140 research outputs found

    Contaminant Exposure, Food Web Transfer and Potential Effects on Ospreys (Pandion haliaetus) in Chesapeake Bay

    Get PDF
    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000-2001 and focused on the U.S. Environmental Protection Agency designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). From 2011-2013, ROCs, Susquehanna River and flats, James and Back Rivers were evaluated to determine spatial and temporal trends in osprey productivity and contaminants in eggs. Concentrations of p,p’-DDE were below the threshold associated with eggshell thinning. Total PCB concentrations in eggs from the Anacostia/middle Potomac were lower in 2011 than 2000, but remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined across study sites and five alternative brominated flame retardants were detected at low levels in osprey eggs. Concentrations of oxidized DNA (biomarker of oxidative stress) were slightly elevated on the Anacostia/middle Potomac and Baltimore Harbor/Patapsco Rivers, but no univariate contaminant predictors correlated with DNA damage. Pharmaceuticals and personal care products were also examined. An integrative modeling approach was used to evaluate bioaccumulation potential of pharmaceuticals using hypothetical screening-level exposure scenarios. A first-order kinetic exposure model was applied to estimate the average daily and cumulative 45-day dose of pharmaceuticals received by a nestling osprey. To complement the exposure model, water, fish and osprey nestling plasma samples were analyzed for 23 pharmaceuticals and an artificial sweetener (sucralose). Of the 18 analytes detected in water, 8 were found in fish plasma, and 1 in osprey nestling plasma (antihypertensive diltiazem). Diltiazem was detected at concentrations approximately 21.6 times greater in fish plasma than water and 4 times greater in osprey nestling plasma than fish. Diltiazem was found in all 69 osprey plasma samples (540–8,630 ng/L), with 41% of these samples exceeding maximum concentrations found in fish. Diltiazem levels in fish and osprey were below the human therapeutic plasma concentration (30,000 ng/L). Effect thresholds for diltiazem are unknown in ospreys at this time, and there was no evidence to suggest adverse effects. Overall, findings document continued recovery of the osprey population, declining levels of select persistent halogenated compounds, and modest evidence of oxidative genetic damage in nestlings

    Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife

    Get PDF
    Despite a long history of successful use, routine application of some anticoagulant rodenticides (ARs) may be at a crossroad due to new regulatory guidelines intended to mitigate risk. An adverse outcome pathway for ARs was developed to identify information gaps and end points to assess the effectiveness of regulations. This framework describes chemical properties of ARs, established macromolecular interactions by inhibition of vitamin K epoxide reductase, cellular responses including altered clotting factor processing and coagulopathy, organ level effects such as hemorrhage, organism responses with linkages to reduced fitness and mortality, and potential consequences to predator populations. Risk assessments have led to restrictions affecting use of some second-generation ARs (SGARs) in North America. While the European regulatory community highlighted significant or unacceptable risk of ARs to nontarget wildlife, use of SGARs in most EU member states remains authorized due to public health concerns and the absence of safe alternatives. For purposes of conservation and restoration of island habitats, SGARs remain a mainstay for eradication of invasive species. There are significant data gaps related to exposure pathways, comparative species sensitivity, consequences of sublethal effects, potential hazards of greater AR residues in genetically resistant prey, effects of low-level exposure to multiple rodenticides, and quantitative data on the magnitude of nontarget wildlife mortality

    Is Sensitivity to Anticoagulant Rodenticides Affected by Repeated Exposure in Hawks?

    Get PDF
    A seminal question in wildlife toxicology is whether exposure to an environmental contaminant, in particular a secondgeneration anticoagulant rodenticide, can evoke subtle long lasting effects on body condition, physiological function and survival. Many reports indicate that non-target predators often carry residues of several rodenticides, which is indicative of multiple exposures. An often-cited study in laboratory rats demonstrated that exposure to the second-generation anticoagulant rodenticide brodifacoum prolongs blood clotting time for a few days, but weeks later when rats were re-exposed to the first-generation anticoagulant rodenticide warfarin, coagulopathy was more pronounced in brodifacoum-treated rats than naïve rats exposed to warfarin. To further investigate this phenomenon, American kestrels were fed environmentally realistic doses of chlorophacinone or brodifacoum for a week, and following a week-long recovery period, birds were then challenged with a low-level dietary dose of chlorophacinone. In the present study, neither hematocrit nor clotting time (prothrombin time, Russell’s viper venom time) were differentially affected in sequentially exposed kestrels compared to naïve birds fed low-level dietary dose of chlorophacinone. While the present findings do not reveal lasting effects of anticoagulant exposure on blood clotting ability, findings in laboratory rats and other species have demonstrated such effects on blood clotting, and even other molecular pathways associated with immune function and xenobiotic metabolism. Additional studies using an environmentally realistic route of exposure and dose are underway to further test this hypothesis

    Development of Dietary-Based Toxicity Reference Values to Assess the Risk of Chlorophacinone to Non-Target Raptorial Birds

    Get PDF
    Regulatory changes in the use of some second-generation anticoagulant rodenticides in parts of North America may result in expanded use of first-generation anticoagulant rodenticides (FGARs). Recent toxicological studies with captive raptors have demonstrated that these species are considerably more sensitive to the FGAR diphacinone than traditional avian wildlife test species (mallard, bobwhite). We have now examined the toxicity of the FGAR chlorophacinone (CPN) to American kestrels fed rat tissue mechanically amended with CPN, or rat tissue containing biologically-incorporated CPN, for 7 days. Nominal CPN concentrations in these diets were 0.15, 0.75, and 1.5 μg/g food wet weight, and actual CPN concentration in diets were analytically verified as being close to target values. Food intake was consistent among groups, body weight fluctuated by less than 6%, exposure and adverse effects were generally dose-dependent, and there were no dramatic differences in toxicity between mechanically-amended and biologically-incorporated CPN diets. Using benchmark dose statistical methods, toxicity reference values at which clotting times were prolonged in 50% of the kestrels was estimated to be about 80 μg CPN consumed/kg body weight-day for prothrombin time and 40 μg CPN/kg body weight-day for Russell’s viper venom time. Based upon carcass CPN residues reported in rodents from field baiting studies, empirical measures of food consumption in kestrels, and dietary-based toxicity reference values derived from the 7-day exposure scenario, some free-ranging raptors consuming CPN-exposed prey might exhibit coagulopathy and hemorrhage. These sublethal responses associated with exposure to environmentally realistic concentrations of CPN could compromise survival of exposed birds

    Comparative embryotoxicity of a pentabrominated diphenyl ether mixture to common terns (\u3ci\u3eSterna hirundo\u3c/i\u3e) and American kestrels (\u3ci\u3eFalco sparverius\u3c/i\u3e)

    Get PDF
    Concentrations of polybrominated diphenyl ethers (PBDEs) in Forster’s tern (Sterna forsteri) eggs from San Francisco Bay have been reported to range up to 63 µg g-1 lipid weight. This value exceeds the lowest-observed-adverse-effect level (1.8 µg g-1 egg wet weight; ~32 µg g-1 lipid weight) reported in an embryotoxicity study with American kestrels (Falco sparverius). As a surrogate for Forster’s terns, common tern (Sterna hirundo) eggs were treated by air cell injection with corn oil vehicle (control) or a commercial penta-BDE formulation (DE-71) at nominal concentrations of 0.2, 2, and 20 µg g-1 egg. As a positive control, kestrel eggs received vehicle or 20 µg DE-71 g-1 egg. In terns, there were no effects of DE-71 on embryonic survival, and pipping or hatching success; however, treated eggs hatched later (0.44 d) than controls. Organ weights, organ-to-body weight ratios, and bone lengths did not differ, and histopathological observations were unremarkable. Several measures of hepatic oxidative stress in hatchling terns were not affected by DE-71, although there was some evidence of oxidative DNA damage (8-hydroxy-deoxyguanosine; 8-OH-dG). Although DE-71 did not impair pipping and hatching of kestrels, it did result in a delay in hatch, shorter humerus length, and reduced total thyroid weight. Concentrations of oxidized glutathione, reduced glutathione, thiobarbituric acid reactive substances, and 8-OH-dG in liver were greater in DE-71-treated kestrels compared to controls. Our findings suggest common tern embryos, and perhaps other tern species, are less sensitive to PBDEs than kestrel embryos

    Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors

    Get PDF
    Despite widespread use and benefit, there are growing concerns regarding hazards of second-generation anticoagulant rodenticides to non-target wildlife which may result in expanded use of first-generation compounds, including chlorophacinone (CPN). The toxicity of CPN over a 7-day exposure period was investigated in American kestrels (Falco sparverius) fed either rat tissue mechanically- amended with CPN, tissue from rats fed Rozol bait (biologically-incorporated CPN), or control diets (tissue from untreated rats or commercial bird of prey diet) ad libitum. Nominal CPN concentrations in the formulated diets were 0.15, 0.75 and 1.5 µg/g food wet weight, and measured concentrations averaged 94 % of target values. Kestrel food consumption was similar among groups and body weight varied by less than 6 %. Overt signs of intoxication, liver CPN residues, and changes in prothrombin time (PT), Russell’s viper venom time (RVVT) and hematocrit, were generally dose-dependent. Histological evidence of hemorrhage was present at all CPN dose levels, and most frequently observed in pectoral muscle and heart. There were no apparent differences in toxicity between mechanically-amended and biologically-incorporated CPN diet formulations. Dietary-based toxicity reference values at which clotting times were prolonged in 50 % of the kestrels were 79.2 µg CPN consumed/kg body weight-day for PT and 39.1 µg/kg body weight-day for RVVT. Based upon daily food consumption of kestrels and previously reported CPN concentrations found in small mammals following field baiting trials, these toxicity reference values might be exceeded by free-ranging raptors consuming such exposed prey. Tissue-based toxicity reference values for coagulopathy in 50 % of exposed birds were 0.107 µg CPN/g liver wet weight for PT and 0.076 µg/g liver for RVVT, and are below the range of residue levels reported in raptor mortality incidents attributed to CPN exposure. Sublethal responses associated with exposure to environmentally realistic concentrations of CPN could compromise survival of free-ranging raptors, and should be considered in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs

    Chesapeake Bay Fish–Osprey (\u3ci\u3ePandion Haliaetus\u3c/i\u3e) Food Chain: Evaluation Of Contaminant Exposure And Genetic Damage

    Get PDF
    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor\u3e5) included p,p’-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p’-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population

    Interactive Effects of Climate Change with Nutrients, Mercury, and Freshwater Acidification on Key Taxa in the North Atlantic Landscape Conservation Cooperative Region

    Get PDF
    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public–private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC regionspecific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena—freshwater acidification and eutrophication. We also prepared taxa case studies on GCCand GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region\u27s estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors (temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC

    Interactive Effects of Climate Change with Nutrients, Mercury, and Freshwater Acidification on Key Taxa in the North Atlantic Landscape Conservation Cooperative Region

    Get PDF
    The North Atlantic Landscape Conservation Cooperative LCC (NA LCC) is a public-private partnership that provides information to support conservation decisions that may be affected by global climate change (GCC) and other threats. The NA LCC region extends from southeast Virginia to the Canadian Maritime Provinces. Within this region, the US National Climate Assessment documented increases in air temperature, total precipitation, frequency of heavy precipitation events, and rising sea level, and predicted more drastic changes. Here, we synthesize literature on the effects of GCC interacting with selected contaminant, nutrient, and environmental processes to adversely affect natural resources within this region. Using a case study approach, we focused on 3 stressors with sufficient NA LCC region-specific information for an informed discussion. We describe GCC interactions with a contaminant (Hg) and 2 complex environmental phenomena-freshwater acidification and eutrophication. We also prepared taxa case studies on GCC- and GCC-contaminant/nutrient/process effects on amphibians and freshwater mussels. Several avian species of high conservation concern have blood Hg concentrations that have been associated with reduced nesting success. Freshwater acidification has adversely affected terrestrial and aquatic ecosystems in the Adirondacks and other areas of the region that are slowly recovering due to decreased emissions of N and sulfur oxides. Eutrophication in many estuaries within the region is projected to increase from greater storm runoff and less denitrification in riparian wetlands. Estuarine hypoxia may be exacerbated by increased stratification. Elevated water temperature favors algal species that produce harmful algal blooms (HABs). In several of the region\u27s estuaries, HABs have been associated with bird die-offs. In the NA LCC region, amphibian populations appear to be declining. Some species may be adversely affected by GCC through higher temperatures and more frequent droughts. GCC may affect freshwater mussel populations via altered stream temperatures and increased sediment loading during heavy storms. Freshwater mussels are sensitive to un-ionized ammonia that more toxic at higher temperatures. We recommend studying the interactive effects of GCC on generation and bioavailability of methylmercury and how GCC-driven shifts in bird species distributions will affect avian exposure to methylmercury. Research is needed on how decreases in acid deposition concurrent with GCC will alter the structure and function of sensitive watersheds and surface waters. Studies are needed to determine how GCC will affect HABs and avian disease, and how more severe and extensive hypoxia will affect fish and shellfish populations. Regarding amphibians, we suggest research on 1) thermal tolerance and moisture requirements of species of concern, 2) effects of multiple stressors (temperature, desiccation, contaminants, nutrients), and 3) approaches to mitigate impacts of increased temperature and seasonal drought. We recommend studies to assess which mussel species and populations are vulnerable and which are resilient to rising stream temperatures, hydrological shifts, and ionic pollutants, all of which are influenced by GCC

    Making sense of illness: the experiences of users of complementary medicine

    Get PDF
    The present study investigated the experiences of users of complementary and alternative medicine (CAM) using a qualitative approach. In-depth interviews were conducted with 11 frequent users and analysed using interpretative phenomenological analysis (IPA). Results indicated that the patient-practitioner relationship and explanatory frameworks provided by CAM were perceived as important components of the therapeutic process, irrespective of treatment efficacy. CAM served a variety of functions beyond the explicit relief of symptoms by increasing energy and relaxation, facilitating coping and enhancing self/other awareness. It is therefore important that these wider effects are taken into account when evaluating complementary medicine in order to accurately reflect patients' experiences
    • …
    corecore