221 research outputs found
An easy to control all-metal in-line-series ohmic RF MEMS switch
Copyright @ 2010 Springer-VerlagThe analysis, design and simulation of a novel easy to control all-metal in-line-series ohmic RF MEMS switch is presented, for applications where the operating frequency ranges from DC to 4 GHz. The proposed switch, due to its unique shape and size, assures high isolation and great linearity fulfilling the necessary requirements as concerns loss, power handling and power consumption. Simplicity has been set as the key success factor implying robustness and high fabrication yield. On the other hand, the specially designed cantilever-shape (hammerhead) allows distributed actuation force ensuring high controllability as well as reliability making the presented RF MEMS switch one of its kind
Low Loss RF MEMS Phase Shifters for Satellite Communication Systems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76391/1/AIAA-2002-1895-175.pd
Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species
The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting âenhancerâ elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebonyâs transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencerâs activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits
RF-MEMS switch actuation pulse optimization using Taguchi's method
Copyright @ 2011 Springer-VerlagReliability and longevity comprise two of the most important concerns when designing micro-electro-mechanical-systems (MEMS) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchiâs optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch
Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à -brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al
Ultra High Energy Cosmology with POLARBEAR
Observations of the temperature anisotropy of the Cosmic Microwave Background
(CMB) lend support to an inflationary origin of the universe, yet no direct
evidence verifying inflation exists. Many current experiments are focussing on
the CMB's polarization anisotropy, specifically its curl component (called
"B-mode" polarization), which remains undetected. The inflationary paradigm
predicts the existence of a primordial gravitational wave background that
imprints a unique B-mode signature on the CMB's polarization at large angular
scales. The CMB B-mode signal also encodes gravitational lensing information at
smaller angular scales, bearing the imprint of cosmological large scale
structures (LSS) which in turn may elucidate the properties of cosmological
neutrinos. The quest for detection of these signals; each of which is orders of
magnitude smaller than the CMB temperature anisotropy signal, has motivated the
development of background-limited detectors with precise control of systematic
effects. The POLARBEAR experiment is designed to perform a deep search for the
signature of gravitational waves from inflation and to characterize lensing of
the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8
arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver
is an array featuring 1274 antenna-coupled superconducting transition edge
sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a
tensor-to-scalar ratio of 0.025 after two years of observation -- more than an
order of magnitude improvement over the current best results, which would test
physics at energies near the GUT scale. POLARBEAR had an engineering run in the
Inyo Mountains of Eastern California in 2010 and will begin observations in the
Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding
Development and characterization of the readout system for POLARBEAR-2
POLARBEAR-2 is a next-generation receiver for precision measurements of the
polarization of the cosmic microwave background (Cosmic Microwave Background
(CMB)). Scheduled to deploy in early 2015, it will observe alongside the
existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro
Toco in the Atacama desert of Chile. For increased sensitivity, it will feature
a larger area focal plane, with a total of 7,588 polarization sensitive
antenna-coupled Transition Edge Sensor (TES) bolometers, with a design
sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin,
and the bolometers will be read-out with 40x frequency domain multiplexing,
with 36 optical bolometers on a single SQUID amplifier, along with 2 dark
bolometers and 2 calibration resistors. To increase the multiplexing factor
from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth
for SQUID readout and well-defined frequency channel spacing. Extending to
these higher frequencies requires new components and design for the LC filters
which define channel spacing. The LC filters are cold resonant circuits with an
inductor and capacitor in series with each bolometer, and stray inductance in
the wiring and equivalent series resistance from the capacitors can affect
bolometer operation. We present results from characterizing these new readout
components. Integration of the readout system is being done first on a small
scale, to ensure that the readout system does not affect bolometer sensitivity
or stability, and to validate the overall system before expansion into the full
receiver. We present the status of readout integration, and the initial results
and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for
Astronomy VII. Published in Proceedings of SPIE Volume 915
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to âextendâ the Modern Synthesis-derived âstandard evolutionary theoryâ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EESâpublished by Laland and collaborators in 2015âin light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
De Novo Genesis of Enhancers in Vertebrates
Whole genome duplication in teleost fish reveals that a few changes in non-regulatory genomic sequences are a source for generating new enhancers
Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures
Samples of human and rat skin in short-term organ culture exposed to ALA or a range of hydrophobic derivatives were examined for their effect on the accumulation of protoporphyrin IX (PpIX) measured using fluorescence spectroscopy. With the exception of carbobenzoyloxy-D-phenylalanyl-5-ALA-ethyl ester the data presented indicate that, in normal tissues, ALA derivatives generate protoporphyrin IX more slowly than ALA, suggesting that they are less rapidly taken up and/or converted to free ALA. However, the resultant depot effect may lead to the enhanced accumulation of porphyrin over long exposure periods, particularly in the case of ALA-methyl ester or ALA-hexyl ester, depending on the applied concentration and the exposed tissue. Addition of the iron chelator, CP94, greatly increased PpIX accumulation in human skin exposed to ALA, ALA-methyl ester and ALA-hexyl ester. The effect in rat skin was less marked.</p
- âŠ