320 research outputs found

    Ethics After New Materialism: A Modest Undertaking

    Get PDF

    Haemodynamics Regulate Fibronectin Assembly via PECAM

    Get PDF
    Fibronectin (FN) assembly and fibrillogenesis are critically important in both development and the adult organism, but their importance in vascular functions is not fully understood. Here we identify a novel pathway by which haemodynamic forces regulate FN assembly and fibrillogenesis during vascular remodelling. Induction of disturbed shear stress in vivo and in vitro resulted in complex FN fibril assembly that was dependent on the mechanosensor PECAM. Loss of PECAM also inhibited the cell-intrinsic ability to remodel FN. Gain- and loss-of-function experiments revealed that PECAM-dependent RhoA activation is required for FN assembly. Furthermore, PECAMāˆ’/āˆ’ mice exhibited reduced levels of active Ī²1 integrin that were responsible for reduced RhoA activation and downstream FN assembly. These data identify a new pathway by which endothelial mechanotransduction regulates FN assembly and flow-mediated vascular remodelling

    tRNAs as Antibiotic Targets

    Get PDF
    Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial ā€œstringent responseā€ mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed

    Compressible boundary layers with sharp pressure gradients

    Get PDF
    The work of this thesis was undertaken as a C.A.S.E. award project in collaboration with Rolls-Royce to examine compressible laminar boundary layers with sharp adverse pressure-gradients. Much of the work is devoted to the solution of two important particular problems. The first flow considered is that along a semi-infinite flat plate with uniform pressure when X Xā‚€ being so chosen that the boundary layer is just on the point of separation for all X > Xā‚€. Immediately downstream of Xā‚€ there is a sharp pressure rise to which the flow reacts mainly in a thin inner sublayer; so inner and outer asymptotic expansions are derived and matched for the stream function and a function of the temperature. Throughout the thesis the ratio of the viscosity to the absolute temperature is taken to be a function of x, the distance along the wall, alone, and the Illingworth-Stewartson transformation is applied. The Prandtl number, Ļƒ, is taken to be of order unity and detailed results are presented for Ļƒ= 1 and 0.72. The second flow considered is that along a finite flat plate where the transformed external velocity Uā‚(X) is chosen such that Uā‚(X) = uā‚€(-X/L)[super]Īµ, where O< Īµ <<1, is the transformed length of the plate and X represents transformed distance downstream from the trailing edge. The skin friction, position of separation and heat transfer right up to separation are determined. On the basis of these two solutions, another solution which is not presented in detail, and a solution (due to Curie) to a fourth sharp pressure gradient problem, a general Stratford-type method for computing compressible boundary layers is derived, which may be used to predict the position of separation, skin friction, heat transfer, displacement and momentum thicknesses for a compressible boundary layer with an unfavourable pressure gradient. In all this work techniques of series analysis are used to good effect. This led us to look at another boundary-layer problem in which such techniques could be used, one in which two parallel infinite disks are initially rotating with angular velocity Ī© about a common axis in incompressible fluid, the appropriate Reynolds number being very large. Suddenly the angular velocity of one of the disks is reversed. A new examination of this problem is presented in the appendix to the thesis

    Ethical Conundrums and Virtual Humans

    Get PDF
    This paper explores ethical conundrums and virtual humans through building upon a post-Kantian framework, and one emerging from what is known as New Materialism. It begins by presenting the recent research and literature on virtual humans and suggesting that the central ethical conundrums that need to be examined are those of agency and values. The paper then argues that a combination of Luciano Floridiā€™s approach and one developed from New Materialism, namely modest ethics, offers a means of engaging with the ethical conundrums of virtual humans. It is argued that as yet there is little evidence for a democratic design process for virtual humans nor is there evidence about the possible impact virtual humans may have on a postdigital society. The paper concludes by suggesting that there need to be more open processes for debate which bring to light the values that are being built into these profound developments by the experts and focuses on using a modest ethics approach

    Toroidal Variable-Line-Space Gratings: The Good, the Bad and The Ugly

    Get PDF
    Toroidal variable-line-space (VLS) gratings are an important factor in the design of an efficient VUV solar telescope that will measure the CIV (155nm) and MgII (280nm) emissions lines in the Sun's transition region. In 1983 Kita and Harada described spherical VLS gratings but the technology to commercially fabricate these devices is a recent development, especially for toroidal surfaces. This paper will describe why this technology is important in the development of the Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program (the good), the delays due to the conversion between the TVLS grating design and the optical fabrication (the bad), and finally the optical testing, alignment and tolerancing of the gratings (the ugly). The Solar Ultraviolet Magnetograph Investigation, SUMI, has been reported in several papers since this program began in 2000. The emphasis of this paper is to describe SUMI's Toroidal Variable-Line-Space (TVLS) gratings. These gratings help SUMI meet its scientific goals which require both high spectral resolution and high optical efficiency for magnetic field measurements in the vacuum ultraviolet wavelength band of the solar spectrum (the good). Unfortunately, the technology readiness level of these gratings has made their implementation difficult, especially for a sounding rocket payload (the bad). Therefore, this paper emphasizes the problems and solutions that were developed to use these gratings in SUMI (the ugly). Section 2 contains a short review of the scientific goals of SUMI and why this mission is important in the understanding of the 3D structure of the magnetic field on the Sun. The flight hardware that makes up the SUMI payload is described in Section 3 with emphasis on those components that affect the TVLS gratings. Section 4 emphasizes the alignment, testing and optical modeling that were developed to optimize the performance of these gratings

    Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent

    Get PDF
    Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the antibiotic-producing microbe resists its own toxin. Using a combination of structural, biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype. This study illuminates the evolution of resistance in self-immunity genes and provides mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the development of anti-infectives and the prevention of biocontrol emasculation

    Student Ensemble: Wind Symphony

    Get PDF
    Center for the Performing ArtsNovember 17, 2011Thursday Evening8:00 p.m
    • ā€¦
    corecore