98 research outputs found

    Lipoxin A augments release of thromboxane from human polymorphonuclear leukocyte suspensions

    Get PDF
    AbstractLipoxin A (LXA) is a novel eicosanoid, generated by the interactions of lipoxygenases, which has a variety of biological actions. When added to human polymorphonuclear leukocytes, LXA stimulated thromboxane formation which was monitored as TxB2 by radioimmunoassay. The compound augmented the formation of TxA2 stimulated by the ionophore of divalent cations (A23187). Formation of thromboxane was inhibited by two non-steroidal anti-inflammatory drugs (i.e. indomethacin and proglumetacin). Results of the present study indicate that LXA can provoke the release and transformation of endogenous arachidonic acid to thromboxane. Moreover, they suggest a relationship between lipoxin A and the formation of cyclooxygenase pathway products

    Possible Correlation between Cholinergic System Alterations and Neuro/Inflammation in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system. Although the etiology of MS is still unknown, both genetic and environmental factors contribute to the pathogenesis of the disease. Acetylcholine participates in the modulation of central and peripheral inflammation. The cells of the immune system, as well as microglia, astrocytes and oligodendrocytes express cholinergic markers and receptors of muscarinic and nicotinic type. The role played by acetylcholine in MS has been recently investigated. In the present review, we summarize the evidence indicating the cholinergic dysfunction in serum and cerebrospinal fluid of relapsing–remitting (RR)‐MS patients and in the brains of the MS animal model experimental autoimmune encephalomyelitis (EAE). The correlation between the increased activity of the cholinergic hydrolyzing enzymes acetylcholinesterase and butyrylcholinesterase, the reduced levels of acetylcholine and the increase of pro‐inflammatory cytokines production were recently described in immune cells of MS patients. Moreover, the genetic polymorphisms for both hydrolyzing enzymes and the possible correlation with the altered levels of their enzymatic activity have been also reported. Finally, the changes in cholinergic markers expression in the central nervous system of EAE mice in peak and chronic phases suggest the involvement of the acetylcholine also in neuro‐inflammatory processes

    The Role of Immunosenescence in Neurodegenerative Diseases

    Get PDF

    Dysregulated homeostasis of acetylcholine levels in immune cells of RR-multiple sclerosis patients

    Get PDF
    Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNF alpha, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNF alpha, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis

    Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: Implication in peripheral inflammation

    Get PDF
    Multiple Sclerosis (MS) is an autoimmune disease, having not fully understood aetiology, and both genetic and environmental factors contribute to the pathogenesis of the disease. The cholinergic system has been indicated as a mediator of neuro-immune interactions, as well as an internal regulator of immune responses. The aim of the present research was to assess the associations between BChE and AChE genetic variations and serum cholinergic and inflammatory profiles in 102 Relapsing Remitting-MS patients and 117 healthy controls. An increased frequency of the BChE K-allele in MS patients as compared to controls was found. In addition, data showed that patients had higher BChE enzymatic activity, which is increased by the presence of the polymorphic allele and reduced amounts of circulating ACh. AChE polymorphism was significantly associated to reduced activity in both patients and controls. We propose that serum BChE and AChE activity may be used as a secondary markers to assess the role of non-neuronal cholinergic system in regulating peripheral inflammation via ACh regulation. This pilot study shed light on the role of the non-neuronal cholinergic system in immune cells to better understand MS pathogenesis. The cross-talk between the periphery and the CNS could have a new undescribed crucial role for MS, regarded as a systemic disease

    Reduced mitogenic stimulation of human lymphocytes by extremely low frequency electromagnetic fields

    Get PDF
    AbstractBlastogenesis of human peripheral blood lymphocytes stimulated in vitro by non-specific mitogens (PHA, ConA, PWM) upon exposure to extremely low frequency EMF has been studied. Different frequencies of square waveforms have been used. PHA-stimulation resulted in strong inhibitions as measured by [3H]thymidine incorporation. A frequency window (3–50 Hz) within which ConA-induced blastogenesis was significantly inhibited has been individuated. The mitogenic effect of PWM was significantly affected only at 3 Hz

    Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway

    Get PDF
    Increasing evidence suggests that elevated production and/or reduced clearance of amyloid-β peptide (Aβ) drives the early pathogenesis of Alzheimer's disease (AD). Aβ soluble oligomers trigger a neurotoxic cascade that leads to neuronal dysfunction, neurodegeneration and, ultimately, clinical dementia. Inflammation, both within brain and systemically, together with a deficiency in the neurotransmitter acetylcholine (ACh) that underpinned the development of anticholinesterases for AD symptomatic treatment, are invariable hallmarks of the disease. The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each feeding back onto the others to drive disease progression. To elucidate these interactions plasma samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy controls (HC) and AD patients. Plasma levels of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and Aβ were significantly elevated in AD vs. HC subjects, and ACh showed a trend towards reduced levels. Aβ challenge of PBMCs induced a greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) challenge, to allow preliminary analysis of the cellular and molecular pathways underpinning Aβ-induced changes in cytokine expression. As amyloid-β precursor protein expression, and hence Aβ, has been reported regulated by particular cytokines and anticholinesterases, the latter were evaluated on Aβ- and PHA-induced chemocytokine expression. Co-incubation with selective AChE/BuChE inhibitors, (-)-phenserine (AChE) and (-)-cymserine analogues (BuChE), mitigated the rise in cytokine levels and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove valuable in AD

    A New Generation of IMiDs as Treatments for Neuroinflammatory and Neurodegenerative Disorders

    Get PDF
    Acknowledgements The authors acknowledge support from their associated institutions which included: (i) the Intramural Research Program, National Institute on Aging, NIH, USA, (ii) the Karolinska Institutet, Sweden, (iii) Aevisbio Inc., USA, (iv) Aevis Bio Inc., Republic of Korea, (v) G. d’Annunzio University of Chieti and Pescara, Italy, and (vi) University of Aberdeen, Scotland, UK. Funding The generation of this article was supported by: (i) the Intramural Research Program, National Institute on Aging, NIH: AG000994. (ii) The Technology Development Program of MSS, Republic of Korea (S2782046). (iii) The National Research Foundation (NRF) grant funded by the Republic of Korea Government (2021M3A9G2015889).Peer reviewedPublisher PD

    "In vitro" comparative immune effects of different titanium compounds.

    Get PDF
    Exposure to Ti compounds is today an occupational and environmental health hazard. Object of this study was to determine "in vitro" effects of different Ti salts on cultured human peripheral blood mononuclear cells (PBMC) proliferation and cytokine release. 10−4 and 10−7 M Ti compounds did not modify spontaneous PBMC proliferation. Ti dioxide (a biocompatible material and sunscreen component) did not exert effects on phytoemagglutinin (PHA) stimulated PBMC proliferation and on PHA stimulated IFN-γ and TNF-α release from PBMC. On the other hand, 10−4 M Ti oxalate (with wide industrial applications) and Ti ascorbate (used mainly in agriculture) inhibited about 70 % the PHA stimulated PBMC proliferation; both these Ti compounds at 10−4 and 10−7 M concentrations significantly inhibited TNF-α release, while only Ti oxalate inhibited that of IFN-γ. Titanocene (used in chemotherapy) did not exert effects on PBMC proliferation but markedly inhibited IFN-γ and TNF-α release. On the whole, this study demonstrates that Ti dioxide is not immunotoxic; Ti oxalate shows marked immunotoxicity; titanocene exerts selective toxicity on cytokine release but not on PBMC proliferation, while Ti ascorbate affects TNF-α release from PBMC but not IFN-γ release. In conclusion, these data show that immunotoxicity of Ti depends on speciation
    corecore