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Abstract

Increasing evidence suggests that the early pathogenesis of Alzheimer’s disease (AD) is driven by 

elevated production and/or reduced clearance of amyloid-β peptide (Aβ), which is derived from 

the larger Aβ precursor protein (APP). Aβ aggregates to form neurotoxic soluble oligomers that 

trigger a cascade of events leading to neuronal dysfunction, neurodegeneration and, ultimately, 

clinical dementia. Inflammation, both within the brain and systemically, together with a deficiency 

in the brain neurotransmitter acetylcholine, which underpinned the development of 

anticholinesterases for the symptomatic treatment of AD, are invariable hallmarks of the disease. 

The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each 

feeding back onto the others to drive disease progression. To elucidate these interactions plasma 

samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy control 

(HC) subjects and AD patients. Plasma levels of acetyl- (AChE) and butyrylcholinesterase 

(BuChE) as well as Aβ were significantly elevated in AD vs. HC subjects, and acetylcholine 

showed a trend towards reduced levels. Aβ challenge of the AD and HC PBMCs resulted in 

greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 
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(MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 

expression being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs 

and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) 

challenge, to allow preliminary analysis of the cellular and molecular pathways that underpin Aβ-

induced changes in cytokine expression. In light of prior studies demonstrating that APP 

expression was regulated by specific cytokines and anticholinesterase drugs, the latter were 

evaluated on Aβ- and PHA-induced chemo-cytokine expression. Co-incubation with selective 

inhibitors, such as the acetylcholinesterase (AChE)-inhibitor (−)-phenserine and the 

butyrylcholinesterase (BuChE)-inhibitor (−)-cymserine analogues mitigated the rise in cytokine 

levels, and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove 

valuable in AD.
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Introduction

Age-related dementia is rising in incidence in line with increasing life expectancy and 

afflicts in excess of 25 million people worldwide, of these 50 to 75% have Alzheimer 

disease (AD) [1,2]. The progressive declines in cognitive ability and functional capacity 

associated with AD are accompanied by the classical microscopic disease hallmarks of 

intracellular neurofibrillary tangles containing hyperphosphorylated tau protein and 

apolipoprotein E, and extracellular senile (neuritic) plaques that contain many proteins, but 

in particular amyloid-β peptide (Aβ) comprising 1–42 amino acids [3,4]. Aβ peptide is 

derived from the larger Aβ precursor protein (APP) by the action of β- and γ-secretases for 

the biogenesis of Aβ [3,4], which is detected normally in different cell types and tissues 

across evolutionary species. Aβ aggregation, in particular soluble oligomers, triggers a 

cascade of events that leads to neuronal dysfunction, neurodegeneration and ultimately to 

clinical dementia [5]. These Aβ aggregates may induce direct neurotoxic actions [6] but, 

additionally, may induce neurodegeneration indirectly by initiating a pro-inflammatory 

cascade that results in the release of inflammatory cytokines [7–9]. Hence, invariably present 

alongside the AD pathological features is the presence of neuroinflammation [10,11].

Increasing evidence supports close communication between the occurrence of systemic 

inflammation and that occurring within the central nervous system across a range of 

disorders, and particularly in AD [12–14]. Studies have proposed that AD presents systemic 

manifestations triggered by molecular and biophysical alterations that occur early during 

disease progression [15]. The systemic pathophysiologic view of AD is consistent with 

recent observations that amyloid and tau metabolic pathways are ubiquitous within the 

human body and manifest across a number of non-nervous system tissues, including blood, 

saliva and skin [16]. Aβ1–40 as well as 1–42 are generated in the brain as well as in the 

periphery, and it is thought that circulating levels of Aβ may impact Aβ deposits present 
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within the brain. Receptor mediated movement of soluble Aβ across the blood–brain barrier 

(BBB) is driven by transporters, such as the low-density lipoprotein receptor-related 

protein-1 (LRP-1) [17,18] for efflux, and the receptor for advanced glycation end products 

(RAGE) [19] for influx. Aβ-specific IgG is capable of binding Aβ peptide within the blood, 

and may encourage efflux of Aβ from the brain to the blood via the “peripheral sink” 

mechanism [20]. Previous studies [21] have shown that microglial cells in the brain derive 

from peripheral hemopoietic cells, such as monocytes, and share expression of many surface 

receptors and signalling proteins and the overlap of gene expressions related to AD. Notably, 

Aβ induces the migration of both monocytes and human monocytic THP-1 cells across a 

model of the blood-brain barrier (BBB) [22,23]. Exposure of human THP-1 monocytes to 

fibrillar forms of Aβ drives the activation of protein tyrosine kinases that initiates the 

activation of signalling pathways. In addition, exposure of these cells to Aβ stimulates the 

inflammatory response and, thereby, increases the expression of cytokines such as IL-1β, 

IL-6, TNF-α [22]. In vivo studies confirm that Aβ induces the activation and migration of 

monocytes across mesenteric blood vessels [22], suggesting that a similar phenomenon 

occurs in the brain vasculature.

The development of the “cholinergic hypothesis” in 1982 [24], linking the cholinergic deficit 

in AD brain to the hallmark cognitive decline, underpinned the later development of 

acetylcholinesterase (AChE) inhibitors that remain the mainstay of current AD symptomatic 

treatment. More recent research has united the cholinergic with the amyloid and tau 

hypotheses, defining numerous connections between each whereby Aβ can lower the 

synthesis and release of acetylcholine (ACh), cholinergic receptor expression and 

transduction mechanisms, and reciprocal changes in cholinergic signalling can modify the 

processing of APP and Aβ generation [25]. In particular, specific anticholinesterases have 

been shown to regulate the levels of APP and its metabolites via cholinergic [26–28] and 

non-cholinergic mechanisms [29]. Although Aβ is the principal constituent of senile 

plaques, other proteins co-localize, in particular AChE that may have a role in promoting Aβ 
aggregation to enhance its toxicity [30–32]. Indeed, Aβ-exposure enhances AChE 

expression in cell culture and in the intact brain of mouse models of AD [33]. In addition, 

the cholinergic system is present and functional in non-neuronal tissues, including immune 

cells [34–37]. In this regard, the activation of the T-cell receptor by phytohaemagglutinin 

(PHA) or by anti-CD11a antibodies triggers the expression of choline acetyltransferase 

(ChAT) and muscarinic M5 receptors and enhances the synthesis of ACh. ACh is 

additionally involved in the induction of CD4+ T-cell maturation as well as in the generation 

of cytolytic CD8+ T-lymphocytes under in vitro conditions [38]. Furthermore, ACh has been 

described to modulate the activity of immune cells via auto- and paracrine loops. The 

ligation of ACh to nicotinic receptors inhibits cytokine synthesis and release, and thus the 

‘cholinergic anti-inflammatory pathway’ provides a physiological mechanism that 

effectively links ACh to the inhibition of inflammation.

In light of the interaction between ACh and inflammation, the aim of the current study was 

to assess the effects of newly available anticholinesterases that possess a selectivity between 

AChE and butyrylcholinesterase (BuChE) on cytokine production and the signalling 

pathways in peripheral blood mononuclear cells (PBMCs) and a macrophagic THP-1 cell 

line. Not only do the current clinically available anticholinesterases possess different 
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selectivity’s between AChE and BuChE [39,40], but also recent studies have demonstrated 

that both enzyme subtypes co-regulate ACh activity [41–47]. This is particularly relevant in 

AD where brain levels of AChE are decreased and BuChE elevated [48,49]. The brain 

elevation of ACh levels augments both nicotinic and muscarinic receptor signalling, and the 

latter in particular has been widely reported to confer protection against a wide array of 

insults leading to neuronal dysfunction and death [50]. At low concentrations, nicotine can 

additionally improve memory functions and reduce amyloid plaque burden in transgenic 

mouse models of AD [51,52]. Furthermore, the α7 nicotinic ACh receptor (nAChR) has 

recently been identified as an anti-inflammatory target on macrophages [53,54], to allow 

nicotinic agonists and ACh to potentially elicit anti-inflammatory effects via the “immune 

cholinergic system” [55]. In vitro studies have demonstrated that nicotine can impact 

immune cells by inhibiting their production of IL-2 and TNF-α in human lymphocytes; 

whereas in mice, administration of α7nAChR agonists inhibits not only TNF-α but also 

IL-1, IL-6 and IL-8 [55,56]. Therefore, another aim of this study was to assess the molecular 

pathways that underpin these changes in cytokine expression, especially the mitogen-

activated protein kinases (MAPKs) that are a family of serine/threonine kinases that 

comprise ERK (Extracellular signal–Regulated Kinase) and p38 MAPK.

Our results demonstrate that blood mononuclear cells and THP-1 provide important model 

systems to study how modulation of the non-neurological cholinergic system can impact 

immunological reactions that take part in the immune response of AD patients. In addition, 

we suggest that the cholinergic system and cytokine network not only represent therapeutic 

targets but may also serve as potential marker of disease progression and pharmacological 

action of anti-dementia compounds.

Materials and Methods

Cell culture and reagents

The THP-1 monocytic cell line was obtained from American Type Culture Collection 

(Manassas, VA, USA), and cultured in complete medium composed of RPMI 1640 

containing 10% heat-inactivated FCS, 10 mM HEPES, 2 mM glutamine, 100 U/ml penicillin 

(all reagents were purchased by Sigma-Aldrich, St. Louis, MO, USA). Human peripheral 

blood mononuclear cells (PBMCs) were isolated, from blood collected in sodium citrate as 

the anticoagulant, by centrifugation with Ficoll-Paque Plus (GE Healthcare Life Sciences) 

and were washed twice in phosphate buffered saline (PBS). The viable cells (95–98% as 

assessed by trypan blue dye exclusion) were re-suspended at a concentration of 2× 106/ml in 

complete RPMI 1640.

Lyophilized synthetic Aβ (1–42) peptide was obtained from Sigma-Aldrich and prepared 

before use as previously described [57]. Aβ was dissolved in dimethyl sulfoxide to be 

diluted next at a concentration of 1 mM in sterile double-distilled pyrogen-free water, after 

which it was aliquoted and stored at −20°C. THP-1 cells and PBMCs were stimulated by Aβ 
(10 µM/ml). Lipopolysaccharide (LPS E. coli 0111:B4; 10 µg/ml; Sigma-Aldrich) or PHA 

(3 µg/ml; Sigma-Aldrich) was used as a positive control for THP-1 and PBMC cytokine 

production, respectively. On the basis of our previous studies and those of others, this LPS 
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dose and the incubation time were shown to induce the maximal stimulation for the release 

of proinflammatory cytokines.

Pharmacological inhibitors (Calbiochem (Millipore Corporation, Billerica, MA, USA) used 

were PD98059 (specific MEK1 inhibitor used at 10 µM), LY294002 (specific PI-3K 

inhibitor 20 µM), SB202190 (specific p38 inhibitor 10 µM) and (−)-phenserine (1), (−)-

phenethylcymserine (2), (−)-bisnorcymserine (3) and (−)-cymeserine (4) (each synthesized 

in the form of their tartrate salt to in excess of 99% chiral and optical purity [58,59]). 

Inhibitors were added to cells 30 min prior to stimulation with Aβ. At the end of incubation, 

PBMCs and THP-1 cells were removed by centrifugation at 500 × g for 10 min. The cell 

pellet and medium were collected and stored at −80°C until further use. In parallel studies, 

cells were pre-incubated for 30 min with nicotine or mecamylamine (10 µM, Sigma-Aldrich, 

Italy) to explore the involvement of the nAChR on Aβ-induced effects in THP-1 cells.

Subjects

PBMCs from patients affected by probable Alzheimer disease (AD) and healthy control 

(HC) subjects were studied (Table 1). The AD subjects were selected from the Neurological 

Clinic of Villa Serena Hospital, Città Sant'Angelo Pescara, Italy. Diagnosis of probable AD 

was according to standard clinical procedures and followed the NINCDS/ADRDA and 

DSM-III-R criteria [60,61]. Cognitive performance and alterations were evaluated according 

to the Mini Mental State Examination (MMSE) and the Global Deterioration Scale. AD 

patients included in the study did not present major co-morbidity, such as cancer, 

symptomatic (present or previous) cardiovascular diseases, and major inflammatory diseases 

such as autoimmunity and infections. All AD patients had undergone magnetic resonance or 

computed tomography within the previous 6 months. Samples from HCs were from 

unrelated individuals matched for gender and age with AD patients. These subjects had 

previously undergone complete neurological examinations and were judged to be in good 

health based on their clinical history. Systemic exclusion criteria included the following: 

vascular dementia inflammatory, autoimmune, hematologic, or neoplastic disease; diabetes 

mellitus, thyroid disease, alcohol addiction, acute or chronic infection; history of hepatic or 

renal failure, myocardial infarction, cranial trauma and surgery within the last 6 months; 

abnormal white blood cell counts; erythrocyte sedimentation rate, glucose, urea nitrogen, 

creatinine, electrolytes, C reactive protein, liver function tests, iron, proteins, cholesterol, 

triglycerides; use of diuretic, anti-inflammatory, antineoplastic, corticosteroid, 

immunosuppressive, antidepressant, or anticholinergic drugs within the prior 2 months. Our 

study was approved by the Local Research Ethics Committee (document number 

118/10.12.2012) and informed consent was obtained from all AD patients and HCs before 

their inclusion in the study. Written informed consent was obtained from all subjects or their 

legal caregivers. All data in this study were analyzed anonymously, and the samples were 

considered to be medical waste materials. All subjects were assessed in a uniform manner 

with identical instruments and procedures. In randomly selected AD patients recruited in this 

study, we analyzed some of the parameters obtained in AD subjects recruited from our 

previous studies, and the results were similar (data not showed).
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Measurement of Aβ Levels

Plasma levels of Aβ1–40 were determined with commercially available single-parameter 

ELISA kits (Biosource International, Camarillo, CA, USA). With each assay, the clinical 

samples, together with a blank (sample diluent), the prepared calibrator solutions and the 

appropriate controls, were tested strictly following the test instructions provided within the 

kit inserts. Absorbance was measured by Bio-Rad ELISA plate reader (Bio-Rad, Hercules, 

CA, USA) set at 450 nm and 550nm λ. To correct for optical imperfections in the 

microplate, 550 nm λ values were subtracted from the 450 nm λ values. All samples were 

run in duplicate. In the event that either the intra-assay coefficient of variation (CV) was 

>20% (calculated as range×100/average) or concentrations obtained were out-of-range of the 

standard curve (i.e., OD values not between mean OD values of highest and lowest 

calibrator concentration), samples were retested (with appropriate extension of the calibrator 

concentration range in the case of any out-of-range concentrations). The concentration range 

of the test kits, as described in the package inserts, is Aβ1–40: 7.1–1000pg/ml.

Measurement of ACh Levels

ACh was measured by commercial colorimetric/fluorimetric kit (Abcam, Cambridge, UK). 

Fifty microliter of the sample was mixed with 50 µL of reaction solution including choline 

assay buffer, choline probe (Ch), enzyme mix and AChE according to the manufacturer’s 

instructions. The level of Ch/ACh (pmol/well) was calculated by plotting the fluorescence of 

each sample in relation to choline standard curve. The standard curve, according to the 

fluorimetric procedure as indicated by manufacturer’s instructions, was obtained by diluting 

the Choline Standard to generate 0, 10, 20, 30, 40, 50, 100 and 200 pmol/well of the Choline 

Standard. Measurement of the fluorescence was by Glomax Multi Detection System 

(Promega) at λ Ex/Em 535/587 nm. In relation to the intensity of the fluorescence of the 

samples, the x values (corresponding to Ch/ACh concentration and reported as pmol/well) 

were calculated by the standard curve equation using GraphPad Prism 5.0. The limit of 

detection of Choline is defined by the analyte concentration resulting in a fluorescence 

higher than that of the dilution medium (0 dose of standard choline = Blank).

BuChE and AChE Activity assay

BuChE and AChE activity were determined by a modified microassay method of Ellman 

[62]. For AChE, the assay were performed with 1µM acetylthiocholine and 50µM 

tetraisopropyl pyrophoshoramide (iso-OMPA), a selective irreversible inhibitor of BuChE; 

while for BuChE, the assay were performed with 1mM butyrylthiocholine and 10 µM 

BW284c51. One milliunit (mU) of AChE and BuChE activity was defined as the number of 

nmoles of substrate (ACh or BuCh) hydrolysed per min at 22°C.

Quantification of cytokines

The supernatants of the cultured PBMCs and THP-1 cells were collected and the following 

cytokines and chemokines were evaluated using specific ELISA Kits (Pierce Endogen, 

Rockford, IL USA) according to the manufacturer’s instructions. The detection limit for 

these kits is <1 pg/ml for IL-1β and IL-6, <2 pg/ml for TNF-α, <3 pg/ml for IL-10 and <10 
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pg/mL for MCP-1. The intra-and interassay CV was < 10%. All results are expressed in 

picograms per milliliter

Detection of proteins activated by phosphorylation in THP-1 cells and PBMCs

Protein phosphorylation was evaluated using the cell Fast Activated Cell-based ELISA 

(FACE™ In-Cell Western) colorimetric Kits (Active Motif, Vinci-Biochem, Vinci, Italy). At 

the end of incubation cells were fixed and then incubated with a primary antibody specific 

for the native inactive protein or activated protein of interest. Thereafter, they were 

subsequently incubated with a secondary HRP-conjugated antibody and developing solution 

that provides a quantitative colorimetric reaction. The phospho- and total-protein antibodies 

can be used on equivalent cell cultures to determine the effects of cell treatment on the ratio 

of phosphorylated to total protein. Total and phospho protein were each assayed in triplicate 

using the phospho and total protein antibodies. Absorbance was read on a spectrophotometer 

at 595 nm λ. Data was plotted after correction for cell number (determined using Crystal 

Violet).

mRNA Extraction and Reverse Transcription–Polymerase Chain Reaction Analysis

Total RNA was extracted from PBMCs and THP-1 cell cultures using TRIzol reagent 

(Invitrogen, Life Technologies, Paisley, UK), according to the manufacturer’s protocol. The 

RNA concentration was estimated by measuring the absorbance at 260 nm λ using a Bio-

Photometer (Eppendorf AG, Hamburg, Germany), and RNA samples were kept frozen at 

−80°C until use. Purified RNA was electrophoresed on a 1% agarose gel to assess the 

integrity of the purified RNA. One microgram of RNA was reverse transcribed into cDNA 

using a High Fidelity Superscript reverse transcriptase commercially available kit (Applied 

Biosystems, Foster City, CA, USA), in accord with the manufacturer’s instructions. 

Polymerase chain reaction (PCR) was performed using the mRNA/cDNA specific cytokine 

primer pairs (Table 2). All PCRs were performed in PCR-express cyclers (Hybaid, 

Heidelberg, Germany). The PCR amplification condition was as follows: 95°C 5 min, 95°C 

30 sec, 60°C 30 sec, 72°C 30 sec, 72°C 10 min, 30 cycles. PCR products were separated by 

gel electrophoresis on 2% agarose gels and visualized by ethidium bromide staining. All 

gels were scanned and the normalized intensities of all reverse transcription (RT)-PCR 

products were determined by the BioRad gel documentation system (BioRad, Hercules, CA, 

USA). Mean ± SD intensities were calculated for all PCR experiments.

Statistical Analysis

Quantitative variables are summarized as the mean value and standard deviation (SD) and 

qualitative variables as frequency and percentage. The results are reported separately for AD 

patients and HC subjects. Statistical analysis was conducted according to the distribution of 

each variable, as assessed by the Shapiro-Wilk W test.

Differences in characteristics and in AChE, BuChE, ACh and A levels between HC and AD 

subjects were tested by t-test for unpaired data or Pearson chi-square test for continuous and 

categorical variables, respectively. The Spearman rho correlation coefficient (ρ) was applied 

to evaluate the correlation between Aβ, AChE, BuChE and ACh levels.
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Four different Analysis of Variance (ANOVA) for repeated measurements were also used to 

evaluate the effect of each factor (group and Aβ) and their interaction (group*Aβ) on 

inflammatory cytokine levels. In all models a priori contrasts, were used to compare the 

mean of the different parameters between AD and HC subjects, between basal and Aβ 
conditions in either AD or HC groups. ANOVA was also used to evaluate the effect of each 

compound (1), (2), (3) and (4), on the production of IL-1β, MCP-1, TNF-α and IL-10 in 

PBMCs of AD and HC subjects. In all models a priori contrasts, were used to compare the 

mean of different parameters between AD and HC subject.

For comparing the generation of each cytokine between untreated and compound (1), (2), (3) 

and (4) treated cells, a Kruskal-Wallis H test was applied. A Mann-Whitney U test with p-

value correction was applied for the pairwise comparisons in post-hoc analysis.

Statistical analysis was performed using SPSS® Advanced Statistical 11.0 software (SPSS 

Inc, Chicago, Illinois, USA).

Results

Plasma levels of AChE, BuChE, ACh and Aβ in AD and HC subjects

In our AD (n=20) and HC (n=20) subjects plasma levels of AChE, BuChE, ACh and Aβ 
were evaluated using commercial kits. Results indicated that ACh levels, although not 

significantly different, were lower in the plasma of AD (3.6±2.7 pmol/mL) in comparison to 

control subjects (5.1±3.7 pmol/mL), with some overlap in the values occurring between the 

two groups. In accord with immuno-chemical studies [63], higher BuChE compared to 

AChE plasma levels were detected in both AD patients and HC subjects. Notably, levels of 

AChE and BuChE were significantly elevated in the AD group with respect to the HC one 

(p<0.001) (Table 3). Mean plasma levels of Aβ in AD and HC subjects were 141.4±29.0 

ng/ml and 78.5±20.4 ng/ml respectively. Hence, the first clear observation in this study was 

that the amount of Aβ in the AD patients was on average 2-fold higher than that of the 

control group (p<0.001), and the correlation between plasma AChE, BuChE, ACh, and Aβ 
levels was not statistically significant.

Effect of Aβ on the expression of cytokines and chemokines in THP-1 cells

Previous studies have documented that THP-1 cells acquire a microglia-like morphology 

when treated with LPS, and there is a consistent similarity in responsiveness to all Aβ 
peptides between primary microglia and THP-1 monocytes [64,65]. Thus, THP-1 was used 

as a model of primary human microglia. We performed a preliminary experiment to select an 

optimal and non-toxic Aβ concentration that activated THP-1 cells. Aβ peptide (10 µM) 

treatment robustly increased mRNA expression of IL-1β, TNF-α and MCP-1, and more 

weakly IL-10 in THP-1 monocytes (Figure 1). We then determined whether this Aβ-induced 

rise in mRNA expression in THP-1 cells translated to similar changes in cytokines and 

chemokines production. Indeed, protein levels of IL-1β, TNF-α, and MCP-1 were elevated 

by 4.3-, 5.2-, and 4.5-fold, respectively (data not show).
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Effect of Aβ on cytokine and chemokine production in PBMCs

The baseline levels of cytokines in resting and PHA-stimulated PBMCs were comparable to 

data obtained in previous studies. The Aβ-induced rise in cytokine-levels from PBMCs 

peaked at 24 h and declined afterwards [66]. We therefore analyzed the production of 

inflammatory cytokines from PBMCs isolated from 20 AD and 20 HC subjects after 24 h of 

incubation with Aβ 10 µM. It is noteworthy that basal production of all cytokines analyzed 

in PBMCs from AD patients was significantly higher than those from HC subjects (Table 4). 

Levels of pro-inflammatory IL-1β, MCP-1, TNF-α and pleiotropic IL-6 were significantly 

elevated in PBMCs treated with Aβ, with a greater rise in levels of IL-1β, MCP-1 and TNF-

α in AD patients (Table 4).

Role of pharmacological cholinesterase inhibitors on Aβ-induced cytokine production in 
THP-1 cells

To elucidate the role of AChE and BuChE in the production of inflammatory cytokines, we 

exposed THP-1 cells and PBMCs to (−)-phenserine (1), (−)-phenethylcymserine (2), (−)-

bisnorcymserine (3) and (−)-cymeserine (4). As illustrated in Figure 2, all are close 

structural analogues of one another. However, the former, (−)-phenserine (1), has selectivity 

for AChE over BuChE, whereas all cymserine analogues, (2), (3) and (4), have preferences 

for BuChE inhibition over AChE, with (−)-phenethylcymserine (2) providing absolute 

selectivity for BuChE, (3) providing >100-fold selectivity and (4) mild selectivity (15-fold) 

[41,58,67]. Both AChE-selective (−)-phenserine (1) and BuChE selective (−)-

bisnorcymserine (3) are in clinical development.

Comparing our data on the action of (−)-phenserine (1) vs. compounds (2), (3) and (4) on 

Aβ-mediated cytokine production, it appears that AChE preferential inhibition significantly 

ameliorated the TNF-α and IL-1β Aβ-induced elevations (p<0.05). Additionally, inhibition 

of BuChE, as assessed by (−)-phenethylcymserine (2), significantly mitigated the Aβ-

induced rise in MCP-1 and TNF-α (p<0.05) Minimal effect was found on IL-6 Aβ-induced 

elevations; however, anti-inflammatory IL-10 levels, that were unaffected by Aβ alone, were 

significantly increased in the presence of (−)-phenserine (1) (Figure 2).

Effect of cholinesterase inhibitors on Aβ-induced cytokine production in PBMCs from AD 
and HC subjects

As illustrated in Figure 3, PBMCs obtained from AD patients were highly sensitive to Aβ 
challenge, which induced a heightened generation of the proinflammatory cytokines TNF-α, 

MCP-1 and IL-1β compared to similarly challenged PBMCs from HC subjects ((p<0.05). 

By contrast, anti-inflammatory IL-10 levels were similar in Aβ challenged PBMCs from AD 

and HC subjects. The administration of (−)-phenserine (1) fully ameliorated the elevated 

production of IL-1β and significantly lowered the rise in TNF-α levels induced by Aβ in 

PBMCs from AD subjects (p<0.05). Additionally, slight reductions in both of these 

cytokines were apparent in Aβ challenged PBMCs from HC subjects. In contrast, no effect 

was achieved by (−)-phenserine (1) on levels of MCP-1 and IL-10.

In relation to the BuChE selective inhibitors (2), (3) and (4), Aβ-induced elevations in AD 

PBMCs in IL-1β, TNF-α, and MCP-1 were each significantly lowered (p<0.05). A small 
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reduction was apparent by (−)-phenethylcymserine (2) on TNF-α and MCP-1 levels in HC 

PBMCs; but of note, a dramatic elevation in IL-10 was found (Figure 3).

In light of reductions in IL-1β levels by both (−)-phenserine (1) and (−)-cymserine 

analogues (3 and 4), the concentration-dependence of these inhibitors was assessed in 

PBMCs derived from AD patients following a PHA challenge that, like Aβ, substantially 

elevated proinflammatory cytokine levels (not shown) and particularly IL-1β (Figure 4). 

Incubation with 0.1 to 10 µM of (−)-phenserine (1) and (−)-cymserine analogues (3 and 4) 

fully mitigated the PHA-induced IL-1β elevation.

Effect of signalling pathway inhibitors on Aβ-induced cytokine and chemokine expression

To determine which signalling pathways are essential for Aβ-mediated increased production 

of cytokines in our cell systems, we exposed PBMCs and THP-1 cells to Aβ for 30 min and 

the phosphorylation of P38MAPK, PI3K and ERK1/2 were, thereafter, quantified using 

FACE Kits, as described in ‘Materials and Methods’. In accord with previous studies, PI3K/

Akt, ERK and p38 MAPK phosphorylation in THP-1 cells and PBMCs were induced by Aβ 
(data not shown). Hence, in Table 5 mRNA levels are shown of IL-1β, MCP-1, TNF-α and 

IL-10 in THP-1 monocytes that were preincubated for 30 min with specific inhibitors. Use 

of the MEK1/2 inhibitor PD98059 (20 µM) significantly lowered Aβ induced up regulation 

of IL-1β and MCP-1 expression by 55% and 35%, respectively, and elevated IL-10 

expression by 26% (p<0.05). Similarly to examine the role of PI3K in the Aβ-treated cells, 

PI3K activity was blocked with LY294002 (10 µM), which reduced Aβ-induced mRNA 

expression of IL-1β and MCP-1 by 30% and 36%, respectively. Next, the inhibitor 

SB203580 (10 µM) was used to define p38MAPK involvement, which reduced the 

expression of IL-1β and TNF-α by 35% and 50% respectively. The extent of inhibition of 

Aβ-induced mRNA expression and release of TNF-α and IL-1β by MAPK inhibitor 

(SB203580) and MEK1/2 inhibitor (PD98059) was similar (data not show).

These results suggest that Aβ up regulates MCP-1 and IL-1β mRNA expression via 

PI3K/Akt and ERK signalling pathways, and TNF-α by activation of p38MAPK. IL-10 

production was reduced by the inhibition of PI3K but not by inhibition of either ERK or p38 

MAPK. To investigate whether the effects of (−)-phenserine (1) and (−)-bisnorcymserine (3) 

on cytokine production are MEK1/2-, p38MAPK- or PI3K-mediated, THP-1 cells were 

incubated for 30 min with LY294002, SB203580 or PD98059 prior to addition of (1) or (2) 

and then were incubated with Aβ 10 µM for 24 hr. Preliminary results indicate that only co-

treatment with PD98059 augmented the (−)-phenserine and (−)-bisnorcymserine-mediated 

attenuation of Aβ-induced IL-1β and MCP-1 production, and that simultaneous incubation 

with LY294002 and (−)-bisnorcymserine altered IL-1β and MCP-1 levels in PBMCs of only 

3 of the 8 AD patients analyzed. Thus, additional studies and a larger number of patients are 

warranted to clarify the signalling pathways associated with the actions of the assessed 

AChE and BuChE inhibitors.
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Effect of acetylcholine receptor antagonists and agonists on (−)-phenserine (1) and (−)-
bisnorcymserine (2) down-regulation of Aβ-induced IL-1β and TNF-α

As THP-1 and mononuclear cells express nAChRs, we investigated the actions of the 

cholinergic agonist nicotine and antagonist mecamylamine on Aβ-induced cytokine 

expression. Neither the agonist nor antagonist, separately, altered the expression of 

cytokines; however, pre-treatment with nicotine (10 µM) significantly attenuated Aβ-

induced IL-1β and TNF-α production. Thereafter, THP-1 cells were pre-incubated with (−)-

phenserine (1) or (−)-bisnorcymserine (3), treated with nicotine and the production of IL-1β 
and TNF-α was quantified following Aβ challenge. As illustrated in Figure 5, treatment with 

(1) and (3) weakly augment the attenuation of IL-1β and TNF-α induced by nicotine. This 

effect was not attributable to a reduction of cellular viability, which was measured by MTT 

assay and was unchanged. No effect of nicotine, with or without (−)-phenserine (1) or (−)-

bisnorcymserine (3), was observed on either MCP-1 or IL-10 production. Mecamylamine 

had no significant effect on any of the cytokines studied.

Discussion

Whereas cerebrospinal fluid (CSF) largely mirrors the composition of the brain extracellular 

space fluid, its collection by lumbar puncture is not a widespread procedure for the 

evaluation of AD. Apart from brain-specific changes, AD-attributed abnormalities apparent 

in many peripheral cell types, such as erythrocytes, lymphocytes, platelets and fibroblasts 

[68], have led to the concept that AD be considered as a systemic disorder whose most 

prominent pathology impacts cognitive functions within the central nervous system (CNS). 

In such a scenario, peripheral tissues offer a number of advantages in evaluating biochemical 

alterations in AD; clearly key among these is their ease of sampling. In this regard, potential 

blood biomarker molecules or metabolites would be more widely applicable and would 

reduce the need for invasive, expensive, and time-consuming sampling and testing. Hence in 

the current study, PBMCs and THP-1 cells were evaluated as they parallel responsiveness to 

Aβ as do primary microglia, and thus represent an applicable model to define relationships 

between neuroinflammation and cholinergic dysfunction.

The initial finding of our study is that plasma levels of both AChE and BuChE were 

significantly higher in AD patients compared to HC subjects. In line with this, levels of ACh 

tended to be lower in the plasma of AD patients. Furthermore, levels of Aβ were on average 

2-fold higher in AD vs. HC plasma samples.

There is compelling evidence that Aβ is a key factor in the development of AD [3,4,25] and 

growing evidence that changes in plasma Aβ levels may provide an indicator of AD onset 

and progression [69,70], albeit clearer understanding of the relationships between brain, 

CSF and systemic levels requires to be determined. Aβ peptide found present in AD brain is 

considered primarily made locally [25]. Produced in soluble monomeric form, Aβ generates 

soluble oligomers that are believed to be the primary toxic species [5,71], which eventually 

create the aggregated Aβ found in brain amyloid plaques. Following the intravenous 

injection of synthetic Aβ small amounts have been detected in the brain of rodents [72] and 

primates [73], and, reciprocally, soluble systemic Aβ has been found in plasma after central 

administration [74]). Hence, soluble forms of Aβ circulating within the plasma appear to be 
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readily in contact with immune cells outside the brain, with the potential of exerting 

modulatory activities on such peripheral cells that could then ultimately contribute to AD 

processes both in brain and peripherally [75]. Aβ peptide has been shown to induce the 

expression of IL-1β, TNF-α, and IL-6 in astrocytes and microglia in culture [76]. 

Conversely, cytokines secreted by microglial cells and astrocytes can induce the synthesis 

and modify the processing of APP [77,78], and a correlation has been established between 

Aβ neurotoxicity and cytokine production [79].

A large body of evidence supports the involvement of humoral mechanisms in the immune-

to-brain communication. The brain exerts strong modulatory effects on immune function by 

activation of the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic 

(sympathetic) nervous system (SNS), and pro-inflammatory cytokines trigger the HPA axis 

via these neural or humoral mechanisms [79]. As a consequence, we evaluated the in vitro 
effect of Aβ on humoral response of peripheral cells by analysing the production of key 

inflammatory cytokines.

Our results demonstrate that Aβ pro-inflammatory cytokines, such as IL-1β, TNF-α, 

pleiotropic IL-6 and the chemokine MCP-1 in challenged PBMCs and THP-1 cells, a human 

monocytic cell line that bears features of microglial cells [80]. These results emphasizes the 

role of Aβ in the induction of cell migration, and thus elevated Aβ levels within the brain 

can potentially favour the migration of monocytes from the blood and into the brain. 

Moreover, inflammatory cytokines generated and secreted by monocytes and microglial cells 

can play a key role in neuronal cell damage and death.

Further to the hallmark generation and deposition of Aβ and the invariable presence of 

neuroinflammation in AD brain, cholinergic dysfunction is an assured feature. In line with 

the loss of cholinergic neurons in the nucleus basalis and its wide projection areas within the 

cerebral cortex, hippocampus and thalamus in AD, there is a decline in ACh levels and a 

parallel loss of AChE [24,25,81]. In contrast, a rise in brain BuChE levels occurs 

[48,49,42,43], creating an imbalance in the normal ratio of BuChE to AChE of 0.2 in healthy 

brain to as high as 11 in AD brain [44,47]. This deregulation in the balance between AChE 

and BuChE that both efficiently metabolize ACh likely results in a mismatch between ACh 

synaptic release, that is already reduced in AD brain, and its cleavage, further perturbing 

physiological function.

Under routine conditions in a healthy brain the rate of ACh metabolism by AChE and 

BuChE is limited only by the rate of its diffusion into the internalized gorge of either 

enzyme where binding and cleavage of ACh occurs. A key difference in the Km of AChE 

and BuChE towards the metabolism of ACh distinguishes the two enzymes and result in 

their differential efficiencies to hydrolyze ACh in a concentration-dependent manner 

[43,44,47]. The Km of BuChE is set high, making it more efficient at a high substrate 

concentration. In contrast, the Km of AChE is set low providing it greater catalytic efficiency 

at low ACh concentrations; however, substrate-induced inhibition of AChE can occur at high 

ACh concentrations [82,83]. These slight differences in enzyme activities and locations of 

AChE and BuChE in the brain have led to the suggestion that, in the normal brain, AChE is 

the primary enzyme responsible for ACh hydrolysis with BuChE playing a supportive role at 
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high ACh concentrations [47], as occurs within the locality of the synaptic cleft where ACh 

levels have been predicted to reach µM levels with the potential to overcome and induce 

substrate-mediated inhibition of AChE. The close spatial relationship between glial BuChE 

and normal synaptic AChE would support optimal hydrolysis across a range of conditions to 

maximize brain cholinergic function. Imbalance in this finely tuned relationship between 

AChE and BuChE could potentially impact not only synaptic levels of ACh but also the 

cholinergic anti-inflammatory pathway [55,79].

The cholinergic anti-inflammatory pathway provides the efferent/motor arm of the 

inflammatory reflex, which is a critical neural circuit that regulates the immune response to 

injury and invasion. On one hand, the afferent arc of the inflammatory reflex is activated by 

cytokines and, in particular, TNF-α during local injury and infection to initiate a cascade of 

mediator release and the recruitment of inflammatory cells to the site of infection/injury to 

contain it. On the other hand, the cholinergic anti-inflammatory pathway provides a braking 

mechanism on the innate immune response to importantly protect the body from damage 

that can arise should a localized inflammatory response extend outside the local tissue or 

remain activated for too long. Such action is provided by the vagus (10th cranial) nerve that 

innervates the celiac ganglion, the site of origin of the splenic nerve [84]. Stimulation of the 

efferent pathway of the vagus nerve results in transmission of action potentials to the spleen, 

where a subset of specialized T cells is activated to secrete ACh [85,86].

The anti-inflammatory action of ACh to regulate the production of pro-inflammatory 

cytokines is mediated via the α7nAChR. In this regard, ACh has been described to inhibit 

LPS-induced production of proinflammatory cytokines, including IL-1β, TNF-α in 

microglia cultures [87] and to significantly and concentration-dependently decrease TNF-α, 

IL-1β, IL-6 and IL-18 production by endotoxin-stimulated human macrophage cultures via a 

post transcriptional mechanism [53]. The levels of ACh are continuously regulated by the 

hydrolytic cholinesterases to rapidly degrade excess. When levels of AChE and BuChE 

become elevated, a resulting decline of ACh levels may in large part be responsible for the 

rise of pro-inflammatory cytokines – with the easing off of the cholinergic anti-

inflammatory braking mechanism. With the altered expression of AChE within AD patients, 

elevated levels of BuChE correlating positively with disease progression [40,43,49], and 

with elevated systemic BuChE levels occurring with and providing a marker chronic 

inflammation [88], there are multiple opportunities that the normal homeostasis provided by 

the inflammatory reflex is adversely changed and/or becomes dysregulated in AD. In accord 

with this and notable in the current study, plasma levels of AChE and BuChE were 

significantly higher in the AD than HC group (p<0.001) (Table 3).

A systematic review and meta-analysis of studies assessing BBB permeability in aging, 

cerebral microvascular disease and AD suggest that permeability increases occur in AD and 

may represent an important mechanism in disease onset and progression [89], although it is 

difficult to ascertain whether elevated BBB permeability is consequential or causal. 

Nevertheless, profound changes in permeability associated with AD may facilitate the 

movement of AChE and BuChE as well as immune markers between the brain and blood 

compartments and vice versa; potentially allowing peripherally produced inflammatory 

proteins to modulate Aβ generation and amplify the formation of cerebral amyloid deposits. 
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In a previous study of the in vitro production of cytokines, we reported a significantly higher 

production of inflammatory cytokines IL-1β, IL-6, TNF-α and interferon-γ in PHA-

stimulated PBMCs from AD subjects [14,90,91], and Rao et al., [92] likewise reported 

elevated BuChE and AChE in the plasma and tissue in AD. Since PBMCs possess the 

components for a non-neuronal cholinergic system, with molecular forms similar to those 

found in brain tissue that may play a key role in the regulation of inflammation [35–37], we 

used PBMCs and THP-1 cells to study the relationship between inflammation and 

cholinergic dysfunction. In this regard, evaluation of cytokine-expression/release by PBMCs 

and THP-1 cells challenged with Aβ, showed that IL-1β, TNF-α, MCP-1 and IL-6, all of 

which are pro-inflammatory cytokines, are increased upon 24 hr exposure to A. In contrast, 

IL-10 with anti-inflammatory activities, in LPS-stimulated THP-1 cells, was weakly 

elevated, and was not affected by Aβ in PBMCs of either AD patients or HC subjects.

The molecular pathways that underpin these changes in cytokine expression are clearly of 

interest, especially the MAPKs that are a family of serine/threonine kinases that comprise 

ERK and p38 MAPK. The role of ERK activation in response to Aβ peptides in neurons 

remains largely unclear. Two groups have reported that Aβ, in mature hippocampal neurons, 

enhances ERK phosphorylation and that MEK1 inhibitors prevent Aβ-mediated tau 

phosphorylation and neurite degeneration [93,94]. In contrast, other studies have shown that, 

in cortical or hippocampal neurons, Aβ does not affect ERK phosphorylation [95]. A major 

signalling pathway that, in particular, contributes quantitatively to the up-regulation of 

cytokine production in peripheral inflammation is the p38 MAPK pathway, especially the 

key regulatory enzyme p38a MAPK. Increasing evidence suggests that the p38 MAPK 

signalling cascade additionally contributes to CNS cytokine overproduction and ensuing 

neurodegenerative dysfunction. Previous studies have suggested that Aβ activates, with a 

similar time course, ERK and p38MAPK in microglia and THP-1 cells. It is now widely 

recognized that the PI3K/AKT pathway participates in multiple cellular processes, including 

cell growth, survival, and notably inflammation. Whether or not the PI3K/AKT pathway 

participates in Aβ-induced inflammatory cytokine production, however, is not well 

understood. Others have shown that the PI3K/AKT pathway positively regulates LPS 

signaling in monocytes/macrophages [96,97]. Conversely, other studies have indicated that 

LPS signaling and gene expression in monocytic cells was negatively regulated by the 

PI3K/AKT pathway [98,99]. This dichotomy may be due, in part, to the nonspecific effects 

of PI3K inhibitors or other factors such as cell types, agonists, and the concentration of the 

inhibitor.

Our examination of the effects of Aβ on kinase pathways shows that in PBMCs and THP-1 

cells Aβ activated p38 MAPK, ERK1/2 and Akt, and that this activation was necessary for 

Aβ-induced cytokine production. Specifically, the pretreatment of cells with PI3K inhibitor 

(LY294002), p38 inhibitor (SB203580) and ERK inhibitor (PD98059) reduced Aβ-mediated 

IL-1β, TNF-α and MCP-1 production. These observations suggest that Aβ-induced cytokine 

expression in THP-1 and PBMCs from AD patients and HC subjects result from an 

activation of multiple signalling pathways that include MAPKs p38 and ERK, and PI-3K 

pathways.
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In light of the elevated levels of plasma AChE and BuChE evident in our AD patients vs. HC 

subjects, and bearing in mind that these enzymes derive from multiple origins (including 

potentially the brain) and together with systemic cytokines can likely access the brain, we 

sought to determine whether selective cholinesterase inhibitors could mitigate Aβ-induced 

cytokine expression. The recent development of inhibitors with high selectivity for AChE 

((−)-phenserine (1): 80-fold) and BuChE ((−)-cymserine (4): 15-fold, (−)-bisnorcymserine 

(3): 110-fold, (−)-phenethylcymserine (2): >5000-fold) [47,58] provides the potential to start 

to define the role AChE, BuChE and their clinically relevant inhibitors may have on 

inflammatory mediators that promote AD. Our preliminary results indicate that (−)-

phenserine (1) reduced IL-1β and TNF-α release from AD PBMCs following Aβ challenge 

(Figure 3), and a lesser reduction was similarly observed with (−)-phenethylcymserine, (−)-

bisnorcymserine and (−)-cymserine (2–4) that additionally mildly lowered MCP-1 levels. 

There was no observable effect of any of the inhibitors on IL-10 production. Our studies of 

THP-1 cells challenged with Aβ (Figure 2) largely verified these findings, with (−)-

phenserine-induced AChE inhibition playing a role in TNF-α and IL-1β production and 

cymserine analogue-induced inhibition of BuChE reducing MCP-1 and TNF-α, likewise 

with little impact on IL-10 levels.

To evaluate both translation across immunological challenges as well as concentration-

dependence, PBMCs were challenged with PHA in the presence and absence of selective 

AChE and BuChE inhibitors and IL-1β levels were quantified, as generation of this cytokine 

was lowered by 1–4 in our Aβ studies. In accord with prior studies, PHA elevated IL-1β 
production in PBMCs and this action was ameliorated by both (−)-phenserine (1) and 

cymserine analogues (3 and 4) at 0.1 µM, a concentration that all compounds retain their 

selectivity between AChE and BuChE [47,58].

Prior studies have demonstrated that nAChR agonists provide protective effects against Aβ-

induced neutotoxicity [100] and that the nAChR is present on the human monocytic THP-1 

cell line and human PBMCs. The binding of nicotine to the α7 nAChR decreases some 

inflammatory cytokines [56], such as TNF-α, MIP2 and IL-6. In light of this we probed our 

cellular system with a nicotinic agonist and antagonist to assess potential involvement of 

nicotinic mechanisms in our observed AChE and BuChE inhibitor associated actions. Our 

data using THP-1 cells showed that nicotine induced a reduction of TNF-α and IL-1β 
production. We additionally observed an inhibitory effect of the AChE and BuChE inhibitors 

(−)-phenserine (1) and (−)-bisnorcymserine (3) on Aβ-induced cytokine production. Synergy 

between nicotine’s nAChR agonist action and the actions or (1) and (3) to inhibit cytokines 

production was not evident; however, further studies across wider dose ranges and use of 

more specific nicotinic agonists are warranted to ascertain nicotinic involvement.

Our present work showing the effect of selective AChE and BuChE cholinesterase inhibitors 

on Aβ-induced cytokine production in PBMCs has significant implication from the 

following perspective. It has become increasingly clear that Aβ can similarly induce the 

elevated release of CNS proinflammatory cytokines [7–11,76–78], as we have herein 

described for systemic ones, to generate a chronic inflammatory state that potentially cycles 

back to augment the amyloidogenic processing of APP into Aβ to likely impact disease 

progression. Notably, cytokines have been described to participate in APP gene regulation 
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[101]. Moreover, TGF-β1 potentiates Aβ generation in astrocytes and in transgenic mice 

[102]. Interestingly, Aβ (1–42) fibrillar precursors have been reported to induce TNF-α 
production in THP-1 cells [103]. Such Aβ/THP-1 cell interactions to induce TNF-α have 

been described to involve a PKC-dependent process [104], with Aβ subfragments (Aβ (25–

35)) ineffectively inducing TNF-α production [105]. Identification of the pathway(s) via 

which extracellular Aβ activates such intracellular PKC-dependent secretion of TNF-α may 

help in developing new therapeutic strategies for AD. Furthermore, the recently proposed 

role of Aβ as a putative transcription factor and characterization of amyloid-β peptide 

interacting domain (AβID) in the APP and BACE1 promoter sequences are significant 

[106]. This interaction implicates a role for Aβ in activating apoptotic genes and in 

amyloidogenesis [107]. In this context, our present work showing the ability of selective 

AChE- and BuChE-inhibitors to prevent heightened cytokine secretion, assumes significance 

for AD treatment.

In synopsis, over recent years it has become increasingly clear that anticholinesterases, 

which remain the primary therapy in AD, have potential actions beyond simply ameliorating 

hallmark cholinergic deficits in neurotransmission found in the AD brain. In much the same 

manner that Aβ can impact cholinergic receptor expression on neurons, reduce ACh 

synthesis and induce neuronal dysfunction and loss, changes in cholinergic input and 

cholinergic drugs (both anticholinesterases and direct agonists) can modify APP expression, 

its processing to generate Aβ, and Aβ-induced toxicity [25,108–112]. It has become 

increasingly clear that Aβ can also induce the elevated release of CNS and systemic 

proinflammatory cytokines to generate a chronic inflammatory state that, likewise, cycles 

back to augment the amyloidogenic processing of APP into Aβ to likely impact disease 

progression. Here too, the cholinergic system has a role, acting as an anti-inflammatory 

brake, and anticholinesterase drugs may have the potential to impact or reverse this process.

The precise mechanisms responsible for Aβ-induced cytokine gene expression remain to be 

fully elucidated, and the increasingly available knowledge relating to Aβ-driven signalling 

creates a rising need for application of a biological system approach to understand this 

complex network. Increasing evidence now points towards an anti-inflammatory role for 

cholinesterase inhibitors [113,110]; suppressing the release of cytokines from activated 

microglia and PBMCs within the brain and blood, but likely working on many other levels 

too. Elucidating the mechanisms underpinning these actions, whether cholinergically 

mediated or direct non-cholinergically mediated actions, will hopefully aid their 

optimization and translation to clinical studies to provide better therapy.
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Figure 1. 
Aβ-induced expression of IL-10, MCP-1, TNF-α and IL-1β in THP-1 cells. Data are 

expressed as the fold increase of mRNA expression of each cytokine in Aβ treated THP-1 

cells relative to untreated cells. Data are representative of pooled experiments.
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Figure 2. 
Effects of pharmacological inhibitors (−)-phenserine (1), (−)-phenethylcymserine (2), (−)-

bisnorcymserine (3) and (−)-cymserine (4) on Aβ-induced cytokines production in THP-1 

cells. Cells were incubated with compound (1), (2), (3) or (4) all 10 uM, 24 hr before 

addition of 10 µM Aβ. ELISA analysis of cell-free supernatants was performed to quantify 

cytokine levels. Data are expressed as the mean and standard deviation of cytokine 

production. Kruskal Wallis H test p=0.016 for IL-1β, p=0.009 for MCP-1, p=0.025 for 

IL-10, p=0.044 for IL-6, p=0.006 for TNF-α. *p<0.05 post-hoc test vs Aβ
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Figure 3. 
Aβ-mediated secretion of IL-1β, MCP-1, TNF-α and IL-10 and their modulation by (−)-

phenserine (1), (−)-phenethylcymserine (2), (−)-bisnorcymserine (3) and (−)-cymserine (4) 

(all 10 uM) in PBMCs from AD patients and HC subjects. At the end of incubation, cell-free 

supernatant was harvested, and the levels of released cytokines were determined by ELISA. 

Data are expressed as the mean and standard deviation of IL-1β, MCP-1, TNF-α and IL-10 

production in PBMCs from AD (■) and HC (□) subjects. *p<0.05 post-hoc test vs HC 

levels.
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Figure 4. 
PHA-induced elevated secretion of IL-1β and its concentration-dependent amelioration by 

(−)-phenserine (1), (−)-bisnorcymserine (3) and (−)-cymserine (4) (all 0.1 to 10 µM) in 

PBMCs from AD patients. At the end of incubation, cell-free supernatant was harvested, and 

the levels of released IL-1β, were determined by ELISA. Data are expressed as mean values.
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Figure 5. 
Effect of pharmacological inhibitor (1) and (3) on Aβ-induced expression of IL-1β and 

TNF-α mRNA in THP-1 cells. THP-1 cells pre-incubated with 10 µM nicotine (Nic) or 

mecamylamine (Mec) for 30 min, were then treated with compound (1) and (3) (both 10 

µM) for 24 h. After an additional 24 h of incubation with Aβ, levels of mRNA expression 

relative to that 18S, used as an internal control, were evaluated. Data are expressed as the 

mean and standard deviation of two independent experiments.
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Table 1

Characteristics of patients with Alzheimer’s disease (AD) and healthy control (HC) subjects.

Variable HC
(n=20)

AD
(n=20)

p-value a

Age (years), mean±SD 73.3±5.1 75.6±5.5 0.314

Gender, n (%) 0.744b

  Male 8 (40.0) 7 (35.0)

  Female 12 (60.0) 13 (65.0)

MMSE score, mean±SD 26.2±3.1 18.5±2.3 <0.001

Disease duration (months), range - 2–8 -

Education, n (%) 0.687 b

  <5 years 3 (15.0) 5 (25.0)

  5–13 years 8 (40.0) 8 (40.0)

  >13 years 9 (45.0) 7 (35.0)

a
t-test for unpaired data;

b
Chi-squared test AD patients vs. HC subject.
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Table 2

Sequences of the oligonucleotide primers utilized in the reverse transcriptase polymerase chain reaction.

Gene Forward primer sequence (5'-3') Revers primer sequence (5'-3') product size

IL-1β TGAGGATGACTTGTTCTTTGAAG GTGGTGGTCGGAGATTCG 115 bp

IL 10 GAGAACCAAGACCCAGACATC TCACTCATGGCTTTGTAGATGC 185 bp

MCP-1 AACTGAAGCTCGCACTCTCG GAGTGAGTGTTCAAGTCTTCGG 338 bp

TNF-α CCTTCCTGATCGTGGCAG GCTTGAGGGTTTGCTACAAC 184 bp

18S CTTTGCCATCACTGCCATTAAG TCCATCCTTTACATCCTTCTGTC 199 bp
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Table 3

Mean ± standard deviation of AChE, BuChE, ACh and Aβ in plasma of patients with Alzheimer’s disease 

(AD) and healthy control (HC) subjects.

Variable HC
(n=20)

AD
(n=20)

p-value a

AChE (mU/mL) 207.0±152.8 1244.3±259.2 <0.001

BuChE (mU/mL) 1031.8±99.5 3387.9±851.0 <0.001

ACh (pmol/mL) 5.1±3.7 3.6±2.7 0.229

Aβ (ng/mL) 78.5±20.4 141.4±29.0 <0.001

a
t-test for unpaired data.
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Table 5

Mean ± standard deviation of IL-1β, MCP-1, TNF-α and IL-10 production in THP-1 cells pre-incubated with 

LY294002, PD98059 or SB202190 and then incubated in the presence of Aβ for 24 h

IL-1β MCP-1 TNF-α IL-10

Aβ 0.74±0.06 0.77±0.02 0.84±0.06 0.82±0.06

Aβ+LY294002 0.52±0.11* 0.49±0.11* 0.94±0.01 0.71±0.05

Aβ+PD98059 0.33±0.01* 0.50±0.01* 0.81±0.02 1.03±0.05*

Aβ+SB202190 0.47±0.18* 0.80±0.10 0.42±0.01* 0.93±0.12

p-valuea 0.004 0.010 0.005 0.008

a
Kruskal-Wallis H test.

*
p<0.05 post hoc test vs. Aβ
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