723 research outputs found

    Cleaning up the environment in juvenile myelomonocytic leukemia

    Get PDF

    Pharmacologic inhibition of PI3K p110δ in mutant Shp2E76K-expressing mice

    Get PDF
    Juvenile myelomonocytic leukemia is a childhood malignancy that lacks effective chemotherapies and thus has poor patient outcomes. PI3K p110δ has been found to promote hyperproliferation of cells expressing mutant Shp2. In this study, we tested the efficacy of a PI3Kδ inhibitor in mice expressing the Shp2 gain-of-function mutation, E76K. We found that in vivo treatment of mice led to significantly decreased splenomegaly, reduced frequency of bone marrow progenitor cells, and increased terminally differentiated peripheral blood myeloid cells. The survival of drug-treated mice was significantly prolonged compared to vehicle-treated controls, although mice from both groups ultimately succumbed to a similar myeloid cell expansion. PI3Kδ inhibitors are currently used to treat patients with relapsed lymphoid malignancies, such as chronic lymphocytic leukemia. The current findings provide evidence for using PI3Kδ inhibitors as a treatment strategy for JMML and potentially other myeloid diseases

    Simultaneous, noninvasive observation of elastic scattering, fluorescence and inelastic scattering as a monitor of blood flow and hematocrit in human fingertip capillary beds

    Get PDF
    We report simultaneous observation of elastic scattering, fluorescence, and inelastic scattering from in vivo near-infrared probing of human skin. Careful control of the mechanical force needed to obtain reliable registration of in vivo tissue with an appropriate optical system allows reproducible observation of blood flow in capillary beds of human volar side fingertips. The time dependence of the elastically scattered light is highly correlated with that of the combined fluorescence and Raman scattered light. We interpret this in terms of turbidity (the impeding effect of red blood cells on optical propagation to and from the scattering centers) and the changes in the volume percentages of the tissues in the irradiated volume with normal homeostatic processes. By fitting to a model, these measurements may be used to determine volume fractions of plasma and RBCs

    Noninvasive, In-Vivo, Tissue Modulated Near Infrared Spectroscopy of Fingertips: Resonance Raman Spectrum of Human Hemoglobin

    Get PDF
    Tissue modulation refers to using external stimuli such as mechanical pressure and temperature to produce various spatiotemporal distributions of blood and conceivably other fluids in tissues. Having the capacity to execute tissue modulation1 allows forms of difference spectroscopy to be used to isolate spectroscopic signals from specific components of the tissues noninvasively and in vivo. In the case of human fingertips we can think of the tissues present in the probed volume as being static tissue, plasma and red blood cells (RBCs). Static tissues deform under mechanical pressure based tissue modulation and the only possible fluid motions2 involve plasma and RBCs. Figure 1 shows the difference spectrum produced, negative modulated fluorescence and positive modulated Raman, when simultaneously a small amount of RBCs move into and some plasma is move out of the probed volume. We present spectra for all limiting forms of tissue modulation and show prototypical spectra that include fluorescence Rayleigh/Mie and Raman scattering

    Yolk sac erythromyeloid progenitors expressing gain of function PTPN11 have functional features of JMML but are not sufficient to cause disease in mice

    Get PDF
    Background: Accumulating evidence suggests the origin of juvenile myelomonocytic leukemia (JMML) is closely associated with fetal development. Nevertheless, the contribution of embryonic progenitors to JMML pathogenesis remains unexplored. We hypothesized that expression of JMML-initiating PTPN11 mutations in HSC-independent yolk sac erythromyeloid progenitors (YS EMPs) would result in a mouse model of pediatric myeloproliferative neoplasm (MPN). Results: E9.5 YS EMPs from VavCre+;PTPN11D61Y embryos demonstrated growth hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF) and hyperactive RAS-ERK signaling. Mutant EMPs engrafted the spleens of neonatal recipients, but did not cause disease. To assess MPN development during unperturbed hematopoiesis we generated CSF1R-MCM+;PTPN11E76K;ROSAYFP mice in which oncogene expression was restricted to EMPs. Yellow fluorescent protein-positive progeny of mutant EMPs persisted in tissues one year after birth and demonstrated hyperactive RAS-ERK signaling. Nevertheless, these mice had normal survival and did not demonstrate features of MPN. Conclusions: YS EMPs expressing mutant PTPN11 demonstrate functional and molecular features of JMML but do not cause disease following transplantation nor following unperturbed development

    Rapid development of myeloproliferative neoplasm in mice with Ptpn11D61Y mutation and haploinsufficient for Dnmt3a

    Get PDF
    PTPN11 gain-of-function mutation is the most common mutation found in patients with juvenile myelomonocytic leukemia and DNMT3A loss occurs in over 20% of acute myeloid leukemia patients. We studied the combined effect of both Ptpn11 gain-of-function mutation (D61Y) and Dnmt3a haploinsufficiency on mouse hematopoiesis, the presence of which has been described in both juvenile myelomonocytic leukemia and acute myeloid leukemia patients. Double mutant mice rapidly become moribund relative to any of the other genotypes, which is associated with enlargement of the spleen and an increase in white blood cell counts. An increase in the mature myeloid cell compartment as reflected by the presence of Gr1+Mac1+ cells was also observed in double mutant mice relative to any other group. Consistent with these observations, a significant increase in the absolute number of granulocyte macrophage progenitors (GMPs) was seen in double mutant mice. A decrease in the lymphoid compartment including both T and B cells was noted in the double mutant mice. Another significant difference was the presence of extramedullary erythropoiesis with increased erythroid progenitors in the spleens of Dnmt3a+/-;D61Y mice relative to other groups. Taken together, our results suggest that the combined haploinsufficiency of Dnmt3a and presence of an activated Shp2 changes the composition of multiple hematopoietic lineages in mice relative to the individual heterozygosity of these genes

    Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation.

    Get PDF
    Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies

    Sarcoid-like reaction in a patient recovering from coronavirus disease 19 pneumonia

    Get PDF
    As coronavirus disease 2019 (COVID-19) cases continue to increase, so do the reported extrapulmonary manifestations of this disease. To date, described dermatologic manifestations of COVID-19 include pernio-like acral nodules, dengue fever–like petechiae, vesiculobullous eruptions, pityriasis rosea and viral-like exanthems, retiform purpura, and livedo reticularis.1 We describe a patient with new-onset, biopsy confirmed sarcoid-like reaction in the setting of COVID-19 pneumonia and postulate a role for this immunologic reaction in hastening disease recovery

    The Molecular Mechanism of \u3cem\u3eN\u3c/em\u3e-Acetylglucosamine Side-Chain Attachment to the Lancefield Group A Carbohydrate in \u3cem\u3eStreptococcus pyogenes\u3c/em\u3e

    Get PDF
    In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are currently unknown. In this report, using molecular genetics, analytical chemistry, and mass spectrometry analysis, we demonstrated that GAC biosynthesis requires two distinct undecaprenol-linked GlcNAc-lipid intermediates: GlcNAc-pyrophosphoryl-undecaprenol (GlcNAc-P-P-Und) produced by the GlcNAc-phosphate transferase GacO and GlcNAc-phosphate-undecaprenol (GlcNAc-P-Und) produced by the glycosyltransferase GacI. Further investigations revealed that the GAC polyrhamnose backbone is assembled on GlcNAc-P-P-Und. Our results also suggested that a GT-C glycosyltransferase, GacL, transfers GlcNAc from GlcNAc-P-Und to polyrhamnose. Moreover, GacJ, a small membrane-associated protein, formed a complex with GacI and significantly stimulated its catalytic activity. Of note, we observed that GacI homologs perform a similar function in Streptococcus agalactiae and Enterococcus faecalis. In conclusion, the elucidation of GAC biosynthesis in S. pyogenes reported here enhances our understanding of how other Gram-positive bacteria produce essential components of their cell wall

    DPP4 Truncated GM-CSF & IL-3 Manifest Distinct Receptor Binding & Regulatory Functions Compared to their Full Length Forms

    Get PDF
    Dipeptidylpeptidase 4 (DPP4/CD26) enzymatically cleaves select penultimate amino acids of proteins, including colony stimulating factors (CSFs), and has been implicated in cellular regulation. To better understand the role of DPP4 regulation of hematopoiesis, we analyzed the activity of DPP4 on the surface of immature blood cells and then comparatively assessed the interactions and functional effects of full-length (FL) and DPP4 truncated factors [(T)-GM-CSF and- IL-3] on both in vitro and in vivo models of normal and leukemic cells. T-GM-CSF and T-IL-3 had enhanced receptor binding, but decreased CSF activity, compared to their FL forms. Importantly, T-GM-CSF and T-IL-3 significantly, and reciprocally, blunted receptor binding and myeloid progenitor cell proliferation activity of both FL-GM-CSF and FL-IL-3 in vitro and in vivo. Similar effects were apparent in vitro using cluster forming cells from patients with Acute Myeloid Leukemia (AML) regardless of cytogenetic or molecular alterations and in vivo utilizing animal models of leukemia. This suggests that DPP4 T-molecules have modified binding and functions compared to their FL counterparts and may serve regulatory roles in normal and malignant hematopoiesis
    • …
    corecore