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Abstract
Decomposing the life track of an animal into behavioral segments is a fundamental 
challenge for movement ecology. The proliferation of high‐resolution data, often col‐
lected many times per second, offers much opportunity for understanding animal 
movement. However, the sheer size of modern data sets means there is an increasing 
need for rapid, novel computational techniques to make sense of these data. Most 
existing methods were designed with smaller data sets in mind and can thus be pro‐
hibitively slow. Here, we introduce a method for segmenting high‐resolution move‐
ment trajectories into sites of interest and transitions between these sites. This builds 
on a previous algorithm of Benhamou and Riotte‐Lambert (2012). Adapting it for use 
with high‐resolution data. The data’s resolution removed the need to interpolate be‐
tween successive locations, allowing us to increase the algorithm’s speed by approxi‐
mately two orders of magnitude with essentially no drop in accuracy. Furthermore, 
we incorporate a color scheme for testing the level of confidence in the algorithm’s 
inference (high = green, medium = amber, low = red). We demonstrate the speed and 
accuracy of our algorithm with application to both simulated and real data (Alpine 
cattle at 1 Hz resolution). On simulated data, our algorithm correctly identified the 
sites of interest for 99% of “high confidence” paths. For the cattle data, the algorithm 
identified the two known sites of interest: a watering hole and a milking station. It 
also identified several other sites which can be related to hypothesized environmen‐
tal drivers (e.g., food). Our algorithm gives an efficient method for turning a long, 
high‐resolution movement path into a schematic representation of broadscale deci‐
sions, allowing a direct link to existing point‐to‐point analysis techniques such as op‐
timal foraging theory. It is encoded into an R package called SitesInterest, so 
should serve as a valuable tool for making sense of these increasingly large data 
streams.

K E Y W O R D S

animal movement, biologging, high‐resolution data, movement ecology, site fidelity



2  |     MUNDEN et al.

1  | INTRODUC TION

The life track of an animal has the potential to reveal important in‐
formation about its behavior, as well as the surrounding environment 
(Kays, Crofoot, Jetz, & Wikelski, 2015; Nathan et al., 2008). Modern, 
high‐resolution biologging data (≥1 Hz resolution) give insight into 
the fine‐grained structure of this life track (Bidder et al., 2015; 
Brown, Kays, Wikelski, Wilson, & Klimley, 2013; Noda, Kawabata, 
Arai, Mitamura, & Watanabe, 2014; Walker et al., 2015; Williams et 
al., 2017; Wilmers et al., 2015; Wilson, Shepard, & Liebsch, 2008). 
However, these data are often so big and detailed that extracting the 
important information is a formidable task.

Many studies have, in varying ways, suggested that the life track 
should be broken down into different scales, each representing dif‐
ferent behavioral modes of animal movement (e.g., figure 1 in Nathan 
et al. (2008)). For example, state‐space modeling splits paths into 
predefined behavioral stages of movement, such as exploratory/
encamped (Morales, Haydon, Frair, Holsinger, & Fryxell, 2004), for‐
aging/migrating (Jonsen, Flemming, & Myers, 2005), or transient/
resident (Patterson, Thomas, Wilcox, Ovaskainen, & Matthiopoulos, 
2008). Behavioral changepoint analysis segments a path into sec‐
tions with different statistical features (Buchin, Driemel, Kreveld, 
& Sacristán, 2011; Gurarie et al., 2016; Gurarie, Andrews, & Laidre, 
2009) and can be used to classify these segments into distinct be‐
haviors (Nams, 2014). Optimal foraging theory starts with the idea 
that paths can be described as movements either between or within 
foraging patches, and examines why animals make between‐patch 
movements at the particular times they have been observed to do so 
(Charnov, 1976; Pyke, 1984). There are also more general techniques 
for path segmentation that have arisen in subject areas beyond ecol‐
ogy (Demšar et al., 2015).

The modern era of high‐resolution data offers a great opportu‐
nity to make better inference of such behavioral modes. However, 
the sheer size of most modern data sets makes statistical analysis 
tricky to perform in a reasonable time frame. Furthermore, for a path 
where locations are recorded many times per second, the animal is 
often simply continuing to carry out a decision made some time pre‐
viously. Therefore, an important part of the behavioral information is 
contained within a small subset of the data stream (Potts et al., 2018).

The development of techniques to infer behavioral decisions 
from high‐resolution data is thus timely and necessary. Here, we aim 
to describe an animal track as a sequence of “sites of interest,” which 
are areas where the animal spends a disproportionately long time, 
together with movements between these sites. Our algorithm breaks 
a long data stream down into a simple Markov‐process description 
of movement (similar to a “semantic trajectory” from movement an‐
alytics Demšar et al. (2015)), which has the potential to be analyzed 
using existing point‐to‐point techniques such as optimal foraging 
theory (Pyke, 1984) or step selection analysis (Avgar, Potts, Lewis, 
& Boyce, 2016; Fortin et al., 2005; Merkle, Fortin, & Morales, 2014). 
Our algorithm is based broadly on a site fidelity algorithm developed 
by Barraquand and Benhamou (2008) and Benhamou and Riotte‐
Lambert (2012), but adapted for use with large, high‐resolution data. 

This adaptation requires finding ways of speeding up the algorithm, 
but we can take advantage of the fact that there is no need to inter‐
polate between data points when they are only a few seconds apart, 
or less. We supply a method for assigning a level of confidence to our 
inference of the number of sites for an entire trajectory, displayed 
as a traffic‐light color. This indicates when further analysis may be 
necessary and gives an ad hoc goodness‐of‐fit test: something that 
is often missing from statistical studies of animal movement (Potts, 
Auger‐Méthé, Mokross, & Lewis, 2014).

We apply our algorithm to both simulated data, where the 
sites of interest are known, and dead‐reckoned 1 Hz tracks of cat‐
tle movement in the Alps (Bidder et al., 2015). For the latter data 
set, we already know two places that ought to be identified as 
sites of interest – a milking station and a watering hole. Thus, we 
can test both whether our algorithm can find these sites, and also 
if any other areas are uncovered that are of particular interest to 
the cattle. We show how our algorithm can be used to describe a 
complex movement path as a sequence of visits to sites and tran‐
sitions between those sites. The algorithm is freely available as an 
R package SitesInterest, available as Supporting Information 
and also on CRAN (https://cran.r-project.org/web/packages/
SitesInterest/index.html). This package will enable users to ex‐
tract fundamental movement information from long, high‐resolu‐
tion data streams.

2  | METHODS

2.1 | The “sites of interest” algorithm

Our algorithm uses a sliding‐disk method to infer areas of space where 
an animal spends most of its time (this is similar to the method used by 
Benhamou and Riotte‐Lambert (2012) to calculate “residence time”). 
In particular, our method is designed to be used on large sets (of 
order 105 points) of ≥1 Hz resolution data. Like previous approaches 
(Barraquand & Benhamou, 2008; Benhamou & Riotte‐Lambert, 
2012), our method involves sliding a disk of radius R along the animal’s 
path, looking for disks where the animal spends a disproportionately 
long time (see Figure 1 of Barraquand and Benhamou (2008) for a 
visual illustration). Modern high‐resolution paths can contain millions 
of locations. This is considerably more than those for which the algo‐
rithm of Benhamou and Riotte‐Lambert (2012) was developed (a few 
thousand). As such, this algorithm proves to be prohibitively slow for 
high‐resolution data (Supporting Information Appendix S1).

To deal with this speed issue, we do two things, which we sum‐
marize here, leaving the details for Supporting information Appendix 
S1. First, we do not slide the disk over every recorded point in the 
path: potentially millions of disks. Rather, we start with a disk cen‐
tered at the first data point, then each subsequent disk is centered at 
the first recorded location after the animal first leaves the previous 
disk, meaning that we only need to analyze a relatively small number 
of disks (approximately the length of the track divided by R for rela‐
tively straight trajectories and less if the tortuousity is higher). This 
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dramatically reduces the number of disks examined by the algorithm, 
while ensuring all of the space that the animal covers is analyzed.

Second, when looking for the places at which the animal being 
studied entered and left a disk, we subsample our data at every s‐th 
location (see Supporting information Appendix S1). Once an entry‐ 
or exit‐point is identified, say between the i‐th and (i + s)‐th location, 
we use the full path between points i and i + s to identify the exact 
position of entry or exit. The larger we choose s, the quicker the 
algorithm. However, if we choose s to be too high, we are in danger 
of missing information if the animal moves in and out of a disk within 
s time steps. Therefore, there is a trade‐off in choice of s, which ul‐
timately depends on the data being analyzed. For our 1 Hz data, we 
found that s = 10 gave rapid yet accurate results (Supporting infor‐
mation Tables S4 and S5).

Having calculated the usage time for each disk, defined to be the 
amount of time spent in each disk across the whole time‐period over 
which the path is measured, we rarefy the set of disks further by 
removing any disk that overlaps with another disk of higher usage 
time (Supporting information Appendix S1, Figure 1b). The salient 

information from the resulting collection of nonoverlapping disks is 
displayed in a histogramme of decreasing usage times (Figure 1c). 
This is superficially similar to a scree plot from principle component 
analysis, and we use similar ideas to analyse the plot (Jolliffe, 1986).

In essence, we want to find a point at which the heights of the 
bars in the histogramme “drop‐off” rapidly, separating out compara‐
tively well‐used sites (to the left) from transitory ones (to the right). 
We look at each adjacent pair of bars on the histogramme for the 
greatest percentage difference in the usage times. This is referred 
to as the maximum percent drop (MPD). The sites of interest are de‐
fined to be disks corresponding to the bars to the left of this MPD 
(Figure 1c).

The resulting set of identified sites depends very much on the 
choice of R, the disk radius. As such, we need criteria to determine 
which value of R is “best” for accurate identification of sites. In practice, 
we found that no single criterion works perfectly in every situation. 
Instead, we give a technique for determining a value of R, together with 
a traffic‐light color (Red, Amber, Green) denoting the level of confi‐
dence we have in our algorithm having found the actual sites of interest 

F I G U R E  1  Demonstration of the algorithm applied to simulated data. Panel (a) shows the path of a switching Ornstein‐Uhlenbeck (OU) 
simulation (Simulation 14 in Supporting information Tables S3 and S7). Panel (b) shows the same path overlaid with the disks we examined 
for sites of interest. Maroon circles bound the disks identified as sites of interest. Of the remaining circles, those left after overlapping disks 
have been removed are given as orange colored and the others are yellow. Panel (c) gives a histogramme of the maroon and orange colored 
disks in ranked order. MPD is the value of the maximum percent drop. Panel (d) displays the maximum percent drop and number of identified 
sites as a function of the disk radius, R
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for the animal, where Green is high, Amber is intermediate, and Red is 
low. We then suggest that the user supplements this with biological 
intuition, especially in the Red and Amber cases, to check that the algo‐
rithm has returned a reasonable estimate of the actual sites of interest.

The starting point for finding R is to calculate the MPD for a 
variety of different Rs, plotted in Figure 1d, and look for the first 
local maximum of this graph, which we denote RLM. Local maximal‐
ity suggests that the sites of interest can be identified more clearly 
with R = RLM than with close‐by values of R. We choose the first local 
maximum, rather than the global maximum, because the MPD tends 
to 100% as R becomes large enough so that the most oft‐used disk 
contains almost all of the path. We then apply two further criteria.

The first criterion insists that the MPD must be greater than a 
predefined threshold value, TMPD. This can be chosen either as a fixed 
value or as TMPD = min(MPD) + k(max(MPD) – min(MPD)), where 
k is a constant, referred to as the adaptive threshold value. Here, 
min(MPD) and max(MPD) are, respectively, the minimum and maxi‐
mum MPDs for all values of R tested (see e.g., Figure 1d). Brownian 
motion simulations can be used to derive a lower bound for the 
threshold value (Supporting information Appendix S1).

The second is a stability criterion, meaning that if the radius is 
changed slightly from R = RLM, the number of sites identified will re‐
main unchanged. Based on the results of these two criteria, a color is 
assigned depending on the consistency between the results of using 
each criterion. The Green label is assigned if both criteria identify the 
same number of sites and radius value, Amber is assigned if they result 
in the same number of sites, but different radii and Red is assigned if 
the number of sites are different (see Supporting information Appendix 
S1 for more details). This gives a qualitative level of confidence in the 
algorithm’s performance and could be used as a warning signal to sug‐
gest when further analysis would be helpful. The complete method for 
finding sites of interest is summarized in Figure 2.

2.2 | Data

2.2.1 | Simulated data

To test the efficacy of our algorithm, we constructed a collection 
of simulated paths using a switching Ornstein‐Uhlenbeck (OU) pro‐
cess (Blackwell, 1997; Taylor & Karlin, 2014). At any point in time, an 

F I G U R E  2  A flowchart describing how 
the algorithm is implemented

The user inputs data.

The user is asked
for a range of values

for the radius.

A graph of the num-
ber of sites and

maximum percent
drops is produced

(see Figure 1d).

The first local
maximum of the

percent drops is found.

The first local
maximum, which is
also stable is found.

The user is asked for
a threshold value.

The first local
maximum above this
threshold is found.

A colour is as-
signed to the path.

Red is assigned if
the number of sites
are not the same.

Amber is assigned if
the number of sites
are the same, but
the radii are not.

Green is assigned
if the number of
sites and radii
are the same.

The user uses intu-
ition to see if the

answer is reasonable.

The user chooses
a different range
of values for the

radius or applies the
algorithm on segments

of the trajectory.

The output is the
number of sites
identified and
their locations.

A schematic is
produced (see Figure 5).

Optional

User is not satisfied

User is satisfied
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object following a switching OU process has a center of attraction 
toward which it is moving. However, there is also a certain amount 
of (Gaussian) randomness in the movement process (see Blackwell 
(1997) and Blackwell, Niu, Lambert, and LaPoint (2016) for more de‐
tails on the switching OU process and applications to animal move‐
ment). In these simulations, the “real” sites of interest are defined to 
be the centers of attraction of the switching OU process.

We ran 110 OU simulations in a box of 10 by 10 units, varying 
the number of points of attraction between 1 and 10. We also var‐
ied the positions of these points and the long‐term standard devia‐
tion about these points of attraction (i.e., the standard deviation of 
the stationary distribution of the OU process). Details are given in 
Supporting information Tables S6–S9, and 12 examples are shown in 
Supporting information Figure S6. We tested whether the algorithm 
correctly picks out these points of attraction as sites of interest (i.e., 
both that the number of sites is identified correctly and that these 
sites contain the centers of attraction of the switching OU process; 
Figure 3).

We ran each of the OU simulations through the algorithm with 
radii values ranging from 0.2 to 3.8 units with 0.1 units between con‐
secutive values. The minimum radius value was chosen so that it was 
greater than the greatest distance between any two consecutive lo‐
cations. The maximum radius value was chosen so that it would be 
larger than any potential site. Other than these constraints, the radii 
were chosen blindly so as to simulate having no prior knowledge 
about the trajectories.

2.2.2 | Cattle data

Cattle data were collected in July 2017 from a group of cows from the 
French Alps in the Bauges Mountains (Massif des Bauges, 45.61°N, 
6.19°E). The cattle were tagged with Daily Diary tags (with triaxial 
accelerometers and magnetometers; Wildbytes Technologies http://
www.wildbyte-technologies.com and Gipsy‐5 tags; TechnoSmArt 
Tracking Systems http://www.technosmart.eu), placed inside custom‐
built 3D printed ABS plastic housings and attached to commercial 
nylon cow collars (Fearing Lifestyles, Durham, UK). The accelerometer 
readings were recorded at a frequency of 20 Hz approximately and 
6 Hz for the magnetometer readings. Both were subsampled to 1 Hz, 
whereas GPS readings were recorded every 15 min. The path was then 

reconstructed using Framework4 (Walker et al., 2015), which uses the 
Dead Reckoning procedure (Bidder et al., 2015).

We focused on seven ten‐hour long paths. We ran each path 
through our algorithm with radii values ranging from 10 to 100 m, 
with 1 m between consecutive values. We suggest that the minimum 
radius used be at least half the body length of the animal, to have any 
biological meaning, and typically several times more than this. We 
also ran our algorithm over the entire collection of seven paths. The 
latter gives us information about sites that the cattle might return to 
day‐by‐day, whereas the former might reveal sites that are of inter‐
est to particular cows on specific days.

3  | RESULTS

3.1 | Simulated data

Our algorithm correctly identified sites of interest for 72% of our 
110 simulated paths (Figure 3a). 69.1% of these paths were both cor‐
rectly identified and given a Green level of confidence. The algo‐
rithm only misidentified one path with a Green output, so 98.7% of 
the 77 paths classified Green identified the correct number of sites. 
This suggests that if a Green output is given, we can be reasonably 
confident that the sites of interest have been identified correctly.

Of those assigned Amber, only two (1.8%) were falsely identi‐
fied. For some of the simulations assigned to the Red category, using 
either the threshold criterion or the stability criterion returned the 
correct answer (see Supporting information Tables S10–S13). The 
results presented used a fixed threshold value of TMPD = 65% as this 
minimized the number of incorrect Green paths.

3.2 | Results from Cattle data

Figure 3b summarizes the results of running our algorithm over 
each of the seven cattle trajectories independently (see Supporting 
information Table S14 for the full results). These results came from 
using a fixed threshold value of TMPD = 50%, which was chosen 
so as to minimize the number of paths assigned to the red cat‐
egory and was also greater than the lower bound found from the 
Brownian motion simulations (Supporting information Appendix 
S1). The running time for each trajectory (of 30–40,000 points) 

F I G U R E  3  The proportion of paths 
assigned to each of the color categories 
for the switching OU simulations (Panel 
a) and daily cattle paths (Panel b). The 
numbers denote the percentage of sites 
assigned to each category
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was less than a minute (Supporting information Table S1), whereas 
for all seven together (247,000 data points), it took just over 4 min 
and the algorithm appears to scale linearly (Supporting informa‐
tion Figure S1).

Although only two of the paths gave a Green level of confidence, 
running the algorithm over a single trajectory encompassing all seven 
paths reveals clear sites of interest (Figure 4). If we choose R = 20, a 
relatively fine‐grained value, there are substantial drops after the 1st 
and 3rd circles, but both of these missed out interesting information, 
such as the cattle’s movements to the southeast. So instead we look 
at the drop between the 8th and 9th circles (Figure 4a,b, Supporting 
information Figure S7). In actual fact, the maximum percent drop 
occurs after the 83rd circle. However, the resulting set of circles is 
large and hence rather uninformative, so we define the sites of in‐
terest to be the first eight disks. Two of these (A and E) occur about 
the watering hole and one (C) about the milking station. We would 

expect cattle to use these two locations quite frequently (pieces of 
salt licks are provided for cows close to the milking station), so it 
makes sense that our algorithm identifies them as sites of interest. 
Importantly, our algorithm also reveals five other sites of interest in 
less‐expected places. This opens up the question of why the cattle 
are interested in these locations, and helps guide future data analysis 
to examining specific areas that seem to be valuable to the animals 
(e.g., habitat features and food availability).

If we use R = 100, a coarser‐grained value, we found six sites 
which again covered the majority of the path, so was not a very in‐
formative set of sites. However, from the histogramme, there is a 
substantial drop after four disks (Figure 4c). These encompass six of 
the eight sites identified by using R = 20, including both the milking 
station and the watering hole. It also suggests that the pair of sites 
(G,H) from Figure 4b might actually be a single site, and this warrants 
further field investigation. A similar lesson holds for the pair (A,E).

F I G U R E  4   Identification of sites for seven paths of cattle movements obtained using a radius of R = 20 in Panels (a,b) and R = 100 in 
Panels (c,d). Sites of interest were identified from the bar charts, by sight for R = 20 and R = 100. The bars are labeled alphabetically, with A 
being the circle with the greatest usage time, all of which correspond to the maroon circles in the right hand plots
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Although the R = 100 case is in some ways better than R = 20 
since it recognizes the watering hole as a single site rather than two, 
its coarseness leads to a potentially missed site of interest in the 
middle‐left of the area (Figure 4b,d). The R = 20 case picks this out 
(sites B and F from Figure 4b). This suggests that visually examining 
the algorithm output for more than one value of R can be valuable.

As well as identifying sites of interest, our results enable sim‐
plification of a complex movement path into a schematic diagram 
reflecting the main behavioral decisions made by the animal. In 
Figure 5, we illustrate this with three example paths of cattle move‐
ment (see Supporting information Figure S8 for all seven). The sites 
of interest are those four identified in Figure 4d for the R = 100 case. 
This schematic breaks up a complex movement trajectory into a sim‐
ple Markov process, enabling users to ask questions about why the 
animal transitions between the different sites at the times it does, 
which could be answered by using existing point‐to‐point tech‐
niques such as optimal foraging theory or step selection analysis. 
This is similar in flavor to the semantic trajectories defined by Yan, 
Chakraborty, Parent, Spaccapietra, and Aberer (2013).

Note that we can define the process of choosing patches such 
that the probability of an animal to either change or not change 
sites is based purely on the current state of both the animal and the 

environment. As such it can always be framed as a Markov process, 
whereby the decision to move at time t is based on the state of the 
system at time t. For example in Figure 5, suppose the cow is cur‐
rently grazing at site C, but, at some point in time, becomes suffi‐
ciently thirsty to necessitate a move to the watering hole at Site A. 
Although the causal chain leading to this decision may be arbitrarily 
long, the decision to move from C to A is simply based on the present 
state of the animal (particularly thirst, but also maybe hunger, mobil‐
ity etc.) and the environment (e.g., distance from C to A, effort or risk 
of moving from C to A and so forth).

4  | DISCUSSION

This paper introduces an efficient algorithm for decomposing a 
long, high‐resolution data stream of animal locations into a simple 
Markov‐process description of animal movement decisions. We 
have applied our algorithm to both simulated and real data (Figure 3), 
showing that it is effective in recognizing known sites of interest, but 
can also reveal other, less‐expected places that the animal is visiting 
frequently (Figure 4). Such information opens up questions as to why 
each of these sites is particularly interesting to the animal, and why 

F I G U R E  5  Three particular examples of cattle paths (a–c) with the corresponding schematic plots below (d–f). The schematics represent 
simplifications of the full path that highlight the broadscale movement decisions made by each cow. The centers of sites of interest are 
defined by the red dots and their boundary by the red hoops. The flowchart represents the movements of Cattle Path 6 between sites of 
interest. The letters represent the sites of interest, corresponding to the same letters in Panel (f). The number in brackets give the number 
of minutes the cow spends at that site for that particular visit. The arrows represent the cow moving from one site to the next, with the 
associated numbers representing the number of minutes the cow spends moving between these sites
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it makes the decision to move between these sites at the particular 
times it does. These latter questions can then be examined by exist‐
ing point‐to‐point techniques, such as step selection analysis (Avgar 
et al., 2016; Fortin et al., 2005), conditional entropy (Riotte‐Lambert, 
Benhamou, & Chamaillé‐Jammes, 2016), sequence analysis methods 
(De Groeve et al., 2016), or optimal foraging theory (Pyke, 1984).

Unlike model‐based approaches, our algorithm makes no as‐
sumptions about why sites may be of particular interest, just 
that they are small areas which are well used in comparison with 
other areas of equal size. It is broadly based on previous works of 
Barraquand and Benhamou (2008); Benhamou and Riotte‐Lambert 
(2012) that find areas of high‐intensity usage by sliding a circle of 
fixed radius, R, along the path (similar questions were also addressed 
by Sila‐Nowicka et al. (2016)). However, the size and resolution of 
our data require that these algorithms be significantly adapted, 
which is a key contribution of our work, having increased the algo‐
rithm’s speed by approximately two orders of magnitude. Movement 
ecology is increasingly dealing with such high (subsecond) resolution 
data, so such adaptations are becoming ever more valuable.

As well as applicability to higher‐resolution data, our algo‐
rithm has some qualitative differences to that of Benhamou and 
Riotte‐Lambert (2012) that are worth highlighting. These result 
from slightly different aims. Here, our interest is in finding patches 
that are used for a disproportionately large amount of time com‐
pared to other areas of the landscape. In contrast, Benhamou and 
Riotte‐Lambert (2012) seek to describe space use patterns more 
generally. As such, their work focuses on constructing various 
“heat maps” representing different aspects of space use, namely 
the Utilization distributions, Intensity distribution, and Recursion 
distribution (see Benhamou and Riotte‐Lambert (2012) for defini‐
tions of these quantities). For our aims, we found it more beneficial 
simply to identify high usage sites. That said, it may be beneficial 
in certain circumstances to perform some postprocessing of the 
identified sites to see if any are better‐described by noncircular ge‐
ometries, for example, by using least cost paths (Long, 2016) to see 
if there are particular regions within a site which are less well‐used 
than others.

One of the challenges of developing such a window‐sliding algo‐
rithm is to determine the “correct” size of the window, R. Fauchald 
and Tveraa (2003) suggested using the log‐variance of the resident 
times between circles, to give a variance‐scale curve as a function 
of R. The maximum of this curve gives an indication of the ideal win‐
dow size to use. This was met with several criticisms by Barraquand 
and Benhamou (2008). Nonetheless, Kapota, Dolev, and Saltz (2017) 
revisited the variance‐scale curve method and improved on it in sev‐
eral ways, specifically addressing the concerns of Barraquand and 
Benhamou (2008). In principle, these techniques could be used in 
combination with our usage‐time algorithm if the user is particu‐
larly concerned in identifying sizes of the sites of interest. However, 
we found that a combination of biological intuition and examining 
places where there was a clear drop in the usage time histogramme 
(Figure 1c) was a simple and effective method of doing the same job 
to a reasonable degree of accuracy.

Many of the existing statistical and theoretical tools available to 
movement ecologists were made when coarser data were the norm. 
As such, it is not always trivial to adapt these techniques to the new 
world of high‐resolution data. For example, many methods in the liter‐
ature are based on distributions of step lengths and turning angles be‐
tween successive data points (Avgar et al., 2016; Ironside et al., 2017; 
Morales et al., 2004). However, when the “steps” are only a fraction 
of a second apart, there are not a lot of sensible biological inferences 
that can be made about step‐wise “decisions,” as animals are unlikely 
to be making discrete decisions at such a high frequency. One other 
improvement has been the addition of the quantification of uncer‐
tainty (traffic‐light color assignment), which warns users when per‐
forming further checks would be appropriate. This is a novel aspect 
of our method that as far as we know, has not been used before. If 
the assignment comes up as “red” or “amber,” it may be valuable to in‐
vestigate whether carefully chosen subsections of the path may give 
better inference. For example, if there is an overwhelmingly dominant 
site of interest (e.g., a sleeping site), it may be valuable to run our algo‐
rithm over periods of time when the animal is not likely to be asleep.

Once sites of interest have been identified, together with the 
transition points between them (Figure 5), a wealth of opportunity 
opens up for answering questions concerning routine movement 
behavior (Ironside et al., 2017; Peron, Fleming, Paula, & Calabrese, 
2016). For example, Riotte‐Lambert, Benhamou, and Chamaillé‐
Jammes (2013) examined periodicity within an animal’s movement 
pattern and identified using wavelet analysis. The same authors later 
used conditional entropy to quantify the predictability of repeating 
movement patterns between sites of interest (Riotte‐Lambert et al., 
2016). Questions related to trap‐lining, path recursion, and predator 
prey studies were reviewed by Berger‐Tal and Bar‐David (2015). All 
of these are forms of movement recursion that could make use of the 
sort of schematic descriptions of movement typified in Figure 5, es‐
pecially if the paths are longer so the movement sequences contain 
more detailed information.

The algorithm’s output also enable users to examine differences 
in the between‐ and within‐site movement patterns. These path seg‐
ments can then be analyzed in isolation, for example, by identifying 
smaller‐scale turning points (Potts et al., 2018). In summary, our al‐
gorithm turns long, complicated streams of data into simple sche‐
matic decisions of broadscale behavioral decisions. This technique 
gives a foundational basis for tractable analysis of high‐resolution 
movement data.
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