on	the	consistency	between	the	results	of	using	
each	criterion.	The	Green	label	is	assigned	if	both	criteria	identify	the	
same	number	of	sites	and	radius	value,	Amber	is	assigned	if	they	result	
in	the	same	number	of	sites,	but	different	radii	and	Red	is	assigned	if	
the	number	of	sites	are	different	(see	Supporting	information	Appendix	
S1	for	more	details).	This	gives	a	qualitative	level	of	confidence	in	the	
algorithm’s	performance	and	could	be	used	as	a	warning	signal	to	sug‐
gest	when	further	analysis	would	be	helpful.	The	complete	method	for	
finding	sites	of	interest	is	summarized	in	Figure	2.

2.2 | Data

2.2.1 | Simulated data

To	 test	 the	 efficacy	of	 our	 algorithm,	we	 constructed	 a	 collection	
of	simulated	paths	using	a	switching	Ornstein‐Uhlenbeck	(OU)	pro‐
cess	(Blackwell,	1997;	Taylor	&	Karlin,	2014).	At	any	point	in	time,	an	

F I G U R E  2  A	flowchart	describing	how	
the	algorithm	is	implemented

The user inputs data.

The user is asked
for a range of values

for the radius.

A graph of the num-
ber of sites and

maximum percent
drops is produced

(see Figure 1d).

The first local
maximum of the

percent drops is found.

The first local
maximum, which is
also stable is found.

The user is asked for
a threshold value.

The first local
maximum above this
threshold is found.

A colour is as-
signed to the path.

Red is assigned if
the number of sites
are not the same.

Amber is assigned if
the number of sites
are the same, but
the radii are not.

Green is assigned
if the number of
sites and radii
are the same.

The user uses intu-
ition to see if the

answer is reasonable.

The user chooses
a different range
of values for the

radius or applies the
algorithm on segments

of the trajectory.

The output is the
number of sites
identified and
their locations.

A schematic is
produced (see Figure 5).

Optional

User is not satisfied

User is satisfied
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object	following	a	switching	OU	process	has	a	center	of	attraction	
toward	which	it	is	moving.	However,	there	is	also	a	certain	amount	
of	 (Gaussian)	randomness	 in	the	movement	process	 (see	Blackwell	
(1997)	and	Blackwell,	Niu,	Lambert,	and	LaPoint	(2016)	for	more	de‐
tails	on	the	switching	OU	process	and	applications	to	animal	move‐
ment).	In	these	simulations,	the	“real”	sites	of	interest	are	defined	to	
be	the	centers	of	attraction	of	the	switching	OU	process.

We	ran	110	OU	simulations	in	a	box	of	10	by	10	units,	varying	
the	number	of	points	of	attraction	between	1	and	10.	We	also	var‐
ied	the	positions	of	these	points	and	the	long‐term	standard	devia‐
tion	about	these	points	of	attraction	(i.e.,	the	standard	deviation	of	
the	stationary	distribution	of	the	OU	process).	Details	are	given	in	
Supporting	information	Tables	S6–S9,	and	12	examples	are	shown	in	
Supporting	information	Figure	S6.	We	tested	whether	the	algorithm	
correctly	picks	out	these	points	of	attraction	as	sites	of	interest	(i.e.,	
both	that	the	number	of	sites	is	identified	correctly	and	that	these	
sites	contain	the	centers	of	attraction	of	the	switching	OU	process;	
Figure	3).

We	ran	each	of	the	OU	simulations	through	the	algorithm	with	
radii	values	ranging	from	0.2	to	3.8	units	with	0.1	units	between	con‐
secutive	values.	The	minimum	radius	value	was	chosen	so	that	it	was	
greater	than	the	greatest	distance	between	any	two	consecutive	lo‐
cations.	The	maximum	radius	value	was	chosen	so	that	it	would	be	
larger	than	any	potential	site.	Other	than	these	constraints,	the	radii	
were	 chosen	 blindly	 so	 as	 to	 simulate	 having	 no	 prior	 knowledge	
about	the	trajectories.

2.2.2 | Cattle data

Cattle	data	were	collected	in	July	2017	from	a	group	of	cows	from	the	
French	Alps	 in	 the	 Bauges	Mountains	 (Massif	 des	 Bauges,	 45.61°N,	
6.19°E).	 The	 cattle	 were	 tagged	 with	 Daily	 Diary	 tags	 (with	 triaxial	
accelerometers	 and	magnetometers;	Wildbytes	 Technologies	 http://
www.wildbyte‐technologies.com	 and	 Gipsy‐5	 tags;	 TechnoSmArt	
Tracking	Systems	http://www.technosmart.eu),	placed	inside	custom‐
built	 3D	 printed	 ABS	 plastic	 housings	 and	 attached	 to	 commercial	
nylon	cow	collars	(Fearing	Lifestyles,	Durham,	UK).	The	accelerometer	
readings	were	 recorded	 at	 a	 frequency	 of	 20	Hz	 approximately	 and	
6	Hz	for	the	magnetometer	readings.	Both	were	subsampled	to	1	Hz,	
whereas	GPS	readings	were	recorded	every	15	min.	The	path	was	then	

reconstructed	using	Framework4	(Walker	et	al.,	2015),	which	uses	the	
Dead	Reckoning	procedure	(Bidder	et	al.,	2015).

We	 focused	 on	 seven	 ten‐hour	 long	 paths.	We	 ran	 each	 path	
through	our	algorithm	with	radii	values	ranging	from	10	to	100	m,	
with	1	m	between	consecutive	values.	We	suggest	that	the	minimum	
radius	used	be	at	least	half	the	body	length	of	the	animal,	to	have	any	
biological	meaning,	and	typically	several	 times	more	than	this.	We	
also	ran	our	algorithm	over	the	entire	collection	of	seven	paths.	The	
latter	gives	us	information	about	sites	that	the	cattle	might	return	to	
day‐by‐day,	whereas	the	former	might	reveal	sites	that	are	of	inter‐
est	to	particular	cows	on	specific	days.

3  | RESULTS

3.1 | Simulated data

Our	 algorithm	correctly	 identified	 sites	of	 interest	 for	72%	of	our	
110	simulated	paths	(Figure	3a).	69.1%	of	these	paths	were	both	cor‐
rectly	 identified	 and	 given	 a	Green	 level	 of	 confidence.	 The	 algo‐
rithm	only	misidentified	one	path	with	a	Green	output,	so	98.7%	of	
the	77	paths	classified	Green	identified	the	correct	number	of	sites.	
This	suggests	that	if	a	Green	output	is	given,	we	can	be	reasonably	
confident	that	the	sites	of	interest	have	been	identified	correctly.

Of	 those	 assigned	Amber,	 only	 two	 (1.8%)	were	 falsely	 identi‐
fied.	For	some	of	the	simulations	assigned	to	the	Red	category,	using	
either	the	threshold	criterion	or	the	stability	criterion	returned	the	
correct	 answer	 (see	 Supporting	 information	 Tables	 S10–S13).	 The	
results	presented	used	a	fixed	threshold	value	of	TMPD	=	65%	as	this	
minimized	the	number	of	incorrect	Green	paths.

3.2 | Results from Cattle data

Figure	 3b	 summarizes	 the	 results	 of	 running	 our	 algorithm	 over	
each	of	the	seven	cattle	trajectories	independently	(see	Supporting	
information	Table	S14	for	the	full	results).	These	results	came	from	
using	 a	 fixed	 threshold	 value	 of	 TMPD	=	50%,	 which	was	 chosen	
so	 as	 to	minimize	 the	 number	 of	 paths	 assigned	 to	 the	 red	 cat‐
egory	and	was	also	greater	than	the	lower	bound	found	from	the	
Brownian	 motion	 simulations	 (Supporting	 information	 Appendix	
S1).	 The	 running	 time	 for	 each	 trajectory	 (of	 30–40,000	 points)	

F I G U R E  3  The	proportion	of	paths	
assigned	to	each	of	the	color	categories	
for	the	switching	OU	simulations	(Panel	
a)	and	daily	cattle	paths	(Panel	b).	The	
numbers	denote	the	percentage	of	sites	
assigned	to	each	category
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was	less	than	a	minute	(Supporting	information	Table	S1),	whereas	
for	all	seven	together	(247,000	data	points),	it	took	just	over	4	min	
and	 the	algorithm	appears	 to	 scale	 linearly	 (Supporting	 informa‐
tion	Figure	S1).

Although	only	two	of	the	paths	gave	a	Green	level	of	confidence,	
running	the	algorithm	over	a	single	trajectory	encompassing	all	seven	
paths	reveals	clear	sites	of	interest	(Figure	4).	If	we	choose	R	=	20,	a	
relatively	fine‐grained	value,	there	are	substantial	drops	after	the	1st	
and	3rd	circles,	but	both	of	these	missed	out	interesting	information,	
such	as	the	cattle’s	movements	to	the	southeast.	So	instead	we	look	
at	the	drop	between	the	8th	and	9th	circles	(Figure	4a,b,	Supporting	
information	 Figure	 S7).	 In	 actual	 fact,	 the	maximum	percent	 drop	
occurs	after	the	83rd	circle.	However,	the	resulting	set	of	circles	is	
large	and	hence	rather	uninformative,	so	we	define	the	sites	of	in‐
terest	to	be	the	first	eight	disks.	Two	of	these	(A	and	E)	occur	about	
the	watering	hole	and	one	(C)	about	the	milking	station.	We	would	

expect	cattle	to	use	these	two	locations	quite	frequently	(pieces	of	
salt	 licks	 are	provided	 for	 cows	 close	 to	 the	milking	 station),	 so	 it	
makes	sense	that	our	algorithm	identifies	them	as	sites	of	interest.	
Importantly,	our	algorithm	also	reveals	five	other	sites	of	interest	in	
less‐expected	places.	This	opens	up	the	question	of	why	the	cattle	
are	interested	in	these	locations,	and	helps	guide	future	data	analysis	
to	examining	specific	areas	that	seem	to	be	valuable	to	the	animals	
(e.g.,	habitat	features	and	food	availability).

If	 we	 use	R	=	100,	 a	 coarser‐grained	 value,	 we	 found	 six	 sites	
which	again	covered	the	majority	of	the	path,	so	was	not	a	very	in‐
formative	 set	of	 sites.	However,	 from	 the	histogramme,	 there	 is	 a	
substantial	drop	after	four	disks	(Figure	4c).	These	encompass	six	of	
the	eight	sites	identified	by	using	R	=	20,	including	both	the	milking	
station	and	the	watering	hole.	It	also	suggests	that	the	pair	of	sites	
(G,H)	from	Figure	4b	might	actually	be	a	single	site,	and	this	warrants	
further	field	investigation.	A	similar	lesson	holds	for	the	pair	(A,E).

F I G U R E  4   Identification	of	sites	for	seven	paths	of	cattle	movements	obtained	using	a	radius	of	R =	20	in	Panels	(a,b)	and	R	=	100	in	
Panels	(c,d).	Sites	of	interest	were	identified	from	the	bar	charts,	by	sight	for	R	=	20	and	R	=	100.	The	bars	are	labeled	alphabetically,	with	A	
being	the	circle	with	the	greatest	usage	time,	all	of	which	correspond	to	the	maroon	circles	in	the	right	hand	plots
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Although	 the	R	=	100	 case	 is	 in	 some	ways	better	 than	R	=	20	
since	it	recognizes	the	watering	hole	as	a	single	site	rather	than	two,	
its	 coarseness	 leads	 to	 a	 potentially	missed	 site	 of	 interest	 in	 the	
middle‐left	of	the	area	(Figure	4b,d).	The	R	=	20	case	picks	this	out	
(sites	B	and	F	from	Figure	4b).	This	suggests	that	visually	examining	
the	algorithm	output	for	more	than	one	value	of	R	can	be	valuable.

As	well	 as	 identifying	 sites	 of	 interest,	 our	 results	 enable	 sim‐
plification	 of	 a	 complex	movement	 path	 into	 a	 schematic	 diagram	
reflecting	 the	 main	 behavioral	 decisions	 made	 by	 the	 animal.	 In	
Figure	5,	we	illustrate	this	with	three	example	paths	of	cattle	move‐
ment	(see	Supporting	information	Figure	S8	for	all	seven).	The	sites	
of	interest	are	those	four	identified	in	Figure	4d	for	the	R	=	100	case.	
This	schematic	breaks	up	a	complex	movement	trajectory	into	a	sim‐
ple	Markov	process,	enabling	users	to	ask	questions	about	why	the	
animal	transitions	between	the	different	sites	at	the	times	 it	does,	
which	 could	 be	 answered	 by	 using	 existing	 point‐to‐point	 tech‐
niques	 such	 as	 optimal	 foraging	 theory	 or	 step	 selection	 analysis.	
This	 is	 similar	 in	 flavor	 to	 the	 semantic trajectories	defined	by	Yan,	
Chakraborty,	Parent,	Spaccapietra,	and	Aberer	(2013).

Note	that	we	can	define	the	process	of	choosing	patches	such	
that	 the	 probability	 of	 an	 animal	 to	 either	 change	 or	 not	 change	
sites	is	based	purely	on	the	current	state	of	both	the	animal	and	the	

environment.	As	such	it	can	always	be	framed	as	a	Markov	process,	
whereby	the	decision	to	move	at	time	t	is	based	on	the	state	of	the	
system	at	time	t.	For	example	 in	Figure	5,	suppose	the	cow	is	cur‐
rently	grazing	at	site	C,	but,	at	some	point	 in	 time,	becomes	suffi‐
ciently	thirsty	to	necessitate	a	move	to	the	watering	hole	at	Site	A.	
Although	the	causal	chain	leading	to	this	decision	may	be	arbitrarily	
long,	the	decision	to	move	from	C	to	A	is	simply	based	on	the	present	
state	of	the	animal	(particularly	thirst,	but	also	maybe	hunger,	mobil‐
ity	etc.)	and	the	environment	(e.g.,	distance	from	C	to	A,	effort	or	risk	
of	moving	from	C	to	A	and	so	forth).

4  | DISCUSSION

This	 paper	 introduces	 an	 efficient	 algorithm	 for	 decomposing	 a	
long,	high‐resolution	data	stream	of	animal	 locations	 into	a	simple	
Markov‐process	 description	 of	 animal	 movement	 decisions.	 We	
have	applied	our	algorithm	to	both	simulated	and	real	data	(Figure	3),	
showing	that	it	is	effective	in	recognizing	known	sites	of	interest,	but	
can	also	reveal	other,	less‐expected	places	that	the	animal	is	visiting	
frequently	(Figure	4).	Such	information	opens	up	questions	as	to	why	
each	of	these	sites	is	particularly	interesting	to	the	animal,	and	why	

F I G U R E  5  Three	particular	examples	of	cattle	paths	(a–c)	with	the	corresponding	schematic	plots	below	(d–f).	The	schematics	represent	
simplifications	of	the	full	path	that	highlight	the	broadscale	movement	decisions	made	by	each	cow.	The	centers	of	sites	of	interest	are	
defined	by	the	red	dots	and	their	boundary	by	the	red	hoops.	The	flowchart	represents	the	movements	of	Cattle	Path	6	between	sites	of	
interest.	The	letters	represent	the	sites	of	interest,	corresponding	to	the	same	letters	in	Panel	(f).	The	number	in	brackets	give	the	number	
of	minutes	the	cow	spends	at	that	site	for	that	particular	visit.	The	arrows	represent	the	cow	moving	from	one	site	to	the	next,	with	the	
associated	numbers	representing	the	number	of	minutes	the	cow	spends	moving	between	these	sites
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it	makes	the	decision	to	move	between	these	sites	at	the	particular	
times	it	does.	These	latter	questions	can	then	be	examined	by	exist‐
ing	point‐to‐point	techniques,	such	as	step	selection	analysis	(Avgar	
et	al.,	2016;	Fortin	et	al.,	2005),	conditional	entropy	(Riotte‐Lambert,	
Benhamou,	&	Chamaillé‐Jammes,	2016),	sequence	analysis	methods	
(De	Groeve	et	al.,	2016),	or	optimal	foraging	theory	(Pyke,	1984).

Unlike	 model‐based	 approaches,	 our	 algorithm	 makes	 no	 as‐
sumptions	 about	 why	 sites	 may	 be	 of	 particular	 interest,	 just	
that	 they	 are	 small	 areas	which	 are	well	 used	 in	 comparison	with	
other	areas	of	equal	size.	 It	 is	broadly	based	on	previous	works	of	
Barraquand	and	Benhamou	(2008);	Benhamou	and	Riotte‐Lambert	
(2012)	 that	 find	areas	of	high‐intensity	usage	by	sliding	a	circle	of	
fixed	radius,	R,	along	the	path	(similar	questions	were	also	addressed	
by	Sila‐Nowicka	et	al.	 (2016)).	However,	 the	size	and	resolution	of	
our	 data	 require	 that	 these	 algorithms	 be	 significantly	 adapted,	
which	is	a	key	contribution	of	our	work,	having	increased	the	algo‐
rithm’s	speed	by	approximately	two	orders	of	magnitude.	Movement	
ecology	is	increasingly	dealing	with	such	high	(subsecond)	resolution	
data,	so	such	adaptations	are	becoming	ever	more	valuable.

As	 well	 as	 applicability	 to	 higher‐resolution	 data,	 our	 algo‐
rithm	has	 some	 qualitative	 differences	 to	 that	 of	 Benhamou	 and	
Riotte‐Lambert	 (2012)	 that	 are	 worth	 highlighting.	 These	 result	
from	slightly	different	aims.	Here,	our	interest	is	in	finding	patches	
that	are	used	for	a	disproportionately	 large	amount	of	 time	com‐
pared	to	other	areas	of	the	landscape.	In	contrast,	Benhamou	and	
Riotte‐Lambert	 (2012)	 seek	 to	describe	 space	use	patterns	more	
generally.	 As	 such,	 their	 work	 focuses	 on	 constructing	 various	
“heat	maps”	 representing	 different	 aspects	 of	 space	 use,	 namely	
the	Utilization	distributions,	 Intensity	 distribution,	 and	Recursion	
distribution	(see	Benhamou	and	Riotte‐Lambert	(2012)	for	defini‐
tions	of	these	quantities).	For	our	aims,	we	found	it	more	beneficial	
simply	to	 identify	high	usage	sites.	That	said,	 it	may	be	beneficial	
in	 certain	 circumstances	 to	 perform	 some	 postprocessing	 of	 the	
identified	sites	to	see	if	any	are	better‐described	by	noncircular	ge‐
ometries,	for	example,	by	using	least	cost	paths	(Long,	2016)	to	see	
if	there	are	particular	regions	within	a	site	which	are	less	well‐used	
than	others.

One	of	the	challenges	of	developing	such	a	window‐sliding	algo‐
rithm	is	to	determine	the	“correct”	size	of	the	window,	R.	Fauchald	
and	Tveraa	(2003)	suggested	using	the	log‐variance	of	the	resident	
times	between	circles,	to	give	a	variance‐scale	curve	as	a	function	
of	R.	The	maximum	of	this	curve	gives	an	indication	of	the	ideal	win‐
dow	size	to	use.	This	was	met	with	several	criticisms	by	Barraquand	
and	Benhamou	(2008).	Nonetheless,	Kapota,	Dolev,	and	Saltz	(2017)	
revisited	the	variance‐scale	curve	method	and	improved	on	it	in	sev‐
eral	ways,	 specifically	 addressing	 the	concerns	of	Barraquand	and	
Benhamou	 (2008).	 In	principle,	 these	 techniques	 could	be	used	 in	
combination	with	 our	 usage‐time	 algorithm	 if	 the	 user	 is	 particu‐
larly	concerned	in	identifying	sizes	of	the	sites	of	interest.	However,	
we	 found	 that	a	combination	of	biological	 intuition	and	examining	
places	where	there	was	a	clear	drop	in	the	usage	time	histogramme	
(Figure	1c)	was	a	simple	and	effective	method	of	doing	the	same	job	
to	a	reasonable	degree	of	accuracy.

Many	of	the	existing	statistical	and	theoretical	tools	available	to	
movement	ecologists	were	made	when	coarser	data	were	the	norm.	
As	such,	it	is	not	always	trivial	to	adapt	these	techniques	to	the	new	
world	of	high‐resolution	data.	For	example,	many	methods	in	the	liter‐
ature	are	based	on	distributions	of	step	lengths	and	turning	angles	be‐
tween	successive	data	points	(Avgar	et	al.,	2016;	Ironside	et	al.,	2017;	
Morales	et	al.,	2004).	However,	when	the	“steps”	are	only	a	fraction	
of	a	second	apart,	there	are	not	a	lot	of	sensible	biological	inferences	
that	can	be	made	about	step‐wise	“decisions,”	as	animals	are	unlikely	
to	be	making	discrete	decisions	at	such	a	high	frequency.	One	other	
improvement	 has	 been	 the	 addition	of	 the	 quantification	of	 uncer‐
tainty	 (traffic‐light	 color	 assignment),	which	warns	users	when	per‐
forming	further	checks	would	be	appropriate.	This	is	a	novel	aspect	
of	our	method	that	as	far	as	we	know,	has	not	been	used	before.	If	
the	assignment	comes	up	as	“red”	or	“amber,”	it	may	be	valuable	to	in‐
vestigate	whether	carefully	chosen	subsections	of	the	path	may	give	
better	inference.	For	example,	if	there	is	an	overwhelmingly	dominant	
site	of	interest	(e.g.,	a	sleeping	site),	it	may	be	valuable	to	run	our	algo‐
rithm	over	periods	of	time	when	the	animal	is	not	likely	to	be	asleep.

Once	 sites	 of	 interest	 have	 been	 identified,	 together	with	 the	
transition	points	between	them	(Figure	5),	a	wealth	of	opportunity	
opens	 up	 for	 answering	 questions	 concerning	 routine	 movement	
behavior	(Ironside	et	al.,	2017;	Peron,	Fleming,	Paula,	&	Calabrese,	
2016).	 For	 example,	 Riotte‐Lambert,	 Benhamou,	 and	 Chamaillé‐
Jammes	 (2013)	examined	periodicity	within	an	animal’s	movement	
pattern	and	identified	using	wavelet	analysis.	The	same	authors	later	
used	conditional	entropy	to	quantify	the	predictability	of	repeating	
movement	patterns	between	sites	of	interest	(Riotte‐Lambert	et	al.,	
2016).	Questions	related	to	trap‐lining,	path	recursion,	and	predator	
prey	studies	were	reviewed	by	Berger‐Tal	and	Bar‐David	(2015).	All	
of	these	are	forms	of	movement	recursion	that	could	make	use	of	the	
sort	of	schematic	descriptions	of	movement	typified	in	Figure	5,	es‐
pecially	if	the	paths	are	longer	so	the	movement	sequences	contain	
more	detailed	information.

The	algorithm’s	output	also	enable	users	to	examine	differences	
in	the	between‐	and	within‐site	movement	patterns.	These	path	seg‐
ments	can	then	be	analyzed	in	isolation,	for	example,	by	identifying	
smaller‐scale	turning	points	(Potts	et	al.,	2018).	In	summary,	our	al‐
gorithm	 turns	 long,	 complicated	 streams	of	data	 into	 simple	 sche‐
matic	decisions	of	broadscale	behavioral	decisions.	This	 technique	
gives	 a	 foundational	 basis	 for	 tractable	 analysis	of	high‐resolution	
movement	data.
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