162 research outputs found

    Studies on Age-Related Changes in Equine Cheek Teeth Angulation and Dental Drift

    Get PDF
    BACKGROUND: Cheek teeth (second through fourth premolars and first through third molars) diastema is a common and painful equine disorder caused by the absence of effective tight interdental contact between these teeth. Limited objective information is available on the angulation of equine cheek teeth that control dental drift or on mesial or distal equine cheek teeth drift that should normally prevent this disorder. OBJECTIVES: To measure the angulation of the mesial and distal cheek teeth in horses of different ages, quantify age-related cheek teeth mesial and distal dental drift, and measure the cheek teeth row length in horses of different ages. STUDY DESIGN: Retrospective review of computed tomographic images of equine heads. METHODS: Case details and CT images from clinical equine cases that had undergone standing CT head examination were collated. Three sets of measurements were acquired from each head. “Head size” calculated as the distance between the caudal aspect of the orbit and the caudal aspect of the naso-incisive notch was used to standardize measurements in different sized heads. The length of the cheek teeth rows measured from the mesial aspect of the Triadan 06 occlusal surface to the distal aspect of the Triadan 11 occlusal surface. The rostro-caudal (antero-posterior) position and angulation of the mandibular and maxillary Triadan 06 and 11 teeth were measured in relation to reference lines drawn on CT images. RESULTS: Significant mesial drift occurred in the maxillary and mandibular Triadan 11s. Despite their distal angulation, the upper and lower Triadan 06s also drifted mesially. The mean angulation of Triadan 06 and 11 mandibular teeth (17.8 and 26.2°, respectively) was almost double that of maxillary teeth (9.2 and 13.3°, respectively) with both Triadan 11s having greater angulation than the 06s. Cheek teeth angulation only significantly decreased in the mandibular 06s. Cheek teeth arcade lengths decreased with age, but these decreases were not significant. MAIN LIMITATIONS: Limitations include the relatively small sample size. CONCLUSIONS: In the population of horses used for this study, age related mesial drift occurred in both Triadan 06 and 11s, and the angulation of these teeth did not decrease with age in most arcades

    Precision orbital dynamics from interstellar scintillation arcs for PSR J0437-4715

    Full text link
    Intensity scintillations of radio pulsars are known to originate from interference between waves scattered by the electron density irregularities of interstellar plasma, often leading to parabolic arcs in the two-dimensional power spectrum of the recorded dynamic spectrum. The degree of arc curvature depends on the distance to the scattering plasma and its transverse velocity with respect to the line-of-sight. We report the observation of annual and orbital variations in the curvature of scintillation arcs over a period of 16 years for the bright millisecond pulsar, PSR J0437-4715. These variations are the signature of the relative transverse motions of the Earth, pulsar, and scattering medium, which we model to obtain precise measurements of parameters of the pulsar's binary orbit and the scattering medium itself. We observe two clear scintillation arcs in most of our >>5000 observations and we show that they originate from scattering by thin screens located at distances D1=89.8±0.4D_1 = 89.8 \pm 0.4 pc and D2=124±3D_2 = 124 \pm 3 pc from Earth. The best-fit scattering model we derive for the brightest arc yields the pulsar's orbital inclination angle i=137.1±0.3i = 137.1 \pm 0.3^\circ, and longitude of ascending node, Ω=206.3±0.4\Omega=206.3\pm0.4^\circ. Using scintillation arcs for precise astrometry and orbital dynamics can be superior to modelling variations in the diffractive scintillation timescale, because the arc curvature is independent of variations in the level of turbulence of interstellar plasma. This technique can be used in combination with pulsar timing to determine the full three-dimensional orbital geometries of binary pulsars, and provides parameters essential for testing theories of gravity and constraining neutron star masses.Comment: 19 pages, 10 figures. Accepted for publication in Ap

    The gravitational-wave background null hypothesis: Characterizing noise in millisecond pulsar arrival times with the Parkes Pulsar Timing Array

    Get PDF
    The noise in millisecond pulsar (MSP) timing data can include contributions from observing instruments, the interstellar medium, the solar wind, solar system ephemeris errors, and the pulsars themselves. The noise environment must be accurately characterized in order to form the null hypothesis from which signal models can be compared, including the signature induced by nanohertz-frequency gravitational waves (GWs). Here we describe the noise models developed for each of the MSPs in the Parkes Pulsar Timing Array (PPTA) third data release, which have been used as the basis of a search for the isotropic stochastic GW background. We model pulsar spin noise, dispersion measure variations, scattering variations, events in the pulsar magnetospheres, solar wind variability, and instrumental effects. We also search for new timing model parameters and detected Shapiro delays in PSR~J0614-3329 and PSR~J1902-5105. The noise and timing models are validated by testing the normalized and whitened timing residuals for Gaussianity and residual correlations with time. We demonstrate that the choice of noise models significantly affects the inferred properties of a common-spectrum process. Using our detailed models, the recovered common-spectrum noise in the PPTA is consistent with a power law with a spectral index of γ=13/3\gamma=13/3, the value predicted for a stochastic GW background from a population of supermassive black hole binaries driven solely by GW emission.Comment: 18 pages, 10 figures. Accepted for publication in ApJ

    Search for an isotropic gravitational-wave background with the Parkes Pulsar Timing Array

    Full text link
    Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 years. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise process. Represented as a strain spectrum hc=A(f/1yr1)αh_c = A(f/1 {\rm yr}^{-1})^{\alpha}, we measure A=3.10.9+1.3×1015A=3.1^{+1.3}_{-0.9} \times 10^{-15} and α=0.45±0.20\alpha=-0.45 \pm 0.20 respectively (median and 68% credible interval). For a spectral index of α=2/3\alpha=-2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we recover an amplitude of A=2.040.22+0.25×1015A=2.04^{+0.25}_{-0.22} \times 10^{-15}. However, we demonstrate that the apparent signal strength is time-dependent, as the first half of our data set can be used to place an upper limit on AA that is in tension with the inferred common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a process with α=2/3\alpha=-2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of p0.02p \lesssim 0.02 (approx. 2σ2\sigma). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.Comment: 19 pages, 10 figures, Accepted for publication in ApJ

    Defining the Middle Corona

    Get PDF
    International audienceAbstract The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory (SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there

    Anhydrobiosis-Associated Nuclear DNA Damage and Repair in the Sleeping Chironomid: Linkage with Radioresistance

    Get PDF
    Anhydrobiotic chironomid larvae can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Furthermore, while the larvae had restored physiological activity within an hour following rehydration, nuclear DNA restoration typically took 72 to 96 h. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated larvae after anhydrobiosis were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He). In contrast, low-LET radiation (gamma-rays) of the same dose caused less initial damage to the larvae, and DNA was completely repaired within within 24 h. The expression of genes encoding the DNA repair enzymes occurred upon entering anhydrobiosis and exposure to high- and low-LET radiations, indicative of DNA damage that includes double-strand breaks and their subsequent repair. The expression of antioxidant enzymes-coding genes was also elevated in the anhydrobiotic and the gamma-ray-irradiated larvae that probably functions to reduce the negative effect of reactive oxygen species upon exposure to these stresses. Indeed the mature antioxidant proteins accumulated in the dry larvae and the total activity of antioxidants increased by a 3–4 fold in association with anhydrobiosis. We conclude that one of the factors explaining the relationship between radioresistance and the ability to undergo anhydrobiosis in the sleeping chironomid could be an adaptation to desiccation-inflicted nuclear DNA damage. There were also similarities in the molecular response of the larvae to damage caused by desiccation and ionizing radiation

    Elevated plasma levels of cardiac troponin-I predict left ventricular systolic dysfunction in patients with myotonic dystrophy type 1:A multicentre cohort follow-up study

    Get PDF
    Objective: High sensitivity plasma cardiac troponin-I (cTnI) is emerging as a strong predictor of cardiac events in a variety of settings. We have explored its utility in patients with myotonic dystrophy type 1 (DM1). Methods: 117 patients with DM1 were recruited from routine outpatient clinics across three health boards. A single measurement of cTnI was made using the ARCHITECT STAT Troponin I assay. Demographic, ECG, echocardiographic and other clinical data were obtained from electronic medical records. Follow up was for a mean of 23 months. Results: Fifty five females and 62 males (mean age 47.7 years) were included. Complete data were available for ECG in 107, echocardiography in 53. Muscle Impairment Rating Scale score was recorded for all patients. A highly significant excess (p = 0.0007) of DM1 patients presented with cTnI levels greater than the 99th centile of the range usually observed in the general population (9 patients; 7.6%). Three patients with elevated troponin were found to have left ventricular systolic dysfunction (LVSD), compared with four of those with normal range cTnI (33.3% versus 3.7%; p = 0.001). Sixty two patients had a cTnI level < 5ng/L, of whom only one had documented evidence of LVSD. Elevated cTnI was not predictive of severe conduction abnormalities on ECG, or presence of a cardiac device, nor did cTnI level correlate with muscle strength expressed by Muscle Impairment Rating Scale score. Conclusions: Plasma cTnI is highly elevated in some ambulatory patients with DM1 and shows promise as a tool to aid cardiac risk stratification, possibly by detecting myocardial involvement. Further studies with larger patient numbers are warranted to assess its utility in this setting

    Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    Get PDF
    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts
    corecore