15 research outputs found
On mechanistic reasoning in unexpected places: the case of population genetics
A strong case has been made for the role and value of mechanistic reasoning in process-oriented sciences, such as molecular biology and neuroscience. This paper shifts focus to assess the role of mechanistic reasoning in an area where it is neither obvious or expected: population genetics. Population geneticists abstract away from the causal-mechanical details of individual organisms and, instead, use mathematics to describe population-level, statistical phenomena. This paper, first, develops a framework for the identification of mechanistic reasoning where it is not obvious: mathematical and mechanistic styles of scientific reasoning. Second, it applies this framework to demonstrate that both styles are integrated in modern investigations of evolutionary biology. Characteristic of the former, applied population genetic techniques provide statistical evidence for associations between genotype, phenotype, and fitness. Characteristic of the latter, experimental interventions provide causal-mechanical evidence for associations between the very same relationships, often in the same model organisms. The upshot is a richer perspective of how evolutionary biologists build evidence for hypotheses regarding adaptive evolution and general framework for assessing the scope of mechanistic reasoning across the sciences
Phenotypic diversity, population structure and stress protein-based capacitoring in populations of Xeropicta derbentina, a heat-tolerant land snail species
The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations