24 research outputs found
A general method for manipulating DNA sequences from any organism with optical tweezers
Mechanical manipulation of single DNA molecules can provide novel information about DNA properties and protein–DNA interactions. Here we describe and characterize a useful method for manipulating desired DNA sequences from any organism with optical tweezers. Molecules are produced from either genomic or cloned DNA by PCR using labeled primers and are tethered between two optically trapped microspheres. We demonstrate that human, insect, plant, bacterial and viral sequences ranging from ∼10 to 40 kilobasepairs can be manipulated. Force-extension measurements show that these constructs exhibit uniform elastic properties in accord with the expected contour lengths for the targeted sequences. Detailed protocols for preparing and manipulating these molecules are presented, and tethering efficiency is characterized as a function of DNA concentration, ionic strength and pH. Attachment strength is characterized by measuring the unbinding time as a function of applied force. An alternative stronger attachment method using an amino–carboxyl linkage, which allows for reliable DNA overstretching, is also described
Influence de l'histone de liaison sur la dynamique de fibres de chromatine individuelles
We investigate the mechanical properties of single chromatin fibers. Chromatin is the nucleoproteic structure of eucaryotic cells nucleus. During physiological processes such as transcription, replication or DNA repair this template is submitted to mechanical constraints like torsion. First we review the main results concerning chromatin properties. In particular, we focus on the influence of linker histone. This protein allows chromatin fibers to acces to a higher degree of compaction. Then, we detail theoretical and experimental tools used to describe and study the chromatin. We describe topological properties of this template. We used a magnetic tweezers setup that allowed us to exert controled torsion and tension on a single chromatin fiber. Finally, we present results obtained on chromatin fibers with and without linker histone. Magnetic tweezers experiments revealed that linker histones mediated compaction does not impair the remarkable torsional elasticity of chromatin. Moreover, under high positive supercoiling nucleosome is known to undergo a structural transition that affect its topology. We showed that this transition, responsible for relaxation of topological constraints, can also occur in fibers containing linker histone. Biological relevance of this transition is discussed. The ability of chromatin fibers to endorse topological deformation may have an important role in the maintenance of chromatin organisation throughout cell cycles.Dans ce manuscrit nous abordons les propriétés mécaniques de fibres de chromatine à l'échelle de la molécule unique. La chromatine est la structure nucléoprotéique qui contient le génome des cellules eucaryotes. À ce titre, cette fibre est soumise à de nombreuses contraintes mécaniques, telle la torsion, lors des processus de transcription, de réplication ou bien encore de réparation. Une revue des connaissances concernant la chromatine est présentée dans un premier chapitre. En particulier, nous introduisons l'influence d'une histone, appelée histone de liaison. Cette protéine permet à la fibre d'accéder à un niveau de compaction supérieur. Ensuite nous donnons les outils théoriques et expérimentaux d'étude du substrat chromatinien. Nous détaillons les propriétés topologiques de la chromatine. Le dispositif d'étude que nous avons utilisé, les pinces magnétiques, est décrit. Il permet d'exercer sur une fibre unique des contraintes mécaniques de tension et de torsion controlées. Enfin nous présentons les résultats obtenus sur des fibres de chromatine reconstituées en présence ou non de l'histone de liaison. À l'aide des pinces magnétiques, nous avons pu mettre en évidence le fait que l'histone de liaison ne modifie pas l'élasticité torsionnelle remarquable de la chromatine, même si la fibre est dans un état plus condensé. Sous forte déformation torsionnelle positive, le nucléosome subit une transition chirale qui permet de relâcher la contrainte topologique appliquée à la fibre. Nous avons pu montrer que ce changement conformationnel peut tout à fait se dérouler au sein des fibres contenant l'histone de liaison. Les implications biologiques de ces phénomènes sont examinées. La capacité propre à la chromatine à supporter la contrainte de torsion pourrait avoir un rôle dans le maintien de l'organisation chromatinienne lors du cycle cellulaire
Molecular clustering in the cell: from weak interactions to optimized functional architectures
International audienceMolecular components of the cell, such as lipids, proteins or RNA molecules, can associate through weak interactions and form clusters. A growing number of studies have shown that clustering of molecules is crucial for cell functions such as signal optimization and polarization. Clustering provides an intermediate level of organization between the molecular and cellular scales. Here we review recent studies focusing on how molecular clustering functions in different biological contexts, the potential importance of clustering for information processing, as well as the physical nature of cluster formation. We mainly refer to literature focusing on clusters within cell membranes, but also report findings on clusters in the cytosol, emphasizing their ubiquitous role
Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells
Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns
Wnt ligands regulate the asymmetric divisions of neuronal progenitors in C. elegans embryos
International audienceWnt/β-catenin signalling has been implicated in the terminal asymmetric divisions of neuronal progenitors in vertebrates and invertebrates. However, the role of Wnt ligands in this process remains poorly characterized. Here, we used the terminal divisions of the embryonic neuronal progenitors in C. elegans to characterize the role of Wnt ligands during this process, focusing on a lineage that produces the cholinergic interneuron AIY. We observed that, during interphase, the neuronal progenitor is elongated along the anteroposterior axis, then divides along its major axis, generating an anterior and a posterior daughter with different fates. Using time-controlled perturbations, we show that three Wnt ligands, which are transcribed at higher levels at the posterior of the embryo, regulate the orientation of the neuronal progenitor and its asymmetric division. We also identify a role for a Wnt receptor (MOM-5) and a cortical transducer APC (APR-1), which are, respectively, enriched at the posterior and anterior poles of the neuronal progenitor. Our study establishes a role for Wnt ligands in the regulation of the shape and terminal asymmetric divisions of neuronal progenitors, and identifies downstream components
Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells
Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns
Transfer of polarity information via diffusion of Wnt ligands in C. elegans embryos
International audienceDifferent signaling mechanisms concur to ensure robust tissue patterning and cell fate instruction during animal development. Most of these mechanisms rely on signaling proteins that are produced, transported, and detected. The spatiotemporal dynamics of signaling molecules are largely unknown, yet they determine signal activity’s spatial range and time frame. Here, we use the Caenorhabditis elegans embryo to study how Wnt ligands, an evolutionarily conserved family of signaling proteins, dynamically organize to establish cell polarity in a developing tissue. We identify how Wnt ligands, produced in the posterior half of the embryos, spread extracellularly to transmit information to distant target cells in the anterior half. With quantitative live imaging and fluorescence correlation spectroscopy, we show that Wnt ligands diffuse through the embryo over a timescale shorter than the cell cycle, in the intercellular space, and outside the tissue below the eggshell. We extracted diffusion coefficients of Wnt ligands and their receptor Frizzled and characterized their co-localization. Integrating our different measurements and observations in a simple computational framework, we show how fast diffusion in the embryo can polarize individual cells through a time integration of the arrival of the ligands at the target cells. The polarity established at the tissue level by a posterior Wnt source can be transferred to the cellular level. Our results support a diffusion-based long-range Wnt signaling, which is consistent with the dynamics of developing processes