1,452 research outputs found

    Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger

    Get PDF
    An experimental and analytical investigation was conducted on an air-to-water heat exchanger equipped with six wickless heat pipes (thermosyphons) charged with water as the working fluid. The flow pattern consisted of a double pass on the evaporator and condenser sections. The six thermosyphons were all made from carbon steel, measured 2m in length and were installed in a staggered arrangement. The objectives of the reported experimental investigation were to analyse the effect of multiple air passes at different air inlet temperatures (100 to 250°C) and air mass flow rates (0.05 to 0.14kg/s) on the thermal performance of the heat exchanger unit including the heat pipes. The results were compared with a CFD model that assumed the heat pipes were solid rods with a constant conductivity. The conductivity of the pipes was extracted from modifications of correlations available in the literature based around the theory of Thermal Resistance. The results proved to be very accurate within 10% of the experimental values

    The HLA System and Primary Open-Angle Glaucoma

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66382/1/j.1399-0039.1978.tb01313.x.pd

    Molecular Dynamics Simulations Reveal the Protective Role of Cholesterol in β-Amyloid Protein-Induced Membrane Disruptions in Neuronal Membrane Mimics

    Get PDF
    Interactions of β-amyloid (Aβ) peptides with neuronal membranes have been associated with the pathogenesis of Alzheimer\u27s disease (AD); however, the molecular details remain unclear. We used atomistic molecular dynamics (MD) simulations to study the interactions of Aβ40 and Aβ42 with model neuronal membranes. The differences between cholesterol-enriched and depleted lipid domains were investigated by the use of model phosphatidylcholine (PC) lipid bilayers with and without 40 mol % cholesterol. A total of 16 independent 200 ns simulation replicates were investigated. The surface area per lipid, bilayer thickness, water permeability barrier, and lipid order parameter, which are sensitive indicators of membrane disruption, were significantly altered by the inserted state of the protein. We conclude that cholesterol protects Aβ-induced membrane disruption and inhibits β-sheet formation of Aβ on the lipid bilayer. The latter could represent a two-dimensional (2D) seeding template for the formation of toxic oligomeric Aβ in the pathogenesis of AD

    Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface

    Get PDF
    AbstractThe influenza B virus BM2 protein contains 109 amino acid residues and it is translated from a bicistronic mRNA in an open reading frame that is +2 nucleotides with respect to the matrix (M1) protein. The amino acid sequence of BM2 contains a hydrophobic region (residues 7–25) that could act as a transmembrane (TM) anchor. Analysis of properties of the BM2 protein, including detergent solubility, insolubility in alkali pH 11, flotation in membrane fractions, and epitope-tagging immunocytochemistry, indicates BM2 protein is the fourth integral membrane protein encoded by influenza B virus in addition to hemagglutinin (HA), neuraminidase (NA), and the NB glycoprotein. Biochemical analysis indicates that the BM2 protein adopts an NoutCin orientation in membranes and fluorescence microscopy indicates BM2 is expressed at the cell surface. As the BM2 protein possesses only a single hydrophobic domain and lacks a cleavable signal sequence, it is another example of a Type III integral membrane protein, in addition to M2, NB, and CM2 proteins of influenza A, B, and C viruses, respectively. Chemical cross-linking studies indicate that the BM2 protein is oligomeric, most likely a tetramer. Comparison of the amino acid sequence of the TM domain of the BM2 protein with the sequence of the TM domain of the proton-selective ion channel M2 protein of influenza A virus is intriguing as M2 protein residues critical for ion selectivity/activation and channel gating (H37 and W41, respectively) are found at the same relative position and spacing in the BM2 protein (H19 and W23)

    Summary Tables: Fairfax County and the City of Alexandria, Virginia Shoreline Inventory Report

    Get PDF
    The Shoreline Inventory Summary Tables quantify observed conditions based on river systems, such as the combined length of linear features (e.g. shoreline miles surveyed, miles of bulkhead and revetment), the total number of point features (e.g. docks, boathouses, boat ramps) & total acres of polygon features (tidal marshes)

    Summary Tables: 2012 Henrico County, Virginia Shoreline Inventory

    Get PDF
    The Shoreline Inventory Summary Tables quantify observed conditions based on river systems, such as the combined length of linear features (e.g. shoreline miles surveyed, miles of bulkhead and revetment), the total number of point features (e.g. docks, boathouses, boat ramps) & total acres of polygon features (tidal marshes)

    The physical parameters, excitation and chemistry of the rim, jets and knots of the planetary nebula NGC 7009

    Get PDF
    We present long-slit optical spectra along the major axis of the planetary nebula NGC 7009. These data allow us to discuss the physical, excitation and chemical properties of all the morphological components of the nebula, including its remarkable systems of knots and jets. The main results of this analysis are the following: i) the electron temperature throughout the nebula is remarkably constant, T_e[OIII] = 10200K; ii) the bright inner rim and inner pair of knots have similar densities of N_e = 6000cm^{-3}, whereas a much lower density of N_e = 1500cm^{-3} is derived for the outer knots as well as for the jets; iii) all the regions (rim, inner knots, jets and outer knots) are mainly radiatively excited; and iv) there are no clear abundance changes across the nebula for He, O, Ne, or S. There is a marginal evidence for an overabundance of nitrogen in the outer knots (ansae), but the inner ones (caps) and the rim have similar N/H values that are at variance with previous results. Our data are compared to the predictions of theoretical models, from which we conclude that the knots at the head of the jets are not matter accumulated during the jet expansion through the circumstellar medium, neither can their origin be explained by the proposed HD or MHD interacting-wind models for the formation of jets/ansae, since the densities as well as the main excitation mechanisms of the knots, disagree with model predictions.Comment: Figure 1 was changed because features were misidentified in the previous version. 17 pages including 5 figures and 3 tables. ApJ in press. Also available at http://www.iac.es/galeria/denise

    Family routines and next-generation engagement in family firms

    Get PDF
    By focusing on the impact of different types of family routines and how they change, this commentary builds on concepts regarding the influence of perceived parental support and psychological control on next-generation engagement in family firms. Drawing on the organizational routines literature and the family studies literature, I propose that attention to family routines, and how these routines change (or not) over time can reveal additional insights regarding next-generation engagement in the family business

    High-frequency CO2-system variability over the winter-to-spring transition in a large coastal plain estuary

    Get PDF
    Understanding the vulnerability of estuarine ecosystems to anthropogenic impacts requires a quantitative assessment of the dynamic drivers of change to the carbonate (CO2) system. Here we present new high‐frequency pH data from a moored sensor. These data are combined with discrete observations to create continuous time series of total dissolved inorganic carbon (TCO2), CO2 partial pressure (pCO2), and carbonate saturation state. We present two deployments over the winter‐to‐spring transition in the lower York River (where it meets the Chesapeake Bay mainstem) in 2016/2017 and 2017/2018. TCO2 budgets with daily resolution are constructed, and contributions from circulation, air‐sea CO2 exchange, and biology are quantified. We find that TCO2 is most strongly influenced by circulation and biological processes; pCO2 and pH also respond strongly to changes in temperature. The system transitions from autotrophic to heterotrophic conditions multiple times during both deployments; the conventional view of a spring bloom and subsequent summer production followed by autumn and winter respiration may not apply to this region. Despite the dominance of respiration in winter and early spring, surface waters were undersaturated with respect to atmospheric CO2 for the majority of both deployments with mean fluxes ranging from −9 to −5 mmol C·m−2·day−1. Deployments a year apart indicate that the seasonal transition in the CO2 system differs significantly from one year to the next and highlights the necessity of sustained monitoring in dynamic nearshore environments
    corecore