9 research outputs found

    Alkylsquarates as key intermediates for the rapid preparation of original drug-inspired compounds.

    No full text
    International audienceMany natural privileged scaffolds contain a basic nitrogen atom, which often is a key element of pharmacophore and a chemically reactive centre as well. In our ongoing research program devoted to the design of targeted libraries based on acidic templates, we developed methods to convert privileged basic compounds -like natural alkaloids or drugs into acidic compounds. This conversion led to a profound alteration of the pharmacophore, without changing the overall shape and lipophilicity of the molecule. We expect such modifications to generate unexpected biological activities. Recently, we focused on derivatives of squaric acid, a vinylogous carboxylic acid. Two series were studied. First we describe a new, selective parallel synthesis of squaramic acids from a dissymmetric diester (3-tert-butoxy-4-ethoxy-cyclobut-3-en-1,2-dione). This efficient procedure avoids the synthesis of the undesired squaramides. Secondly we describe a microplate parallel synthesis (15 micromol-scale) of squaric acid hydroxamate amides from a squaric hydroxamate ester

    A library of novel hydroxamic acids targeting the metallo-protease family: design, parallel synthesis and screening.

    No full text
    International audienceWe report here the design and parallel synthesis of 217 compounds based on a malonic-hydroxamic acid template. These compounds are obtained via a two-step solution-phase procedure. The set of diverse building-blocks used makes this strategy suitable for the search of inhibitors of various metallo-proteases and for the investigation of the biological role of new metallo-proteases. As a proof of concept, we screened this library on Neutral Aminopeptidase (APN; EC 3.4.11.2), the prototypal enzyme of the M1 family. Several submicromolar inhibitors were identified

    Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer?

    No full text
    International audienceInsulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, several reports have underlined the overexpression of this enzyme in different cancers. Still, the exact role of IDE in the physiopathology of cancer remains to be elucidated. Known as the main enzyme responsible for the degradation of insulin, an essential growth factor for healthy cells and cancer cells, IDE has also been shown to behave like a chaperone and interact with the proteasome. The pharmacological modulation of IDE (siRNA, chemical compounds, etc.) has demonstrated interesting results in cancer models. All these results point towards IDE as a potential target in cancer. In this review, we will discuss evidence of links between IDE and cancer development or resistance, IDE’s functions, catalytic or non-catalytic, in the context of cell proliferation, cancer development and the impact of the pharmacomodulation of IDE via cancer therapeutics

    Novel non-carboxylic acid retinoids: 1,2,4-oxadiazol-5-one derivatives.

    No full text
    International audienceWe have successfully obtained 1,2,4-oxadiazol-5-one bioisoteres of Am580 or Tazarotene-like retinoids. In particular compound 4 displays an EC(50) of 26nM on RAR-beta

    Solvent-free microwave-assisted Meyers’ lactamization

    No full text
    International audienceMicrowave solvent-free conditions developed for Meyers’ lactamization, a typical bielectrophile-binucleophile reaction that produces quaternary centers in a stereoselective manner, give access to Meyers’ chiral lactams in good yield and high diastereoselectivity in short times

    Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice

    No full text
    International audienceInsulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-β. Knockout and genetic studies have linked IDE to Alzheimer's disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisingly impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes

    ADAM30 Downregulates APP-Linked Defects Through Cathepsin D Activation in Alzheimer's Disease

    Get PDF
    Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely correlates with amyloid load in Alzheimer's disease brains. Accordingly, in vitro down- or up-regulation of ADAM30 expression triggered an increase/decrease in Aβ peptides levels whereas expression of a biologically inactive ADAM30 (ADAM30mut) did not affect Aβ secretion. Proteomics/cell-based experiments showed that ADAM30-dependent regulation of APP metabolism required both cathepsin D (CTSD) activation and APP sorting to lysosomes. Accordingly, in Alzheimer-like transgenic mice, neuronal ADAM30 over-expression lowered Aβ42 secretion in neuron primary cultures, soluble Aβ42 and amyloid plaque load levels in the brain and concomitantly enhanced CTSD activity and finally rescued long term potentiation alterations. Our data thus indicate that lowering ADAM30 expression may favor Aβ production, thereby contributing to Alzheimer's disease development
    corecore