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Comparative embryotoxicity of a pentabrominated diphenyl ether
mixture to common terns (Sterna hirundo) and American kestrels
(Falco sparverius)

Barnett A. Rattner a,⇑, Rebecca S. Lazarus a, Gary H. Heinz a, Natalie K. Karouna-Renier a, Sandra L. Schultz a,
Robert C. Hale b

a Patuxent Wildlife Research Center, US Geological Survey, c/o BARC-East, Building 308, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
b Department of Environment and Aquatic Animal Health, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA

h i g h l i g h t s

� Forster’s tern eggs from San Francisco Bay contain high residues of PBDEs.
� Relative sensitivity of terns to PBDEs is of importance to natural resource managers.
� PBDE-treated common tern and American kestrel eggs hatched later than controls.
� Oxidative stress and DNA damage was more pronounced in hatchling kestrels than terns.
� Findings suggest that tern embryos are less sensitive to PBDEs than kestrel embryos.
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a b s t r a c t

Concentrations of polybrominated diphenyl ethers (PBDEs) in Forster’s tern (Sterna forsteri) eggs from San
Francisco Bay have been reported to range up to 63 lg g�1 lipid weight. This value exceeds the
lowest-observed-adverse-effect level (1.8 lg g�1 egg wet weight; �32 lg g�1 lipid weight) reported in
an embryotoxicity study with American kestrels (Falco sparverius). As a surrogate for Forster’s terns,
common tern (Sterna hirundo) eggs were treated by air cell injection with corn oil vehicle (control) or
a commercial penta-BDE formulation (DE-71) at nominal concentrations of 0.2, 2, and 20 lg g�1 egg.
As a positive control, kestrel eggs received vehicle or 20 lg DE-71 g�1 egg. In terns, there were no effects
of DE-71 on embryonic survival, and pipping or hatching success; however, treated eggs hatched later
(0.44 d) than controls. Organ weights, organ-to-body weight ratios, and bone lengths did not differ,
and histopathological observations were unremarkable. Several measures of hepatic oxidative stress in
hatchling terns were not affected by DE-71, although there was some evidence of oxidative DNA damage
(8-hydroxy-deoxyguanosine; 8-OH-dG). Although DE-71 did not impair pipping and hatching of kestrels,
it did result in a delay in hatch, shorter humerus length, and reduced total thyroid weight. Concentrations
of oxidized glutathione, reduced glutathione, thiobarbituric acid reactive substances, and 8-OH-dG in
liver were greater in DE-71-treated kestrels compared to controls. Our findings suggest common tern
embryos, and perhaps other tern species, are less sensitive to PBDEs than kestrel embryos.

Published by Elsevier Ltd.

1. Introduction

San Francisco Bay provides critical habitat for millions of birds,
contains three Important Bird Areas, and has been designated as a
Wetland of Hemispheric Importance (Chipley et al., 2003). Pesti-
cides, industrial chemicals, metals and other anthropogenic com-
pounds enter the Bay through runoff, sewage outfalls,
atmospheric deposition, and constitute a potential threat to fish

and wildlife resources. Since the 1970s, polybrominated diphenyl
ethers (PBDEs) have been used as additive flame retardants in
polymers, textiles, and electronics. Due to their persistence, bioac-
cumulation and potential toxicity, the United States Environmental
Protection Agency (US EPA) and manufacturers reached agreement
to phase out the use of certain penta- and octa-BDE formulations
by 2004, and more recently agreed to phase out the use of the
deca-BDE formulation by the end of 2013 (US EPA, 2012). Many
BDE congeners have been demonstrated to biomagnify in aquatic
and terrestrial food webs, with concentrations in eggs of high tro-
phic level birds in North America ranging up to 6.61 lg g�1 wet
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weight (ww) (Chen et al., 2008; Henny et al., 2009; Chen and Hale,
2010; D. Chen, Southern Illinois University, personal communica-
tion). However, in San Francisco Bay, total PBDE concentrations
range up to 63 lg g�1 lipid weight (lw) (�10 lg g�1 ww) in eggs
of Forster’s terns (Sterna forsteri), a lower trophic level species
(She et al., 2008). These findings are of concern to natural resource
managers since the closely related endangered California least tern
(Sterna antillarum browni) breeds in this region. There is some evi-
dence that PBDEs may adversely affect reproduction in wild birds.
Henny et al. (2009) suggested that osprey (Pandion haliaetus) pro-
ductivity decreases at PBDE concentrations exceeding 1 lg g�1 ww
in eggs, although this finding was not supported in a subsequent
study (Henny et al., 2011). In peregrine falcons (Falco peregrinus),
brood size was found to be inversely related to total PBDE residues
in eggs (0.68–39 ng g�1 lw) (Johansson et al., 2009).

Studies of birds have examined sublethal biochemical, immu-
nological, developmental and reproductive effects of environmen-
tally relevant concentrations of PBDEs (Chen and Hale, 2010).
Using American kestrels (Falco sparverius), Fernie et al. (2006) in-
jected 1.43 lg of a PBDE mixture g�1 egg on d 19 of incubation, fol-
lowed by daily oral gavage of nestlings with 15.6 ng g�1 body
weight for 29 d post-hatch. Using this combined egg injection/ga-
vage exposure regime, there was some evidence that PBDEs in-
creased growth (i.e., body weight, tarsometatarsus and feather
length), caused structural changes in immune organs and altera-
tions in immune function, and evoked hepatic oxidative stress
(Fernie et al., 2005a,b, 2006). Concentrations of plasma thyroxine
and retinol, and hepatic retinol were found to be inversely related
to carcass concentrations of BDE-47 and -99 (Fernie et al., 2005b).
Changes in reproductive behavior, delays in egg laying, smaller
eggs and reduced fertility were observed in kestrels receiving daily
dietary doses of 0.3 or 1.66 ppm of DE-71 (Fernie et al., 2008). Per-
haps more germane to the interpretation of avian egg PBDE con-
centrations, chicken (Gallus gallus), mallard (Anas platyrhynchos)
and kestrel eggs were treated with the penta-BDE formulation
DE-71 at doses ranging from 0.01 to 20 lg g�1 egg (McKernan
et al., 2009, 2010). Measurement of the quantity of the air cell in-
jected DE-71 that actually entered the egg contents indicated that
the lowest-observed-adverse-effect level on pipping and hatching
success in kestrels was 1.8 lg g�1 egg ww (�32 lg g�1 lw). This
threshold has been exceeded in some egg samples from free rang-
ing birds (Chen et al., 2008; She et al., 2008; Henny et al., 2009;
Johansson et al., 2009).

Toxicological information about the effects of PBDEs on com-
mon terns, a surrogate for Forster’s and California least terns nest-
ing in San Francisco Bay, would be of assistance to natural resource
managers assessing the risk these flame retardants pose to birds.
The present study evaluated embryonic survival, pipping and
hatching success of common terns following air cell administration
of DE-71, examined embryos and tern hatchlings for evidence of
sublethal effects (deformities, growth, histopathologic lesions,
and oxidative stress), and compared their relative sensitivity to
kestrels and other similarly tested species.

2. Materials and methods

2.1. Egg collection

All procedures involving eggs were approved by the Institu-
tional Animal Care and Use Committee of the Patuxent Wildlife Re-
search Center (PWRC). On May 25, 2010, a visit was made to the
common tern colony on Poplar Island (38.7519�N, �76.3792�W)
in Chesapeake Bay, MD, USA. Nests containing only one egg were
marked to enable identification of new eggs during a second visit.
In accord with our state and federal migratory bird permits, on

May 27, a total of 60 freshly laid common tern eggs were collected
from either single-egg unmarked nests or previously marked nests
that contained a recently laid second egg. The eggs were trans-
ported in cartons back to PWRC, and then weighed, numbered,
and left tilted on their side overnight at room temperature
(approximately 21 �C).

American kestrel eggs were collected between April 8–14, 2010
from a captive colony at PWRC. The eggs were stored in a cooler
(Kuhl Corporation, Flemington, NJ, USA) at approximately 11–
13 �C and 70–76% relative humidity (RH), and were rotated 60�
every hour. On April 15, the eggs were removed from the cooler
to equilibrate to room temperature.

2.2. Incubation of eggs

Eggs were washed in a 40 �C solution of 1% antimicrobial solu-
tion (10% povidone-iodine, Aplicare�, Meriden, CT, USA), rinsed in
40 �C tap water, air dried, and then placed on their sides in a Kuhl�

incubator maintained at 37.5 �C (kestrel eggs: April 15; tern eggs:
May 28). The incubator rotated eggs 180� each hour. When the
eggs of most species of birds are incubated by the parents they lose
about 15% of their weight by pipping (Rahn and Ar, 1974). Based on
our own experiences with artificial incubation of bird eggs, we ad-
justed this value to 16% (Klimstra et al., 2009). To achieve this de-
sired weight loss, each egg was weighed at 2–4 d intervals, and its
weight was plotted. Eggs were shifted among three incubators,
each with a different RH setting (low 13–33%; medium 58–73%;
high 70–76%) to keep each egg on a trajectory of a 16% loss by pip-
ping. Percent moisture loss was estimated as the [(fresh weight–
weight at pipping)/fresh weight] � 100.

When eggs were weighed, survival was determined by candling
and a viability detection instrument (Buddy�; Vetronic, Torquay,
UK). Tern eggs (June 16) and kestrel eggs (May 9) were transferred
to a Kuhl� hatching unit set at 37.2 �C and approximately 70% RH.
Once the first egg hatched (terns: June 18; kestrel: May 12), eggs
were monitored frequently from 0700 h to 2345 h. During daylight
hours, hatching time was determined by direct observation, and for
birds that hatched between 2345 h and 0700 h, approximate hatch
time was estimated based on the appearance of the chick (i.e., wet-
ness of down feathers).

2.3. Dosing solutions

Neat DE-71 (Great Lakes Chemical Corporation, Kalamazoo, MI,
USA) was used in this study. Due to the viscous nature of the mate-
rial, DE-71 was warmed for 5 min, and approximately 200 mg was
transferred to a 5-ml volumetric flask to which 50 ll acetone was
added and then diluted with corn oil (Sigma–Aldrich, St. Louis, MO,
USA). The DE-71 solution was mixed for 1 h at 55 �C, and then fur-
ther diluted in volumetric flasks containing vehicle (corn oil plus
acetone at 1% by total volume) to make nominal concentrations
of 0.2, 2 and 20 lg DE-71 per 0.5 ll solution (0.5 ll was the volume
administered per gram egg). Analytical recoveries were 90%, 116%
and 128%, respectively and thus the actual DE-71 doses were 0.18,
2.32, and 25.7 lg per 0.5 ll solution.

2.4. Administration of DE-71

Tern and kestrel eggs were injected after about 101 and 121 h of
incubation, respectively, which corresponds to about d 4 of chicken
development. The blunt (cap) end of each egg was cleaned with an
alcohol swab, and a 0.32-cm hole was drilled through the cap. Oil
solutions were heated to 40 �C, and each egg was air cell injected
with vehicle or DE-71 solution at a volume of 0.5 ll g�1 egg. Ran-
domly selected tern eggs were injected with vehicle (controls,
n = 19), 0.2 lg (n = 12), 2 lg (n = 12), or 20 lg (n = 17) of DE-
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71 g�1 egg. Randomly selected kestrel eggs were injected with
vehicle (n = 36) or 20 lg DE-71 g�1 (n = 34). The hole in the shell
was sealed with a vinyl acetate adhesive and the eggs were held
vertical at room temperature for 30 min to allow the corn oil to
spread over the inner shell membrane and then returned to the
incubator.

2.5. Embryo survival, hatching and tissue collection

Survival through 90% of the incubation period, incidence of pip-
ping, and hatching success were determined. Embryos that died or
failed to pip were evaluated for stage of development and abnor-
malities, edema and teratogenicity. Each hatchling was weighed,
crown-rump length determined, and then sacrificed by decapita-
tion. The yolk sac, liver (minus the gall bladder), spleen, bursa of
Fabricius, and thyroids were removed and weighed. A portion of
the liver, and the bursa, spleen and thyroids were fixed in phos-
phate-buffered formalin for histopathology. The remainder of the
liver was split between cryovials, rapidly frozen in liquid nitrogen
and stored at �80 �C for biochemical assays.

Vehicle-injected controls that were infertile or died early in
incubation were prepared for chemical analysis to determine back-
ground contamination. Moisture loss was determined (Heinz et al.,
2009a), and egg contents were removed, transferred to a chemi-
cally-clean jar, and frozen at �80 �C for chemical analyses.

2.6. Skeletal preparations and histopathology

The carcass of each hatchling was stored in 70% ethanol, and
subsequently cleared and stained by the method of Karnofsky
(1965). Crown-rump, tibiotarsus, metatarsus, femur, humerus
and ulna lengths were measured to the nearest mm, and visually
inspected for deformities. Formalin-fixed liver, kidney, spleen, bur-
sa of Fabricius and thyroids were embedded in paraffin, sectioned,
mounted on slides, and stained with hematoxylin and eosin (Amer-
ican HistoLabs, Gaithersburg, MD, USA). A subset of 27 common
tern samples (control, n = 5; 0.2 lg g�1 egg, n = 5; 2 lg g�1 egg,
n = 5; 20 lg g�1 egg, n = 12) was examined for unusual findings,
abnormalities, and severity grading of findings (not remarkable,
minimal, mild, moderate, and moderately severe) by a Board Certi-
fied Veterinary Pathologist (Experimental Pathology Laboratories,
Inc., Sterling, VA, USA).

2.7. Hepatic oxidative stress and oxidative DNA in hatchlings

Liver tissue was analyzed for four measures of oxidative stress:
total sulfhydryls (TSH), total glutathione (TotGSH), reduced gluta-
thione (GSH), and thiobarbituric acid reactive substances (TBARS).
Protein-bound sulfhydryls (PBSH; TSH minus GSH), oxidized gluta-
thione (GSSG; [TotGSH-GSH]/2), and the ratio of GSSG to GSH
(GSSG:GSH) were calculated using the measured endpoints. Liver
tissue from tern and kestrel hatchlings was also analyzed for
8-hydroxy-deoxy-guanosine (8-OH-dG), a genotoxic measure of
oxidative stress. The details of these assays are described in the
Supplementary material (SM-1).

2.8. Chemical analysis of dosing solutions and eggs

Concentrations of DE-71 in dosing solutions, and organochlo-
rine pesticides, total PCBs, and PBDEs in infertile eggs or those that
died early in incubation were quantified as previously described
(Chen et al., 2008; McKernan et al., 2010), with some modifications
(Supplementary material, SM-2).

2.9. Statistical analysis

Data were analyzed using SAS� (SAS Institute, Cary, NC, USA).
For terns, survival to 90% of incubation, pipping and hatching suc-
cess, and incidence of histopathological anomalies were analyzed
using contingency analysis with the Bonferroni Correction to ac-
count for multiple treatment group comparisons. For continuously
distributed variables, residuals were tested for normality (Shapiro–
Wilk test statistic, normal probability plots) and homogeneity of
variances. Log transformations were used when data violated one
of the assumptions. For terns, duration to hatch, organ weights,
bone lengths and biochemical endpoints in hatchlings were ana-
lyzed using one-way analysis of variance followed by Tukey’s
HSD method of multiple comparison (a 6 0.05 for statistical signif-
icance, and 0.051 < a 6 0.080 for marginal significance). Since
there were only two groups in the kestrel study, endpoints were
compared using Student’s t-test. A single suspect outlier in the kes-
trel study was identified and subsequently excluded using both
Grubb’s test and Cooks D statistic.

3. Results

3.1. Background contamination of eggs

Low levels of contaminants were detected in control tern and
kestrel eggs that were infertile or died early in incubation. Tern
eggs (n = 5; 1 egg excluded due to poor recovery of analytes) con-
tained <0.08 lg g�1 ww of p,p0-DDE, DDMU (1-chloro-2,2-bis(p-
chlorophenyl)ethylene), cis-nonachlor, trans-nonachlor, MC5
(octachloro isomer in technical chlordane; Karlsson et al., 2009),
mirex, and hexachlorobenzene, <0.45 lg g�1 of total PCBs,
<0.052 lg g�1 of total PBDEs. Kestrels eggs (n = 3) contained
<0.002 lg g�1 of p,p0-DDE and hexachlorobenzene, <0.07 lg g�1 of
total PCBs, and levels of total PBDEs (<0.004 lg g�1) were less than
10% of that detected in terns. Seventeen other organochlorine pes-
ticides and analytes were not detected in tern or kestrel eggs (Sup-
plementary material, SM-3).

3.2. Survival to 90% incubation, pipping and hatching success

For vehicle-injected tern eggs (control group), survival to 90% of
incubation, and pipping and hatching success, were 87.5%, 81.2%
and 81.2%, respectively (Table 1). Moisture loss (n = 40 hatched
eggs) averaged 14.5% by the pipping stage. There were no differ-
ences in survival, pipping and hatching success among the DE-71
doses and controls (p > 0.14). Likewise, for kestrel eggs there were
no differences in survival to 90% of incubation, and pipping and
hatching success between controls and DE-71-treated eggs
(p > 0.15). Moisture loss (n = 50 hatched eggs) averaged 13% at
pipping.

Mortality occurred early in incubation in terns, but near the end
of incubation in kestrels. For tern eggs, most of the losses occurred
between days 5 and 12 of incubation in the 2 and 20 lg DE-71 g�1

egg doses (4 eggs lost at each dose), but there were few losses in
other groups thereafter (Table 1). In terns, there was no difference
in survival from pipping to hatching for controls (13 pipped, 13
hatched) and for all DE-71 treated eggs (27 pipped, 28 hatched)
(p = 1.00). In contrast, there was a pronounced decrease in
survival from pip to hatch in DE-71-treated kestrels. Of the 29
DE-71-treated kestrel eggs that pipped, 7 failed to hatch, while of
the 30 control eggs that pipped, only 2 failed to hatch (p = 0.08).
Comparison of losses from pip to hatch stage was marginally
different between the two species (p = 0.052).

There was no dose–response relation between quantity of
DE-71 administered and mean time to hatch in terns (Fig. 1a).
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However, when all DE-71 treatment groups were combined into a
single group, the DE-71-treated tern eggs hatched 0.44 d later than
controls (21.59 ± 0.12 vs. 22.03 ± 0.10 d, p = 0.014) (Fig. 2a). A dif-
ferent pattern was observed in American kestrels (Fig. 1b). The first
8 eggs to hatch were all controls (Fisher’s Exact Test, p = 0.006).
However, by the end of the study, there was no difference in mean
time to hatch between controls and DE-71-treated kestrel eggs
(27.71 ± 0.12 vs. 27.89 ± 0.12 d, p = 0.29) (Fig. 2b).

3.3. Organ weights and bone lengths

No gross deformities were observed in tern or kestrel hatch-
lings. However, three DE-71- treated kestrels that failed to hatch

exhibited edema in the head and neck region. For terns, crown-
rump lengths and the weight of the entire embryo, yolk sac, liver,
bursa, thyroids, and the organ-to-body weight ratios for liver, bur-
sa and thyroids did not differ among groups. However, both spleen
weight and spleen-to-body weight ratio were only greater in the
2 lg g�1 DE-71 dose compared to controls (p = 0.05 and 0.03,
respectively). In kestrel hatchlings, crown-rump length, body, yolk
sac, liver, spleen, and bursa weights and organ-to-body weight ra-
tios did not differ between groups. Total thyroid weight was less in
DE-71-treated kestrels compared to controls (p = 0.036). However,
the thyroid to body weight ratio was only marginally lower in trea-
ted birds (p < 0.075). Liver-to-body weight ratio and weight of the
left thyroid were marginally smaller in DE-71-treated hatchlings
compared to controls (p < 0.075).

In hatchling terns, the length of the tibiotarsus, metatarsus, fe-
mur, humerus and ulna did not differ among groups (p > 0.17).
Likewise, for kestrel hatchlings, tibiotarsus, metatarsus, femur

Table 1
Survival of embryos to 90% incubation, pipping and to hatching.

Species Endpoint Controls Dose (lg DE-71 g�1 egg)

Successful/n % 0.2 2 20

Successful/n % Successful/n % Successful/n %

Common tern Survival to 90% 14/16 87.5 10/11 90.9 7/11 63.6 12/16 75
Pipped 13/16 81.2 9/11 81.8 7/11 63.6 12/16 75
Hatched 13/16 81.2 8/11 72.7 7/11 63.6 12/16 75

American kestrel Survival to 90% 31/32 96.9 29/30 96.7
Pipped 30/32 93.8 29/30 96.7
Hatched 28/32 87.5 22/30 73.3
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Fig. 1. Cumulative percent hatch for (a) common terns and (b) American kestrels.
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Fig. 2. Average days (±standard error) to hatch for (a) common terns and (b)
American kestrels, � = p < 0.05.
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and ulna length did not differ between groups (p > 0.49), but hu-
merus length was shorter in DE-71-treated kestrels (p = 0.002).

3.4. Histopathology

In a detailed evaluation of a subset of the tern samples, liver and
thyroids were unremarkable and generally uniform among control
and DE-71-treated hatchlings, with the exception of minimal thy-
roid follicular hyperplasia in one hatchling in the 2 lg g�1 group. A
seemingly increased prevalence of splenic hematopoiesis was
apparent in DE-71 hatchlings (6 of 12 samples at 20 lg g�1 egg)
compared to controls (1 of 5 samples), but this was not significant
(p > 0.252). Other changes were modest and not unusual for hatch-
ling birds (occasional presence of heterophilic granulocytes in kid-
ney, lymphocyte proliferation in spleen and bursa).

3.5. Oxidative stress and DNA damage measures

There were no differences in hepatic oxidative stress endpoints
for tern hatchlings (p > 0.65) (Table 2). However, for kestrel hatch-
lings, means of all oxidative stress endpoints were numerically
greater in the DE-71 group compared to controls. Differences were
significant (p = 0.045) for the concentration of GSSG, and margin-
ally significant for GSH (p = 0.064) and TBARS (p = 0.065).

In terns, the analysis of variance for 8-OH-dG was significant
(p = 0.034), but pair-wise differences were marginally apparent,
with the top doses exceeding controls (2 lg DE-71 g�1 egg,
p = 0.068; 20 lg DE-71 g�1 egg, p = 0.077) (Table 2). The concentra-
tion of 8-OH-dG was greater in kestrels receiving 20 lg DE-71 g�1

compared to controls (p < 0.001).

4. Discussion

4.1. Background contamination and use of common tern and American
kestrel eggs

Concentrations of polyhalogenated contaminants in common
tern eggs from Poplar Island and American kestrel eggs from our
captive colony, were well-below known reproductive effect

thresholds in birds (Beyer and Meador, 2011). Notably, values of
p,p0-DDE and total PCBs in tern eggs collected in the present study
(i.e., <0.08 and <0.45 lg g�1 ww, respectively) were lower than lev-
els found in Chesapeake Bay tern eggs collected in 1994 (South
Sand Point off Barren Island) and 1997 (Bodkin Island) (i.e.,
60.21 and 62.47 lg g�1 ww, respectively; J.B. French, USGS PWRC,
unpublished data; French et al., 2001). This apparent difference
presumably reflects greater exposure during the 1990s.

Total PBDE concentrations in Forster’s tern eggs collected from
San Francisco Bay between 2000 and 2003 ranged up to 63 lg g�1 lw
(She et al., 2008). By adjusting for lipid and moisture loss during
incubation, and converting lw back to the ww of a fresh egg, it is
estimated that annual average PBDE values in Forster’s tern eggs
ranged from 0.39 to 1.56 lg g�1 ww. In contrast, background con-
centrations of total PBDEs in eggs from the closely related common
tern used in the present study were nearly two orders of magni-
tude lower. In combination, these data suggest that the tern eggs
from Poplar Island were suitable for evaluating the embryotoxicity
of DE-71, and concentration of other compounds quantified were
unlikely to be a confounding factor. As previously reported, kestrel
eggs from our captive colony contain low concentrations of these
same analytes, and based on their reported sensitivity to DE-71
(McKernan et al., 2009), could serve as a positive control.

4.2. Survival and morphological responses following DE-71
administration

Common tern and American kestrel eggs injected with ultra-
low volumes of corn oil vehicle exhibited good survival through
incubation, and pipping and hatching rates were comparable to
other artificial incubation studies conducted at our laboratory
(Hoffman et al., 1998; McKernan et al., 2009; Heinz et al.,
2009b). In previous studies, administration of up to 20 lg
DE-71 g�1 egg did not affect survival through hatching in chickens,
mallards, and black-crowned night-herons (Nycticorax nycticorax),
but pipping and hatching success were reduced in kestrels at doses
of 10 and 20 lg g�1 egg (McKernan et al., 2009, 2010). In contrast,
administration of 20 lg g�1 egg did not affect kestrel pipping or
hatching success in the present study. Nonetheless, DE-71 did

Table 2
Hepatic oxidative stress and DNA damage endpoints for terns and kestrelsa.

Species Endpoints Controls Dose (lg DE-71 g�1 egg)

0.2 2 20
(n = 13) (n = 8) (n = 7) (n = 12)

Common tern Total sulfhydryls (lmol g�1) 42.6 ± 2.54 41.7 ± 3.11 46.1 ± 3.23 43.9 ± 1.58
Protein-bound sulfhydryls (lmol g�1) 34.6 ± 2.25 33.9 ± 2.76 38.0 ± 4.10 35.9 ± 1.41
Total glutathione (lmol g�1) 10.0 ± 0.47 9.74 ± 0.57 10.2 ± 0.58 9.97 ± 0.28
Reduced glutathione (lmol g�1) 8.06 ± 0.35 7.78 ± 0.37 8.16 ± 0.41 7.95 ± 0.20
Oxidized glutathione (lmol g�1) 0.99 ± 0.12 0.98 ± 0.14 1.04 ± 0.13 1.01 ± 0.07
Oxidized glutathione:reduced glutathione 0.12 ± 0.01 0.13 ± 0.02 0.13 ± 0.01 0.13 ± 0.01
Thiobarbituric acid reactive substances (nmol g�1) 4.94 ± 0.73 4.33 ± 0.59 4.10 ± 0.37 4.30 ± 0.29
8-Hydroxy-deoxyguanosine (pg g�1) 556 ± 123B 582 ± 60.1A,B 705 ± 188A 668 ± 89.6A,b

American kestrel (n = 28) (n = 22)
Total sulfhydryls (lmol g�1) 25.8 ± 1.05 30.0 ± 1.82
Protein-bound sulfhydryls (lmol g�1) 20.6 ± 0.94 24.3 ± 1.60
Total glutathione (lmol g�1) 6.99 ± 0.23 7.92 ± 0.39
Reduced glutathione (lmol g�1) 5.15 ± 0.13 5.65 ± 0.24�

Oxidized glutathione (lmol g�1) 0.92 ± 0.06 1.13 ± 0.08*

Oxidized glutathione:reduced glutathione 0.18 ± 0.01 0.20 ± 0.01
Thiobarbituric acid reactive substances (nmol g�1) 2.48 ± 0.13 2.89 ± 0.20�

8-Hydroxy-deoxyguanosine (pg g�1) 427 ± 88.8 570 ± 143*

a Values are mean ± standard deviation. Means with different captial letter superscripts differ, 0.05 < p < 0.078.
b n = 11, due to lost sample.

* p < 0.05.
� p < 0.07.
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delay hatching of kestrels, possibly reflecting retarded develop-
ment or a weakened condition of some embryos that could place
this altricial species at a survival disadvantage. Although differing
from the dose-dependent decrease in pipping and hatching re-
ported by McKernan et al. (2009), these more subtle effects do
not invalidate earlier findings. Notably, dietary exposure to DE-
71 has also been reported to delay the onset of egg laying in kes-
trels, and reduce egg size and mass (Fernie et al., 2009). At nominal
doses up to 20 lg g�1 egg, survival and hatching success of com-
mon terns was not affected, suggesting that they are relatively tol-
erant of DE-71. Based on DE-71 solubility in the injection vehicle, it
is not possible to administer greater doses to discriminate poten-
tial differences in sensitivity among seemingly tolerant avian spe-
cies (i.e., chicken, mallard, black-crowned night-heron, common
tern) in our test system. In the present study, we did not rigorously
determine the uptake of DE-71 into the contents of common tern
eggs. However, our previous uptake studies demonstrated that
only 18.8–29.6% of the administered dose is absorbed through
the air cell membrane over the course of incubation (McKernan
et al., 2010). Thus, at the greatest dose (analytically determined
to be 25.7 lg DE-71 g�1 egg), about 4.8–7.6 lg DE-71 g�1 egg on
a ww basis may have actually entered egg contents. This exceeds
the average values of PBDEs found in Caspian tern (Sterna caspia),
Forster’s tern, least tern, and California clapper rail (Rallus longiros-
tris obsoletus) eggs from San Francisco Bay by a factor of 4.4 to 6.9
(She et al., 2008).

Mortality of developing tern embryos principally occurred dur-
ing the first half of incubation rather than at pipping and hatching,
which differs from the time-course DE-71-induced mortality in
kestrel eggs in the present and related studies (McKernan et al.,
2009). It is possible that this difference in the timing of mortality
could reflect more rapid transfer of DE-71 across the air cell mem-
brane or greater sensitivity of early stage tern embryos compared
to kestrels; for some toxicants, early developmental stages (pri-
mary organogenesis) in bird eggs are the most sensitive period
for embryotoxicity (Hill and Hoffman, 1984; DeWitt et al., 2005).

The delayed hatching of DE-71-treated tern eggs may have
implications for post-hatching survival of precocial wild birds. A
delay in hatch could result in weakened or exhausted tern chicks
that might lead to a fitness and survival disadvantage (e.g., less
able to seek vegetative cover, more vulnerable to predation or
other environmental factors). Unlike altricial kestrels, terns nest
in open areas and their nests consist of a small scrape. Semi-
precocial tern chicks must be able to consume small food items
within 1–3 h of hatching and seek shelter in nearby vegetation
by 2–3 d post-hatch in order to avoid predation and overheating.

As previously noted (McKernan et al., 2009), DE-71 does not
seem to evoke teratogenic effects in bird embryos, although some
edema was observed in kestrels that failed to hatch. In general,
organ weights and bone lengths were not affected by DE-71,
although there was evidence of splenic enlargement and en-
hanced hematopoiesis in some of the treated terns. However,
these subtle effects were neither dose-dependent nor statistically
significant, and probably transient and of limited biological con-
sequence. Kestrels treated with DE-71 had shorter humerus
length and total thyroid weight was reduced, which may have
contributed to the initial delay of hatch in kestrels, and could af-
fect post-hatching survival. As previously discussed (Fernie et al.,
2005b; McKernan et al., 2009), PBDE exposure decreases thyrox-
ine (T4) concentration in rodents and nestling kestrels, possibly
by altering plasma transport of T4 through competitive binding
mechanisms and hepatic T4 glucouronidation. However, thyroid
histology, often considered the ‘‘gold standard’’ of thyrotoxic ef-
fects, was unremarkable in both kestrels and terns in the present
study, a finding similar to that in other avian studies (Fernie et al.,
2005b; McKernan et al., 2009).

4.3. Oxidative stress and DNA damage

Oxidative stress is one mechanism by which brominated flame
retardants evoke toxicity. In contrast to DE-71-treated terns, kes-
trel hatchlings exhibited significant increases in GSSG, GSH, and
TBARS concentrations. Increased GSSG has been previously ob-
served in kestrels (Fernie et al., 2005b) and earthworms (Eisenia
fetida; Xie et al., 2011) exposed to PBDEs, yet in the present study
a marginal increase in GSH concentration was apparent, thus leav-
ing the GSSG:GSH ratio unchanged. The increase in GSH levels is
potentially a result of de novo synthesis of GSH as a defense mech-
anism against reactive oxyradicals associated with DE-71 expo-
sure. Our findings also suggest that compensatory mechanisms
are activated, which would stabilize the GSSG:GSH ratio, as de-
scribed in other studies (Xie et al., 2011).

Common terns exhibited greater baseline levels of GSH than
kestrels. Interestingly, a study in mice (Mus musculus) found that
that DE-71 toxicity is mediated by oxidative stress and that toxic-
ity is modulated by increased cellular GSH levels (Giordano et al.,
2008). Knockout mice (those with a reduced ability to synthesize
GSH) exposed to DE-71 had significantly lower concentrations of
GSH than their wild-type counterparts, and were more susceptible
to oxidative attack resulting in cytotoxicity and apoptosis (Giord-
ano et al., 2008). These findings may imply that the greater GSH
concentrations in terns may afford protection at the tested doses,
preventing any increase in oxidative stress above baseline values.

Hepatic thiols also protect against the effects of oxidative stress,
but are depleted under severe stress due to oxidation and binding
with oxyradicals (Hoffman et al., 2005). For common terns no
changes were observed in concentrations of TSH and PBSH.
Although not significant, both TSH and PBSH concentrations were
consistently greater in the DE-71-treated kestrels than controls.
In a previous study, Fernie et al. (2005b) reported a significant po-
sitive association of TSH and PBSH with BDE-183 and PBSH with
BDE-99 in post-fledging American kestrels. Thus, the seemingly
greater thiol concentrations are consistent with the TBARS and glu-
tathione data indicating that the exposure conditions induced mild
oxidative stress in kestrels.

Oxyradicals that produce damage can also bind to DNA. In the
present study, concentrations of 8-OH-dG, a marker of oxidative
injury and damage to DNA bases, were clearly elevated in kestrels
and to a lesser degree in terns. This manifestation of oxidative
stress, if exacerbated beyond the capacity of DNA repair mecha-
nisms and excretion rates, could lead to strand breaks and changes
in gene expression (Fraga et al., 1990). These findings are consis-
tent with studies that have demonstrated that brominated flame
retardants, and in particular BDE-47, can cause oxidative stress
and DNA damage (Fernie et al., 2005b; Albina et al., 2010; Pellacani
et al., 2012). Fraga et al. (1990) also note that at the time of
embryogenesis, when cell proliferation rates are high, much of
the genome may become exposed to increased oxidative damage.
Thus, developing embryos exposed to a maternally deposited con-
taminant that has an oxidative mechanism of action may have a
higher risk of disease progression, changes in gene expression, or
even epigenetic effects may be manifest in subsequent
generations.

5. Conclusions

Although the toxic effects of DE-71 on developing kestrels were
not as remarkable as in our previous work (McKernan et al., 2009),
a qualitative evaluation of a combination of endpoints (weight of
evidence approach) suggests that common tern embryos, and per-
haps other tern species are less sensitive to PBDEs than are kes-
trels. Limited sample size is often a challenging issue in
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comparative toxicity studies with wild bird eggs. Nonetheless, this
pattern of embryotoxicity, with kestrels being more sensitive than
common terns, has been observed in egg injection studies involv-
ing methylmercury (Heinz et al., 2009b) and PCB congener 126
(Hoffman et al., 1998). An evaluation of the sensitivity of 25 terres-
trial vertebrate species to various classes of contaminants (persis-
tent organic pollutants, mercury, lead shot, petroleum crude oil,
and organophosphorus insecticides) using a combination of labora-
tory and field data indicates that common terns are moderately
sensitive compared to other avian species (Golden and Rattner,
2003). While it is certainly possible that PBDEs and other contam-
inants in San Francisco Bay may be adversely affecting tern repro-
duction, California gull (Larus californicus) depredation may be a
more significant factor that is limiting nest success, particularly
for the endangered California least tern (Riensche, 2007).
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SM-1. Hepatic oxidative stress and oxidative DNA damage in hatchlings (details of assay 

methods) 

Liver samples were thawed on ice and homogenized in phosphate-buffered saline (0.274 

M NaCl, 0.0054 M KCl, 0.0238 M sodium phosphate, pH 7.4; Fisher BioReagents, Waltham, 

MA, USA) at 200 µg μl-1. The homogenate was centrifuged at 10,000g for 10 min at 4°C and 

aliquots of the supernatant were frozen at -80°C.  For GSH, GSSG, and TotGSH analysis, liver 

supernatant was thawed and diluted to 12.5 µg µl-1 in assay buffer (0.137 M NaCl, 0.0027 M 

KCl, 0.0119 M sodium phosphate, pH 7.4) and analyzed using the DetectX® Glutathione 

mailto:brattner@usgs.gov


Fluorescent Detection Kit (Arbor Assays, Ann Arbor, MI, USA) following the manufacturer’s 

protocol.  Concentrations of TBARS (indicative of lipid peroxidation) were determined using the 

QuantiChrom™ TBARS Assay Kit (Bioassay Systems, Hayward, CA, USA); sample 

supernatant was thawed and diluted to 100 µg µl-1 in assay buffer.  To 300 µl of diluted sample, 

50 µl of 48% TCA were added and then the manufacturer’s protocol was followed.  Total 

sulfhydryls were determined in supernatant diluted to 5 or 6.3 µg µl-1 assay buffer using the 

Measure-iT ™ Thiol Assay Kit (Invitrogen-Molecular Probes, Inc., Eugene, OR, USA).  All 

assays were analyzed using a Fluostar Omega microplate reader (BMG Labtech Inc., Cary, NC, 

USA).  The limit of quantitation [LOQ; mean + 10(standard deviations of blanks across three 

assays)] were 0.06 µM, 11.3 µM, 0.20 µM, and 0.26 µM for TBARS, TSH, GSH, and TotGSH, 

respectively.  Each sample was analyzed in duplicate with a coefficient of variation (CV; mean ± 

standard deviation) of 2.6 ± 2.6%, 4.4 ± 3.7%, 2.9 ± 2.5%, and 2.1 ± 1.5 % for TBARS, TSH, 

GSH, and TotGSH, respectively.  Samples for which the intra-assay variability exceeded 20% 

were reanalyzed (Krotzky and Zeeh, 1995).  Each of the three plates used in the analysis of the 

samples included three pools of reference material (i.e., liver from kestrel, common tern, and tree 

swallow, Tachycineta bicolor) to account for inter-assay variability.  The inter-assay CVs for the 

three reference pools were 16.5, 22.3 and 2.5% for TBARS; 4.4, 5.2 and 22.8% for TSH; 13.5, 

11.4 and 20.1% for GSH; and 4.9, 5.4 and 12.5% for TotGSH.   

Liver tissue from tern and kestrel hatchlings was analyzed for 8-OH-dG.  DNA was 

purified from thawed liver samples using the Puregene Tissue Extraction Kit (Qiagen, 

Gaithersburg, MD, USA) following the manufacturer’s protocol.  A NanoDropTM  8-Sample 

Spectrophometer (Thermo Scientific, Wilmington, DE, USA) was used to determine DNA 

concentration of DNA and purity.  Before DNA digestion, samples were normalized to a 



concentration of 15 µg ml-1 DNA hydration buffer.  Briefly, samples were denatured by heating 

for 10 min at 100°C, cooled on ice for 5 min, and then 50 µl of 40 mM sodium acetate, 0.4 mM 

ZnCl2 was added to each tube.  Next, 50 µl of 5 U ml-1 of nuclease P1 (Sigma-Aldrich) was 

added and samples incubated at 37°C for 30 min.  The pH was adjusted with 20 µl of 1M Tris-

HCl (pH 7.5), followed by the addition of 15 µl of 10 U ml-1 alkaline phosphatase.  Samples 

were incubated again for 30 min, denatured at 95°C for 10 min, and placed on ice.  Final 

concentrations were fluorometrically determined using the Cayman Chemical 8-OH-dG EIA Kit 

(Cayman Chemical Company, Ann Arbor, MI, USA).  Standard curves were fitted and 

concentrations were determined by using a 4-parameter fit (R2  > 0.998), to the entire range of 

concentrations.  The LOQ was 10.3 pg ml-1.  Intra-assay variability of duplicates was 6.3 + 4.2%.  

Plates included blanks and two Japanese quail (Coturnix japonica) reference samples to monitor 

inter-assay variability (4.1 and 11.5%, respectively; n = 5 assays).   

 

Krotzky, A.J., Zeeh, B., 1995. Immunoassays for residue analysis of agrochemicals: proposed 

guidelines for precision, standardization and quality control. Pure Appl. Chem. 67, 2065- 2088. 

 

SM-2. Chemical analysis of dosing solutions and eggs (details of analytical methods) 

Dosing solutions containing DE-71 were diluted in hexane and an internal standard (p-

terphenyl) was added.  Tern and kestrel egg analyses were conducted based on the methods of 

Chen et al. (2008).  Eggs were freeze-dried, and a surrogate standard (200 ng of 2, 3, 4, 4′, 5, 6-

hexabromodiphenyl ether, BDE-166; Cambridge Isotope Laboratories, Inc., Andover, MA, 

USA) was added to each sample.  Spiked egg samples were subjected to accelerated solvent 

extraction (Dionex ASE 200, Sunnyvale, CA, USA), and extracts were purified by size exclusion 



chromatography (SEC, Envirosep-ABC®, 350 x 21.1 mm. column; Phenomenex, Torrance, CA, 

USA).  Each post-SEC extract was reduced in volume, added to the top of a solid phase 2-g silica 

glass extraction column (Isolute, International Sorbent Technology, Ltd., Hengoed Mid 

Glamorgan, UK) and eluted with 3.5 ml hexane (fraction one), followed by 6.5 ml of 60:40 

hexane/dichloromethane (DCM) and then 8 ml DCM (fraction two).  The second fraction, 

containing the compounds of interest, was reduced in volume and solvent exchanged to hexane.  

Decachlorodiphenyl ether (DCDE; 100 ng) was then added as the internal standard (Ultra 

Scientific, North Kingstown, RI, USA) and the extracts analyzed for 57 PBDE congeners (single 

or co-eluting pairs).  Identification and quantitation were done by gas chromatography mass 

spectrometry using selective ion monitoring (GC-MS/SIM). 

Diluted dosing solutions and purified egg extracts were analyzed by GC (6890N, Agilent 

Technologies, Palo Alto, CA, USA) with MS detection (JMS-GC Mate II, JEOL, Peabody, MA, 

USA).  Sample aliquots (1 l) were introduced into the GC split/splitless injector, equipped with 

a glass liner (1 mm, i.d.), and separated on a 15-m DB-5HT column (0.25 mm i.d., 0.1 µm, J & 

W Scientific, Folsom, CA, USA).  The injector temperature was 300oC and initial carrier gas 

(He) head pressure was 50 psi.  Four min after sample injection, the split vent was opened and 

pressure reduced to 15.2 psi (flow 1.2 ml min-1).  Column flow rate was kept constant (1.2 ml 

min-1, temperature compensated) throughout the remaining portion of the analysis.  Initial 

column oven temperature was 90oC, held for 4 min, then increased to 150oC at 30oC min-1, then 

10oC min-1 to 300oC, and held for 20 min.  Column oven temperature was then increased to 

350oC at 30oC min-1 and held at 350oC for 5 min.  Total run time was 47.7 min.   

The MS was operated in the electron capture negative ionization (ECNI) mode (methane 

reagent gas (99.99%) using SIM.  Ion source temperature was 200oC and transfer line was 



maintained at 300oC.  Quantitation ions for PBDEs were m/z 79 ([79Br]-), 81([81Br]-).  

Confirmation ions were 486 and 488 m/z for decabromodiphenyl ether (BDE-209).  A five-point 

calibration curve (R2 > 0.995) was constructed from the analysis of calibration standards 

(Wellington Laboratories, Inc., Ontario, Canada).  The quantitation limits for the 57 PBDE 

congeners in eggs were 0.2 ng g-1 ww and 5 ng ml-1 for analytes in the corn oil solutions.  

Purified egg extracts were analyzed using a multipoint calibration curve generated using 

the responses of the authentic standards of the targeted analytes (viz., 41 organochlorine 

pesticides and metabolites, octachlorodibenzodioxin, octachlorodibenzofuran, and 68 individual 

or co-eluting PCB congeners) versus that of the internal standard. A Varian Saturn 4D ion trap 

GC-MS operating in the electron ionization mode was used to analyze the samples.  A DB-5 60 

m x 0.33 mm id x 25μm film capillary column (J & W Scientific) was installed in the GC.  The 

GC was programmed as follows: 75°C 1 min hold, 75°C to 350°C at 4°C min-1, 350°C hold 

15.25 min.  The MS ion mass range collected was 100-650 m/z.  Individual analytes were 

quantified using selected ions. The quantitation limit for analytes in eggs was 0.2 ng g-1 ww. 

 

SM-3. Background contamination of eggs (analytes not detected) 

Compounds were not detected in eggs included o,p’-DDD, o,p’-DDE, o,p’ -DDT, p,p’ -

DDD, p,p’ DDT, total BHC isomers (alpha, beta, gamma and lindane), several components of 

technical chlordane (heptachlor, trans-chlordane, heptachlor epoxide isomer B, oxychlordane, 

cis-chlordane, and components that are not fully characterized including compound C, 

compound K, MC1, MC2, MC3, MC6, MC7, and MC8,), aldrin, dieldrin, methoxychlor, 

methoxychlor olefin, pentachloroanisole, methoxy triclosan, endosulfan (endosulfan I, II, 



endosulfan sulfate), endrin and metabolites (endrin-ketone, endrin-aldehyde), 

octachlordibenzodioxin, and octachlorodibenzofuran.   
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