632 research outputs found

    Nutritional physiology of life-history trade-offs: How food protein–carbohydrate content influences life-history traits in the wing-polymorphic cricket \u3ci\u3eGryllus firmus\u3c/i\u3e

    Get PDF
    Although life-history trade-offs result from the differential acquisition and allocation of nutritional resources to competing physiological functions, many aspects of this topic remain poorly understood. Wing-polymorphic insects, which possess alternative morphs that trade off allocation to flight capability versus early reproduction, provide a good model system for exploring this topic. In this study, we used the wing-polymorphic cricket Gryllus firmus to test how expression of the flight capability versus reproduction trade-off was modified across a heterogeneous protein–carbohydrate nutritional landscape. Newly molted adult female long- and short-winged crickets were given one of 13 diets with different concentrations and ratios of protein and digestible carbohydrate; for each cricket, we measured consumption patterns, growth and allocation to reproduction (ovary mass) versus flight muscle maintenance (flight muscle mass and somatic lipid stores). Feeding responses in both morphs were influenced more by total macronutrient concentration than by protein–carbohydrate ratio, except at high-macronutrient concentration, where protein– carbohydrate balance was important. Mass gain tended to be greatest on protein-biased diets for both morphs, but was consistently lower across all diets for long-winged females. When long-winged females were fed high-carbohydrate foods, they accumulated greater somatic lipid stores; on high-protein foods, they accumulated greater somatic protein stores. Food protein–carbohydrate content also affected short-winged females (selected for early reproductive onset), which showed dramatic increases in ovary size, including ovarian stores of lipid and protein, on protein-biased foods. This is the first study to show how the concentration and ratio of dietary protein and carbohydrate affects consumption and allocation to key physiological features associated with the reproduction–dispersal life-history trade-off

    Gene therapy for obstetric conditions

    Get PDF
    The first clinical trials of gene therapy in the 1990s offered the promise of a new paradigm for the treatment of genetic diseases. Over the decades that followed the challenges and setbacks which gene therapy faced often overshadowed any successes. Despite this, recent years have seen cause for renewed optimism. In 2012 Glybera™, an adeno-associated viral vector expressing lipoprotein lipase, became the first gene therapy product to receive marketing authorisation in Europe, with a licence to treat familial lipoprotein lipase deficiency. This followed the earlier licensing in China of two gene therapies: Gendicine™ for head and neck squamous cell carcinoma and Oncorine™ for late-stage nasopharyngeal cancer. By this stage over 1800 clinical trials had been, or were being, conducted worldwide, and the therapeutic targets had expanded far beyond purely genetic disorders. So far no trials of gene therapy have been carried out in pregnancy, but an increasing understanding of the molecular mechanisms underlying obstetric diseases means that it is likely to have a role to play in the future. This review will discuss how gene therapy works, its potential application in obstetric conditions and the risks and limitations associated with its use in this setting. It will also address the ethical and regulatory issues that will be faced by any potential clinical trial of gene therapy during pregnancy

    Nutritional physiology of life-history trade-offs: how food protein-carbohydrate content influences life-history traits in the wing-polymorphic cricket Gryllus firmus

    Get PDF
    AbstractAlthough life-history trade-offs result from the differential acquisition and allocation of nutritional resources to competing physiological functions, many aspects of this topic remain poorly understood. Wing-polymorphic insects, which possess alternate morphs that trade off allocation to flight capability versus early reproduction, provide a good model system for exploring this topic. In this study we used the wing-polymorphic cricket Gryllus firmus to test how expression of the flight capability vs. reproduction trade-off was modified across a heterogeneous protein-carbohydrate nutritional landscape. Newly molted adult female crickets were given one of 13 diets with different concentrations and ratios of protein and digestible carbohydrate; for each cricket we measured consumption patterns, growth, and allocation to reproduction (ovary mass) vs. flight muscle maintenance (flight muscle mass and somatic lipid stores). Feeding responses in both morphs were influenced more by total macronutrient concentration than protein-carbohydrate ratio, except at high macronutrient concentration, where protein-carbohydrate balance was important. Mass gain tended to be greatest on protein-biased diets for both morphs, but was consistently lower across all diets for long-winged females. When long-winged females were fed high-carbohydrate foods they accumulated greater somatic lipid stores; on high-protein foods they accumulated greater somatic protein stores. Food protein-carbohydrate content also affected short-winged females (selected for early reproductive onset), which showed dramatic increases in ovary size, including ovarian stores of lipids and protein, on protein-biased foods. This is the first study to show how the concentration and ratio of dietary protein and carbohydrate affects consumption and allocation to key physiological features associated with the reproduction-dispersal life-history trade-off.</jats:p

    Emotional Memory Moderates the Relationship Between Sigma Activity and Sleep-Related Improvement in Affect

    Get PDF
    Sleep is essential for regulating mood and affect, and it also consolidates emotional memories. The mechanisms underlying these effects may overlap. Here, we investigated whether the influence of sleep on affect may be moderated by emotional memory consolidation. Young adults viewed 45 negative and 45 neutral pictures before taking an afternoon nap measured with polysomnography. Following the nap period, participants viewed the same pictures intermixed with novel ones and indicated whether they remembered each picture. Affect was measured with the Positive and Negative Affect Schedule (PANAS) at baseline before the initial picture viewing task, immediately following the initial picture viewing task, and following the nap. The ratio of positive to negative affect declined over the task period and recovered over the nap period. When controlling for pre-nap affect, NREM sigma activity significantly predicted post-nap affect. Memory for negative pictures moderated this relationship such that a positive association between sigma activity and affect occurred when memory was low but not when memory was high. These results indicate that emotional memory consolidation influences the relationship between nap physiology and mood

    Group-based trajectories of maternal intake of sugar-sweetened beverage and offspring oral health from a prospective birth cohort study

    Get PDF
    OBJECTIVES: To investigate the trajectory of maternal intake of sugar-sweetened beverages (SSB) during the first five years of their child's life and its effect on the child's dental caries at five years-of-age. METHODS: This is an ongoing prospective population-based birth cohort study in Adelaide, Australia. Mothers completed questionnaires on their SSB intake, socioeconomic factors and health behaviors at the birth of their child and at the ages of one, two and five years. Child dental caries measured as decayed, missing, or filled tooth surfaces was collected by oral examination. Maternal SSB intake was used to estimate the trajectory of SSB intake. The trajectories then became the main exposure of the study. Dental caries at age five years were the primary outcomes. Adjusted mean- and prevalence-ratios were estimated for dental caries, controlling for confounders. RESULTS: 879 children had dental examinations at five years-of-age. Group-based trajectory modeling identified three trajectories of maternal SSB intake: 'Stable low' (40.8%), 'Moderate but increasing' (13.6%), and 'High early' trajectory (45.6%). Multivariable regression analysis found children of mothers in the 'High early' and 'Moderate but increasing' groups to have greater experience of dental caries (MR: 1.37 (95%CI 1.01-1.67), and 1.24 (95%CI 0.96-1.60) than those in the 'Stable low' trajectory, respectively. CONCLUSION: Maternal consumption of SSB during pregnancy and in the early postnatal period influenced their offspring's oral health. It is important to create a low-sugar environment from early childhood. The results suggest that health promotion activities need to be delivered to expecting women or soon after childbirth

    The Open Source GAITOR Suite for Rodent Gait Analysis

    Get PDF
    Locomotive changes are often associated with disease or injury, and these changes can be quantified through gait analysis. Gait analysis has been applied to preclinical studies, providing quantitative behavioural assessment with a reasonable clinical analogue. However, available gait analysis technology for small animals is somewhat limited. Furthermore, technological and analytical challenges can limit the effectiveness of preclinical gait analysis. The Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) Suite is designed to increase the accessibility of preclinical gait analysis to researchers, facilitating hardware and software customization for broad applications. Here, the GAITOR Suite’s utility is demonstrated in 4 models: a monoiodoacetate (MIA) injection model of joint pain, a sciatic nerve injury model, an elbow joint contracture model, and a spinal cord injury model. The GAITOR Suite identified unique compensatory gait patterns in each model, demonstrating the software’s utility for detecting gait changes in rodent models of highly disparate injuries and diseases. Robust gait analysis may improve preclinical model selection, disease sequelae assessment, and evaluation of potential therapeutics

    Improved reference genome of the arboviral vector Aedes albopictus

    Get PDF
    Background: The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. Results: We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. Conclusion: The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures
    • …
    corecore