785 research outputs found

    Pacific area data collection stations

    Get PDF
    The installation of environmental data collection systems at several remotely located sites in islands in the Pacific Ocean is summarized. The effort was designed to enhance the ability to collect hydrological information. The data collection station consists of a data acquisition system for handling data, a transmitter for uplinking information to the GOES-W geostationary satellite, and a variety of environmental sensors for data accumulation. Each system was assembled, tested, and deployed on designated islands. The concept of using microprocessors for handling data at remote sites and relaying it via a satellite link is a cost effective approach. Such systems require high reliability and proven performance in the field

    Preconceptional, Gestational, and Lactational Exposure to an Unconventional Oil and Gas Chemical Mixture Alters Energy Expenditure in Adult Female Mice

    Get PDF
    Previous studies conducted in our laboratory have found altered adult health outcomes in animals with prenatal exposure to environmentally relevant levels of unconventional oil and gas (UOG) chemicals with endocrine-disrupting activity. This study aimed to examine potential metabolic health outcomes following a preconception, prenatal and postnatal exposure to a mixture of 23 UOG chemicals. Prior to mating and from gestation day 1 to postnatal day 21, C57BL/6J mice were developmentally exposed to a laboratory-created mixture of 23 UOG chemicals in maternal drinking water. Body composition, spontaneous activity, energy expenditure, and glucose tolerance were evaluated in 7-month-old female offspring. Neither body weight nor body composition differed in 7-month female mice. However, females exposed to 1.5 and 150 μg/kg/day UOG mix had lower total and resting energy expenditure within the dark cycle. In the light cycle, the 1,500 μg//kg/day group had lower total energy expenditure and the 1.5 μg/kg/day group had lower resting energy expenditure. Females exposed to the 150 μg/kg/day group had lower spontaneous activity in the dark cycle, and females exposed to the 1,500 μg/kg/day group had lower activity in the light cycle. This study reports for the first time that developmental exposure to a mixture of 23 UOG chemicals alters energy expenditure and spontaneous activity in adult female mice

    e-Science and biological pathway semantics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science.</p> <p>Results</p> <p>We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs.</p> <p>Conclusion</p> <p>Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.</p

    Vortex pinning by natural defects in thin films of YBa2Cu3O7−δ

    Get PDF
    Although vortex pinning in laser-ablated YBa2Cu3O7−δ films on (100) SrTiO3 is dominated by threading dislocations, many other natural pinning sites are present. To identify the contribution from twin planes, surface corrugations and point defects, we manipulate the relative densities of all defects by post-annealing films with various as-grown dislocation densities, ndisl. While a universal magnetic field B dependence of the transport current density js(B, T) is observed (independently of ndisl, temperature T and the annealing treatment), the defect structure changes considerably. Correlating the microstructure to js(B, T), it becomes clear that surface roughness, twins and point defects are not important at low magnetic fields compared to linear defect pinning. Transmission electron microscopy indicates that threading dislocations are not part of grain boundaries nor are they related to the twin domain structure. We conclude that js(B, T) is essentially determined by pinning along threading dislocations, naturally induced during the growth process. Even in high magnetic fields, where the vortex density outnumbers ndisl, it appears that linear defects stabilize the vortex lattice by means of the vortex–vortex interaction.

    Ontology Design Patterns for bio-ontologies: a case study on the Cell Cycle Ontology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bio-ontologies are key elements of knowledge management in bioinformatics. Rich and rigorous bio-ontologies should represent biological knowledge with high fidelity and robustness. The richness in bio-ontologies is a prior condition for diverse and efficient reasoning, and hence querying and hypothesis validation. Rigour allows a more consistent maintenance. Modelling such bio-ontologies is, however, a difficult task for bio-ontologists, because the necessary richness and rigour is difficult to achieve without extensive training.</p> <p>Results</p> <p>Analogous to design patterns in software engineering, Ontology Design Patterns are solutions to typical modelling problems that bio-ontologists can use when building bio-ontologies. They offer a means of creating rich and rigorous bio-ontologies with reduced effort. The concept of Ontology Design Patterns is described and documentation and application methodologies for Ontology Design Patterns are presented. Some real-world use cases of Ontology Design Patterns are provided and tested in the Cell Cycle Ontology. Ontology Design Patterns, including those tested in the Cell Cycle Ontology, can be explored in the Ontology Design Patterns public catalogue that has been created based on the documentation system presented (<url>http://odps.sourceforge.net/</url>).</p> <p>Conclusions</p> <p>Ontology Design Patterns provide a method for rich and rigorous modelling in bio-ontologies. They also offer advantages at different development levels (such as design, implementation and communication) enabling, if used, a more modular, well-founded and richer representation of the biological knowledge. This representation will produce a more efficient knowledge management in the long term.</p

    Clinical decision support using Open Data

    Get PDF
    First Online: 18 May 2020.The growth of Electronical Health Records (EHR) in healthcare has been gradual. However, a simple EHR system has become inefficient in supporting health professionals on decision making. In this sense, the need to acquire knowledge from storing data using open models and techniques has emerged, for the sake of improving the quality of service provided and to support the decision-making process. The usage of open models promotes interoperability between systems, communicating more efficiently. In this sense, the OpenEHR open data approach is applied, modelling data in two levels to distinguish knowledge from information. The application of clinical terminologies was fundamental in this study, in order to control data semantics based on coded clinical terms. This article culminated from the conceptualization of the knowledge acquisition process to represent Clinical Decision Support, using open data models.The work has been supported by FCT–Fundação para a Ciência e Tec-nologia within the Project Scope UID/CEC/00319/2019 and DSAIPA/DS/0084/2018
    corecore