COMPRESSIBLE BOUNDARY LAYERS WITH SHARP
PRESSURE GRADIENTS

Michael John Reader-Harris
A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1981

Full metadata for this item is available in
St Andrews Research Repository
at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13795

This item is protected by original copyright


http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13795

_ COMPRESSIBLE BOUNDARY LAYERS WITH SHARP PRESSURE GRADIENTS

Michael John Reader-Harris

Thesis submitted for the
Degree of Doctor of Philosophy

of The University of St. Andrews




ProQuest Numlber: 10170720

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely eventthat the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10170720

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346



ABSTRACT

The work of this thesis was undertaken as a C.A.S.E.
award project in collaboration with Rolls-Royce to examine
compressible laminar boundary layers with sharp adverse
pressure gradients. Much of the work is devoted to the
solution of two important particular problems. The first
flow considered is that along a semi-infinite flat plate
with uniform pressure when X-<.XO and with the pressure
for X > XO being so chosen that the boundary layer is
just on the point of separation for all X >JXO. Immedi-
ately downstream of XO there is a sharp pressure rise to
which the flow reacts mainly in a thin inner sublayer;
so inner and outer asymptotic expansions are‘derived and
matched for the stream function and a function of the
temperature. Throughout the thesis the ratio of the
viscosity to the absolute temperature is taken to be a
function of x; the distance along the wall, alone, and
the Illingworth-Stewartson transformation is applied.

The Prandtl number, ¢ , is taken to be of order unity

and detailed results are vresented for ¢ = 1 and 0,72.
The second flow considered is that along a finite flat
plate where the transformed external velocity U,(X) is

chosen such that
€
U (X) = ug(-X/L) , where O<e<<1,

L is the transformed length of the plate and X represedts
transform=d distance downstream from the trailing edge.
The skin friction, position of separation and heat trans-

fer right up to separation are determined,
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On the basis of these two solutions, another solution
which is not presented in detail, and a solution (due to
Curle) to a fourth sharp pressure gradient problem, a
general Stratford-type meﬁhod for ccmputing compressible
boundary layers is derived, which may be used to predict
the position of separation, skin friction, heat transfer,
displacement and momentum thicknesses for a compressible

boundary layer with an unfavourable pressure gradient.

In all this work techniques of series analysis are
used to good effect., This led us to look at another
boundary-layer problem in which such techniques could
be used, one in which two parallel infinite disks are
initially rotating with angular velocity{2 about a
common axis in incompressible fluid, the appropriate
Reynolds number being very large. Suddenly the angular
velocity of one of the disks is reversed, A new
examination of this problem is presented in the appendix

to the thesis.
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NOTATION :

In chapters 1, 4 and 5 lower case letters are used
for physical co—qrdinates and véloéity components;
upper case letters are used for co-ordinates and
velocity components in compressible flow transformed
with ﬁhe Illingworth-Stewartson transformation. In
those chapters in which eiact solutions of the boundary- .
layer equations are computed the notation of chapters 1,
4 and 5 is inconvenient, In chapter 2, following Curle
(1978 and 1979b), lower case letters are used for trans-
formed co-ordinates and velocity components. In chapter
3, lower case letters are used for transformed and non-
dimensionalized co-ordinates and velccity components;
other notations are defined in that chapter as required;
the notation is similar to that of Riley and Stewartson
(1969). The appendix to tﬁe thesis uses unstarred

lower case letters for non-dimensionalized variables.




NOMENCLATURE :

X distance measured parallel to the plate (measured from
the leading edge of the plate unless otherwise stated)
y distance measured normal to the plate (y = 0)
o) pressure
p. denéity
T temperature
Y viscosity
) kinematic viscosity, =}w4p
k thermal conductivity
Ch specific heat at constant pressure
Cy specific heat at constant volume
¥ ratio of the specific heats, = cp/cv
a speed of sound |
M Mach number
T skin friction, = ('au/ay)w
Qy heat transfer rate, = k ()T/ay)w
00
81 displacemenf thickness, =.‘[ ( 1 - L ‘)dy
0 141
82 momentum thickness, = ” i ( 1 - E—-)dy
g F1Y %
Suffices
0 conditions at a specific reference position upstream
of the plate
1 local conditions at the edge of the boundary layer

conditions aﬁ the wall



1,  INTRODUCTION

1.1, Motivation

The aim of this thesis is twofold, to gain new insight
into compressible boundary layers with sharp pressure grad-
ients by éomputing solutions of significant problems and,
using the new solutions, to devise a simple but accurate
procedure which ﬁay be used to predict the position of
separation, the skin friction, the heat transfer, the
displacement thickness and the momentum thickness for a
compressible laminar boundary layer with an unfavourable
pressure gradient. The method‘used is a generalization
to compressible flow of the boundary-layer calculation
methods of Stratford (1954) and Curle (1977). The work
has been undertaken as a C.A.S.E. award project in coll-

aboration with Rolls-Royce Ltd., Aero Division, in Derby.

It is clearly not unreasonable to ask why another
method for computing compressible boundary layers approxi-
mately is required, when there are already several in use,
inclugding those of Cohen and Reshotko (1956b) and Poots
(1960) . Part of the answer lies in the fact that the
method proposed here is at its most accurate in regions
of sharp adverse pressure gradient where other methods
are at their least accurate, Moreover in regions of
sharp adverse pressure gradient at any rate this method is
well based physically and does not invplve either an
arbitrary choice of velocity and temperature profiles or
disregarding the thermal-energy integral equation. % -

is also simple to use.
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It is also not unfair to ask whether there is a continued
need for approximate methods of computing boundary laye;s as
the development of computing makes the direct solution of
the partial differential equations of the compressible
boundary layer more tractable. The fact that this work
has been undertaken as a C.A.S.E. award project shows that
Rolls-Royce finds a continuing need for approximate methods
which provide reliable answers quickly. Moreover the
particular solutions of the compressible boundary-layer
equations here computed and the approximate method derived
from these solutions indicate which are the important para-
meters, show the type'qf dependence on the parameters which
is to be expected and thus enable us to interpret better
the results of solving the partial differential equations

directly.

1.2 Background to the problem

Many of the first approximate methods for solving the
incompressible boundary-layer equations were based on an
idea due to K. Pohlhausen (1921). It consisted of making
some plausible assumption about the shape of the velocity
profile in the boundary layer. In the simplest form of
the method the velocity profile was taken to be a quartic
polynomial in the non-dimensional co-ordinate normal to
the wall q=y/S, where € is a length characteristic of the

thickness of the layer:

u 2 3 L
/u1 = f(q) = B oy & AT & azq” + an’. {1.1)
This profile was then made to satisfy some of the same

conditions as the true velocity profile did at the wall




and at the edge of the boundary layer :

2 u, du
!.l=0,bL2l ==-';l —n. When y = 0,
3y dx
(1.2)
_ du 3% o
and u = Uy 3y = S;i' 0, when y = 5.

‘When these boundary conditions are used to determine the

coefficients in (1.1),

3 Lo, 1 3
u/u1 = 2.() - 29 0t /6[\')(1 —r)) ,

(1.3)
gty

where N = v .
dax

Hence the skin friction, displacement and momentum thicknesses
can be obtained in terms of §, and § itself can be determined

from the momentum integral equation which becomes:

AN u, ! ﬁ "
gl e R i (1.4)
dx uy u1'

Where primes denote derivatives with respect to x.

This method appears in general to give good results
in regions of favourable pressurc gradient; on the other
hand it becomes rapidly less accurate when the pressure
gradient is unfavourable. In the case of Howarth's
problem (1938), for example, the error in the distance to
separation is 30 per cent. Moreover the degree of the
polynomial taken and exactly which boundary conditions are
satisfied are arbitrary; if a quintic instead of a quartic
polynomial is used in (1.1), errors near separation are
much reduced but the method fails completely near to a

stagnation point,’
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The Pohlhausen method can be rewritten so that u1" does
not appear explicitly in the formulation. Introducing the

parameters

2

A=yt 5 =

the momentum integral equation becomes
8,° >\ |
- O (et | SNRUDRE « i (0N 2§ (R -
Y1 Ox (v » Bk (u ') =2{1 "')‘1“'[*'2)} = L.(1.6)
’ 1

Then using (1.3), 1, H and L may be found as functions of A,
and equation (1.6) solved numerically for ), whence §,, 81
and T, follow easily. This alternative approach merely
improves the convenience of the method; it can still be

fairly criticized for arbitrariness and inaccuracy.

Thwaites (1949), however, pointed out that if what was
required was the calculation of §,,% , and ¥  then a detailed
knowledge of the velocity profile within the layer was not
necessary, but rather all that was required was a suitable
correlation between the boundary layer properties H, 1, L
and A\,.. He found that whereas there was some variation in
the curves of H and 1 against A _from solution to solution,
especially for negative N\ (that is, in regions of unfavourable
pressure gradient) the variations of L () )were less pro-
nounced and that L(X ;)could be taken as roughly linear for
all solutions. He found that choosing L (A[)= 0.45 - 6,
gave good agreement with all the known solutions and with
this form for L (\.)equation (1.6) could be integrated to
yield

322 = 0.45 v u1'6 {‘ u? dx. (127



From the known solutions, tables of H (2 )and 1 (%)) were
constructed and so, using these, &, and 7, could be
obtained too. This method reproduced the known 'exact!
solutions to a reasonable accuracy and with its ease of
application was widely accepted as one of the better
practical methods. It was shown in an even better light
when Truckenbrodt (1952) showed that by making simple
approximations in the kinetic energy integral equation
(Leibenson, 1935) Thwaites'! fitting of L as a linear
function of A\ could be justified. The method was improved
by Curle (1967), who,following Tani (1949), introduced a
second parameter = li uy u{// (u{z), so that L = F,(x;)-

f\Go(xT)’ and the method was refined by Lister (1971), whose

method produces errors which are typically only 5% of those

given by Thwaites' method.

All these methods work least well when there is a sharp

adverse pressure gradient, Stratford (1954), however, was

concerned to produce a criterion for predicting boundary-
layer separation which would give good results especially
in the range of sharp pressure gradients. He developed

exact solutions for two particular cases, He first con-

sidered a boundary layer for which the pressure is constant

when X< Xy, with a large uniform adverse pressure gradient

dp/dx ='Xpug/xo when X >Xj, and showed that, as A ¢, the

pressure coefficient Cp = ( p—;)o)/%(>ug satisfied the

condition

im X6 %x(_)_g%z Cp = 0,764 ' (1.8)

at separation. Stratford then considered a further problem
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in which the pressure is constant when X <Xy, but the pressure
when x> Xq is so chosen that the skin friction is everywhere
zero when X> Xge He found that the pressure coefficient

immediately downstream of x = X satisfied

2 o
10 %, $21° cp = 0591 (1.9)

Stratford then sought to extend the usefulness of these
results, Since sepgration occurs precisely at x = X0 in the
two limiting cases cited he replaced X0 by x in equations
(1.8) and (1.9) and gave a physical argument why this change
might improve these formulae for problems in which the
pressure gradient is modest and separation occurs downstream

of x = XO‘ He also noted that

2
10 x $22} cp = 1.002 (1.10)

for Howarth's problem in which the external velocity is
linearly retarded, a problem in.which the pressure gradient

is not sharp. Since, moreover, in a formula of the type
(10 x €21° ¢p - i (1.11)
dx el = >

the predicted distance to separation will depend roughly on
ké, he suggested the simple formula for predicting the

position of separation

2
110 x SR8 cp = 0.764 (1.12)

for use when errors of order 10 per cent are acceptable.

Stratford also produced a more accurate formula in
‘which the constant on the right hand side of (1.12) is

replaced by a function of two parameters,Aand(’, defined by




, C {1:13)
L= xdCp/ dx

and

e oo 0/ 17)° o uw

[\ is a measure of the sharpness of the pressure gradient;

C measures the change in the pressure gradient with x.

A = O for each of Stratford's two solutions; A = 1.068

at separation for Howarth's problem. For the large uniform
adverse pressure gradient problem,fﬁzo, wbile {'= -4 for the
continuous incipient separation problem and{ = -0.1451 at
separation for Howarth's problem., Stratford proposed that
the function to replace the constant k in (1.11) should be
such as to fit his continuous incipient separation solution
both at xy and downstream of X5y @8 it tends to the Falkner-
Skan (1930) continuous incipient separation solution, as well
as Howarth's solution; accordingly he predicted that separ-

ation would occur when

{10x %%9}2 Cp = 0.764 (1+0.35A) (1+0.46 JQ+1kr)(1.15)

.

Stratford also increased the usefulness of his approximate
method by proposing that in the situation where the pressure
gradient is initially favourable and later adverse the part
of the flow in which the pressure gradient is favourable is
replaced in the calculation of the flow downstream of the
pressure minimum by an equivalent distance with a mainstreaﬁ
velocity constant and equal to the peak mainstream velocity
in the actual flow. The momentum thickness at the point
of peak mainstream velocity is taken as the cottsrion oF

equivalence; hence the Thwaites' method gives

B NG R B s S e N M e D B

PR, R




X
0 " 5
Xg = (—-l) dx' (1.16)
.
m
0

where x is the equivalent distance, x' the actual distance,
u, the peak mainstream velocity and uy the actual mainstream
velocity.  Stratford also tested his method on an example
with an initially favourable pressure gradient and obtained

good results.,

Stratford's method, though soundly based physically,
fitted exactly only a small number of solutions and was
questioned by Riley and Stewartson (1969), who studied

a boundary layer with external velocity.
o
uy (x) = ug [1 - (x/ci] ‘ (1.17)

in the limit as«->0. Their solution {(on correction of a

numerical coefficient) gives the position of separation as
3,
x/fc =1~ 408 %, (1.18)

They claimed that the value of 1 - x/c at separation is not
even predicted by Stratford's method to be a multiple of
ugﬁ. This criticism is not entirely fair, however, since
their remarks are based upon Stratford's simplified formula,
valid only if A and U" are small, whereas {"is infinite for
their problem, Curle (1977) pointed out that the full
Stratford formula (1.,15) correctly gives a solution of the
form (1.18) with the constant equal to 47.7, an error of

15 per cent, and set out to show that Stratford's method

was essentially sound and to adjust the details to achieve

good agreement with the increased number of accurate solutions

now available,
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Curle (1976a) first reconsidered the boundary layer
developing with uniform pressure when X< X,y and with dp/ dx

large and constant when X>Xqe For large values of

Xo dp ,
X = ) E— s he solved the problem by deriving and

‘matching inner and outer asymptotic expansions, whereas
.Stratford had considered only the inner solution, his outer
boundary condition being determined by physical arguments,
Curle was able to obtain not only the distribution of skin
friction but also the displacement and momentum thicknesses.
His results justify Stratford's analysis completely, giving
rigorous justification to the outer boundary condition
assumed by Stratford on physical grounds, and extending the
analysis from the case of infinite \ to large finite A .
Moreover he obtained very accurate numerical results which
agree well with Straford's values. In particular, as A —»oce,

dCp 2
{10x E——ﬁ} Cp = 0.745(14) (1.19)
X

at separation, which agrees well with (1.8).

Curle (1976b) went on to reconsider Stratford's con-
tinuous incipient separation problem, again using matched
asymptotic expansions and obtéining boundary-layer thicknesses
as well as the pressure distribution., He was able to Justify
Stratford's replacement of x5 by x in equation (1.8) and
(1.9) by showing that, for non-zero values of x - Xx,, the
formula (1.9) becomes

- ‘ 2 i

4Cp 2 = X
{10::0 Rl op = 0.59077{ 1 - 2.00431 ( = 1)
X 2
+2.99223(xo" 1) + ooo}
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and thus

{wx el 2 Cp = 0.59077 { 1-0.00431 (5’—5-6 - 1)

; o.o16ho(§5 “ 1)2 + } , (1.20)

which varies with X-X4 only very slowly.

Curle (1977) then produced a paper which extended
Stratford's method, based essentially on seven solutions,
the two solutions of Stratford reconsidered by Curle, the
solution of Howarth for which a more accurate solution was
subsequently given by Leigh (1955), the Riley-Stewartson
solution, two numerical solutions due to Williams (1976)
for compressible flows with zero heat transfer, transformed
into incompressible form by the transformation of Illingworth
(1949) and Stewartson (1949) (see equations (1.24) to (1.32)),
and an additional solution derived in appendix A of Curle's
(1977) paper for a problem in which dp/dx = O when X< X0

and

2
dp _,PY% ’
85 (% ) iyt

when x>xy and A\»eo. He showed how (10x de/dx)sz varies
at separation with A and U and thus devised a highly accurate
procedure for predicting the position of boundary-layer
separation. The method was designed to predict exactly

the position of separation for each of the seven problems
listed above and also gave extremely good results when

tested on Tani's (1949) and Banks's (1967) problems.

Curle not only refined Stratford's method but also

extended it: he found that when a non-dimensional form of

i
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the skin friction T isplotted against z , a function of the
pressure coefficient, points from the various exact solutions
collapsed accurately on to a single curve, enabling the skin
friction to be accurately predicted for an arbitrary problem.
Moreover examination of the displacement and momentum thick-
nesses for his recalculation (Curle, 1976a and b) of Stratford's
two problems suggestgd that non-dimensional forms of 81 and

52 might be expanded in series of powers of A%. In parti-

cular, he suggested that

i
u 3
('2'1%6) 81 = 1.216783 + N pq(2z) + llg
l* .
pz(Z) + Als log APL'_L(Z) * eee 9 (1.22)

and that

e )%S 696 32216 (7] 208
=] §, = 0.469600 + 0.232246 [F(X)]32A5 + ..., (1.23)

where P1y Poy Puy, and F(X) are defined in his paper.

He showed that,even in the cases (Williams, 1976) for which
N is not at all small, the later (omitted) terms in the
expansions make only modest contributions,and proposed
formulae consisting of the above terms plus correction

terms chosen to give good agreement with the exact solutions.

The accuracy achieved is most impressive: T

<y taking values

between O and 1, is predicted to within + 0.0057, 81 to
within 0.9%, and 82 to within 0,.6%. In the case of sharp

pressure gradient problems the errors would be much less,

While approximate methods for computing incompfessible

boundary layers have been developed, approximate methods
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for compressible boundary layers have been produced too.
In solving the compressible boundary-layer equations one
major simplification is provided by the Illingworth (1949)
Stewartson (1949) transformation, which is used in many
approximate methods and throughout this thesis. The
basic equations of compressible boundary-layer flow are

(Curle and Davies, 1971, p. 275) in standard notation ':

(1.24)

y
20, 0%u _ _dp,3 2u
f’“ﬁ"/"'w“ﬁ*zy("ay)v
L (e Ny dp . 2 AT\ L [ruy?
and(ouﬁ(cPT)"'{ovW(cPT)=ua-£+"5}'<k?§)+f“("§}",

The assumption is made that the ratio of the viscosity f*
to the absolute temperature T is a function of x alone, so
that

/‘A:B = C(x) g_o . | | - (1.2
where suffix zero refers to values outside the boundary
layer at x = 0, and the variables are changed so that

X

as) (3¥ - 1)/(% - 1)
X.-: C(X)a_c')' dx’
(1.26)
y
B4 P
and Y = — w—- d .
ag Po Y
0
On defining ¢ s U, and V such that
¥ ¢
PR =Posy Y = = Poix - (1.27)

Y 2¢
U =S—f$v='}x ]

~r
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the equations of motion (1.24) reduce to

‘—+ﬁ=0’
W U du, 22y
and —_ e +(1.,28)
S Y 0 2°s (i )i | 24"
Usyt + Vﬁa;-%—Y—- -DO-'-E_— @51"(3*%(”1/“0) }
2(’U2
ar® uoz)'
where
-1
X =1 2 Y=1 2
b =5 M, (1+—2— My ) P . (1.29)

MO is the upstream Mach number and S is related to the temper-
ature by

S (1 5 M12) = i ¥t - 8*) =1 (1.30)

The boundary conditions on the equations are

U=V=0, 8= Sw when ¥ = O _ ‘l
{+.31)

U=>1U,, $S-0 when Y — ce ,
where
T -~y
Sy = 7o -1
s
5 " f (1.32)
and Ts = T1 { 1 + Faps M1 %

is the stagnation temperature.

In the case where o = 1 Cohen and Reshotko both found
similar solutions to these equations (1956a) and used them

as the basis for an approximate method of calculating the
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development of compressible boundary layers (1956b). To

do this they introduced boundary-layer thicknesses defined

by
\m '
%*=§ 1+ 8~ g)ar,
1 o( IT;‘)
00
§,% = (1 - &) ar,
5 [0 ﬁ?( U1) L(1.33)
and 00 ‘
Sh*= s%—dy. _
0 - 3

These appear in the momentum integral and thermal-energy

integral equations:

2 * *
ax U, dx U12 'a'Yw
and
* : .
%’?A_ o, Plyg % _’_’g(“g_s,) (1.35)
U, X & T T\

Following Thwaites, Cohen and Reshotko introduced non-

dimensional parameters

6*

2 (U
L (%)
o) .
Y= - 3, Y2y 3'52 i
< T TS JU | 342 Vo ax >(1.36)
w

w

. RS %

%2 "k 5, (39)

™ Up \yy3) T T2 Pl g I
and -

¥ =
H*‘ =g1</82 .
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On substituting into (1.34) it is found that

’715 ?‘%{.(82*2> =2§1-Xc(?‘*+2)} =L.  (1.37)

The assumption is then made that 1, r.,H* and L are functions
of A_and S alone. This means that it is not possible to
satisfy both (1.34) and (1.35). Cohen and Reshotko focused
their attention primarily on the velocity rather than the
thermal characteristics and satisfied (1.34) rather than
(1.35).. The assumed relationships L (A.,5w) are determined
from the similar solutions and (1.37) becomes an ordinary
differential equation for 82*(X). After solving this
equation, the other boundary-layer characteristics follow
immediately. Curle and Davies (1971, p. 279) point out

that examination of Cohen and Reshotko's results suggests

that
L = 0.45 - (6+33w)kc, (1.38)
.so that (1.37) integrates to give
X
B2 = b, B, tRedim b g KOeSE) g ()
0

This method was refined by Monaghan (1960). Oneobvious
defect of the Cohen and Reshotko method is that no attempt
is made to satisfy the thermal-energy integral equation,
so that the method is unlikely to be of any great accuracy
in predicting heat-transfer rates. On the other hand it
does involve solution of the momentum dintegral ‘equation
and is therefore more likely to give good predictions of

the velocity profile. One possibility is to use Cohen and
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Reshotko's method to determine the velocity profile and
then feed that velocity profile into Curle's method to
determine the heat transfer (Curle, 1962, and Curle and

Davies, 1971, p. 282).

There are several other ébproximate methods of calculating
compressible boundary layers in use, one of the most theor-
étically acceptable of which is due to Poots (1960), which
is an extension of a method due to Tani (1954) for calculating
incompressible boundary layers, Poots began by taking

(1.34), (1.35) and the kinetic-energy integral equation

00
5. dau 2y 2 ‘
b 5 ey | % BN e 2 U
U, el | 2 - (3857 + 28 ) U12 . (a ) ay, (1.40)
0
where (¥s) 5
g§*ay B 1--U--—-)dY (1.41)
3 g Y ( u,?
0 1

and other quantities are defined earlier,

The approximation was then made that U/U; and S may be
expressed as duarticsin Y/%*, the coefficients being

chosen to satisfy the conditions

U=O,S=Sw,whenY=O,

W _ 2%y 28 2% U . (1.42)
3 Ty T =§Y=g}"2‘=0,ﬁ'{'=1,whenY=%,
This yielded )
Bjlly a‘)* “"'7*)3* ')*2(6'8’7’3*37*2 > (1.43)
and 8 =5 (1-9 P (1439%) + b.) (1- 7 {
Yo 05"

where 7



17

Upon substituting into (1.33) and (1.41), taking the upper
limit of integration as S*, and then into the three equations
(1.34), (1.35) and (1.40), three simultaneous ordinary

differential equations for S*, a and b were obtained,

This method thus provides simultaneously solutions .
for skin.fricﬁion, heat transfer, and indeed any desired
boundary-layer property. It does, however, require the
solution of three simultaneous ordinary differential equations
and is unlikely to be very accurate if there is a sharp
adverse pressure gradient. It still does not meet the
need to find & method which will be physically sound,
simple to use and reasonably accurate even in the case of a

sharp adverse pressure gradient.

1.3. Aims of this thesis

In this opening chapter we have given a brief review
of some of the approximate methods which have been and are
being used to calculate both incompressible and compressible
boundafy layers together with the history of the particular
type of method which was originally devised by Stratford, was
developed by Curle and is generalized to compressible flow in

this thesis.

In the second and third chépters of this thesis two
new solutions of the compressible boundary-layer equations
are derived both for flows where there is a sharp adverse
pressure gradient. The second chapter considers a com-
pressible boundary layer on a semi-infinite flat plate

with uniform pressure when }(<_XO and with the pressure



18

for X >”K0 being so chosen that the boundary layer is just
.on the point of separation for all X > XO. The third
chapter considers a compressible boundary layer on a finite
flat plate where the transfgrmed external velocity U1 is
chosen such that

Uy (X)) = ug(-/1)°

where oK'e<K T,
0

X . C(x)<?-1-) -1 ax,
-1

1 is the physical length of the plate and x and X represent
physical and transformed distances measured downstream from
the trailing edge. In both these problems the Prandtl
number, ¢ , is taken to be of order unity and detailed results
are presented fore = 1 and O.?é. The fourth chapter both
derives and presents the approximate method for computing
compressible boundary layers and the fifth chapter presents

our conclusions.

Throughout the thesis techniques of series analysis are
used to good effect. This led us to look at another boundary-
layer problem in which these'techniques could be used, a
problem in which two parallel infinite disks are rotating
with the same constant angular velocity about a common axis in
incompressible fluid, the appropriate Reynolds number
being very 1argé, until at a certain time the angular velocity
of one of the disks is suddenly reversed. This problem,
originally studied by Bodonyi and Stewartson (1977), is

examined in the appendix to the thesis,
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2. DEVELOPMENT OF A COMPRESSIBLE LAMINAR BOUNDARY LAYER

UNDER CONDITIONS OF CONTINUOUS INCIPIENT SEPARATION

2.1. Introduction

The problem considered in this Chaptef is that of a
compressible laminar boundary layer with uniform pressure
when the aistance X along the wall satisfies x < X0 and with
the pressure whep X > Xq being so chosen that the boundary
layer is just on the point of separation for all x > Xeye
This problem is thus a generalization to compressible flow
of the problem studied first by Stratford (1954) and later
by Curle (1976b). This problem was proposed as part of the
C.A.S.E, award project and is of crucial importance for the

construction of the approximate method in chapter 4.

It is assumed that the ratio of the viscosity m to the

absolute temperature T is a function of x alone, so that

= C(x))»\o-% ) (2.1)

where suffix zero refers to values outside the boundary layer
at x = 0. The theory holds for all Prandtl numbers o of
order unity; detailed numerical calculations are presented

for ¢ = 1 and ¢ = 0,72 (appropriate to air).

The transformation of Illingworth (1949) and Stewartson
(1949) partially reduces the equations to incompressible

form and yields (equation (1.28))

an . 3y
2579 (2.2)
2u , 2u 9y (148) 4 v, DU (2.3)
e x 2y © M ax 0N 2 3 =



X y o oy° o
2 2
-}—- (%} , (2.4)
y Yo
where
-1 ‘
p =L up? {1 - MOZ} , (2.5)

MO is the upstream Mach number and S is related to the

temperature by
ot T Yo o 2 0%
S{1+—§—M1 =T;-1-TM1 {1-——5. (2.6)
u
1
Except in (2.1) where x is measured in the physical

plane, X, ¥, u and v represent distances and velocities in

the transformed plane.

It is clear that S - O at 'the edge of the

boundary layer.,

The value of S when y=0 is > (2.7)

T
W
Sw=':f--1,

¥ =1 p
where Ts = T1{.1 & g M1 } .

is the stagnation temperature.
If o = 1, the solution is found to depend only on

Sw' If ¢ 4 1, the solution depends also on P, i.e. upon

the Mach number M,.

When x < X the pressure gradient is zero, u; takes
the constant value uy, and the solution of (2.2) = (2.4)
was given by Blasius (1908) and E. Pohlhausen (1921).
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Downstream of x = x5, it is assumed following Stratford
(1954) and Curle (1976b) that the pressure distribution for

continuous incipient separation is

2 :
1 Y4 ) 2 3 L 5
1 - = K K,& K K i (2.8)
s < :;E 2% + 3 + 4& + 5§ + 3
‘ 1 i
'ﬂheI‘e é=(;‘c'2s ot 1) /3. (209)
(0]

The flow reacts to the sharp pressure rise primarily
within a thin inner sublayer; so inner and outer asymptotic
expansions are obtained for S and for a stream function V,

and matched.

It may be anticipated that as & increases, and the
inner sub-layer becomes thicker, the velocity profile will

ultimately tend to that given by the zero skin-friction

e ——————

solution derived by Cohen and Reshotko (1956a),

if ¢ = 1, and derived in section 2.6, if ¢ £ 1.

2.2, The OQuter Solution

When x < x5, u; (x) takes the constant value u,, and
equations (2.2)-(2.4) are satisfied by the Blasius-Pohlhausen
solution, Thus, introducing a stream function-, such that

u =’Vy and v = -y, , we write
Vo= (2uovox)1/2 fo(q), S = 30(7)’
where 1
N =(;%o—’_f) /2 o
It follows (Blasius, 1908) that

000 g PP VY w0

0 0-0
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where f, (0) = £, (0) =0, o (q)—a 1 as n—> oo,
‘and(E. Pohlhausen (1921)) that

So'' +0ES," = 2p(1-9) | £,1E,1 1+ (5,703,
where S,(0) = S, So(q)—a 0, as n >,

The relevant properties of fo(q), So(q) are well known.
Where the pressure gradient is discontinuous at x = X9

the boundary layer approximation fails, but equations (2.2)-

(2.4) hold when x > Xge The outer solution is a perturbation

of thé Blasius-Pohlhausen solution; so write

\r = (2uovox)1/2 F(é,f)). }
5 S(.g,r)). (2.10)

Substituting into (2.2)-(2.4), using (2.8), gives

E2 (P, + FF. ) _ 2/ 2
1M M) = /3 (1+g)(F) £ " FeFopq) + /5 (148)
(1463) &K | (2.11)
d§ '
2 2 3 ;
and £°(Sqq + oFSy) = */50(1+& J(FySg = FgSp) + 2pl1-¢)
E2(F F gy + Foo) (1 - 2pK(6))7", (2.12)

where K(&) = Kzég + K3€? + Khiﬁ + K5§5 * e @ (2.13)

A solution is sought in the form

P(g,9) = £olq) +&£(y) + gzloggsz(f)) + &% 1,(n) +S108¢
£31,(0) +&3 f3(-)) +§l’ (1ogé)? £,10(9) +§‘*10g§be(,7) +

-g"‘ fh(7) +§5(log§)2 f511(n) +§5log§f5L (n) &2 £5 (n) + oo
(2.14)

S(8,7) = So(9) +&5,(n) +6%L0gE S,y () +&% 5, ()
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+ & 108 £55.(9) + &7 55(q) + £%(10g0)7 5,11 () +&*10g€
S,0l) + §% S,(9) + wu (2.15)

The equations for f,, Sy, f5r, Sy, etc., are

fo'f1' - fo"fA' = O’ (2.16)
£o'Sy = £,55", (2:17)
fo'-fZL' — fonsz = O’ (2.18)

~ 1
folfpt = fo"fy = =K (1485) + /o (£,£," - £,02

B B w o WY, (2.19)
£5'95: = f5550"s ' (2.20)
£0'Sp = £250" + /p(£434" = £,15) + £58," - £0'S21), (2.21)
£o'f31 - £o"fap = A3 (B4 - £3080) + M/ gle, ey n -

£418511), | | (2.22)
£} w By ® Bylinsd ~ Bhas & Hlnme, - £t
+ 1/3(f2"f1 = EpVE 4 £V = £08, 0 4 GV - £oiEy )

+ 1/, (Egm + £o£M), (2.23)
£0'S31, = £3180" + /3(£8," - Sy« 1/g(e,5,0

- 8,851, " (2.24)

2 q 1




2L
1
¥ EorSy " = £378,p ¢ £3:857 » £g'0gp) # w8 » w2,

- 2p(1-0)(£,5,""" + (£,M%2)), (2.25)

1 2
o' s’ = Lo = /2(farfar” - £21."°)s (2.20)

1 3 |
+ 1/2(f0"thL" £o'firr’ + for"fp = fop Lot + fM"fHy

1 2 - te 1
- f'pp") & /(M ay, = £ + £y - Fyptfy ), (2.27)
FIEN o FE B THE) = A K, e VB A 1888, -
o £y 0 i ;11450 %354 oKoSa+ ) (£47E
1 - T
- f1,f3L' + f2"f2L i fz'sz' + f3"f1 A cond f3'f1' + fO“f1 e fo'f'lf)
/LI L A S (2.28)
: 1 .

£0"S1n = fu1180" *+ /a(EarSor" - £21,'8,1), (2.29)

- ¢ 3 e 1
-fO'SAL = thsO' + /h(f3L31' s f1'53L) + /z(fZSZL'

1
2L 2" = L3Sy + £,1180" - £'S,pp) *+ /), (£o185y)
- for' Sop * £4531" - £3,'84), (2.30)
32 o R 1
fo'slp - thO' + /4\f331' = f1‘83) + /2(f282' - lesz)

* 1/h(f133' - £318) + £518,1 = £,18,; 4 £5,8," - £,15,;

+ £,180" - £57S,1 + £,50" - £5'5,) + g2 (S," + o (£5,"

+ £:501) = 2B(1-0) (£1£, 111 + £,155110 4 26,008,71)) , (2.31)
£o'fsrn’ - £o' ' Tapy, = {8y ey - £08000) + Y gleyney,

= 2 1
"~ sz'fBL') + /s(fBL"sz - fBL'sz') 3 /S(flyLL"f"
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~ By 1§ (2.32)
3 2 k

3 T 2
+ /5(f2L"f3 = sz'f3' * f2"f3L = fz‘fBL') + /5(1‘0"1"5LL

fo'fsrs’ * Oy fypn - S 500 f Tan To ~ Ty Tt ¢ Byiny

, ; 1
£y ot + fofap = £o'fop") + /g(fy M Eay = £or Tyt

+

. 3
£3p"fop, = f31,"for" * £, = 008" + T qplfy," "
+ Tofoph + £5"f50), (2.33)
L 3 2
fo'fs' - £o"Eg = - K5(1+SO) - /,519*81 - /5K382 - /5K233

2 b v 3
/5K2(1+SO) + /5(f1 'fh - f1'fh') + /5(1*2"1‘3 - f2'f3')

+

2 1
/5(f3nf2 - f3tf2? + fo"fz - fO'fZ") " /5(f0"f5L = fO'_fSL'
+ f1"fl‘-L - f.] ”fl‘-L"*' fz"fBL suh fz'fBL' + f3"f2L A f3' fZL'

2)

+

000 = £UE0 + SNy = o'yt 4 £, - £

21011t + fofy" + £15N & £r00M). (2.34)

+

The boundary conditions as n-> o are readily determined

from (2.7) and (2.8), and are

£,10, 8,5 0, £5,' = 0, £5' > Ky, S;1 — 0,
S0, £31" = 0, £3' > Ky, S5 =0, 53 =0, £11' = 0,
£.4'> 0, f‘*"»» X, - /%%, 8,11, 0,y 81,0, 8, 0,
f511t 0y fop' > 0, f5' > -Kg - KoKg. {2.35)

Equations (2.16) to (2.34) may be solved in turn:

f.‘ = a1fo', : (2036)
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S; = a,5,", (2.37)
far, = a515" (2.38)
; 1 2 _
fp = anfyt + /58, " - K8, (2.39)
SzL = aZLSO' Py (20&‘0)
t
S
: fo
fBL = a3Lf0' + a1a2LfO“, (2.42)

£3 = aglo’ + agapfe" + /ea fg" ~agkyty! - Kydy, (2.43)

33L = aBLSO' + a1a2LSO"’ (2.1‘1")
t
%43,
33= aBSOﬁ + a1a280" + 1/6a1330nr - a1K2( }09
$450"
- ¥y ot (2.45)
£11 = 2fo’ * 1/zaszfo"» (2.46)

f1, = a1fo" + (8433, + azany )" + T L

fh = ahfo' + (a1a3 + 1/2a22)f0" + 1/2a12a2f0"'

Ay kN 1, 2
* 8" - aay Kt - (agKy ¢ aK)9yt - Kby

Wy By | (2.48)

2
Spin = 3150" * 1/2821, So™s (2.49)
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' 1 2
SpL = 2,050" Hlagagy, + azagry Spt + /pa,%ay 5ot - ay Ky
]
(¢1s?')’ (2.50)
o
2 v
S’+= ahso' + (a1a3+ 1/2:-122)80" + 1/2a1;a128 “'+1/2ha1)+so
S t\n 4,
1/ 0.2 (¢1 o) ( 1 ) ¢S
- a,“K,\ =/ - (a.kK, + ay ) - K, 710 _
2% SRy T 282 o I fo'
Ay 2{%39' W 980 l (2.51)
1 [}
2% | i 3 fo P
1 2

f51= agpfp' + (a3a2L + azagp + a1ahL) £o" + aylazasy
+1/2a133L)fo"' + 1/6a135121‘:15‘é)v - (KZaBL + azLK3)¢1‘

= 35851 K% " S (2.53)
f5 = agfy' + (a1ah + axa 3)f 1/2&11(211513 + azz)fo"'
+1/6a13a2f8’ + Waga 22" = Koy = (87K, + ajky + asK,),!
- aglaghy + /o gdbyt - 1gkpa 2t v 1/ pa 0%,

+ KjKyb, - 3/10K2¢3, (2.54)

where a4y 31 89, a3L, a3 » 411 al..L’ ah, a5LL, 51,9 and
a5 are arbitrary constants and ¢1, C{>2, and 4)3 are the

solutions of the following equations:
fo'¢1‘ - fo“¢1 = 1 ¥ SO 2 (2.55)

$150"
£o'dp" - £"Pp = L e T (2.56)
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£o'ds' = TPy = P+ FoP" + 55" ¢y, (2.57)

where in each case the solution of the eguation for which
the coefficient of n in the series expansion for small n

is zero is chosen.

It is easily shown that, for smalln,
¢ (148,) " e (ot 4 17007 s 0(16)) + By(«"y10gy)

+ 0(n*1089)) + By(1-0)xq® + 0(9”)), (2.58)
$,(148,)7% = (=174 nlog n+ 0(n*)) + B, (x4 0(y*10g9))
+ By(1 =) (ha™! + 00)3) + B2« ((20g9)? + 210g 9+ 3)

+ O(r)B(lOgr))z)) + B1B2(1-—6‘)(-20(_1f)10gr) + O(r)l*logr)))
+B,° (1-)%(0(n?)), (2.59)

$a(1+8,)7" = (/57! « 00)) + B, (17367307 + 0 (q1089))
+ By(1-0)(0(n?)), (2.60)
where o= £,"(0) = 0.4696000, © = Sy*(0), By = B(1+5,) 77,

-1
and B, = (£>(1+Sw) -

If 6 =1, 55'(0) = -«S_.

If o £ 1, SO'(O) must be determined numerically: if

o = 0,72,0 = -0,4180913 Sw - 0.0636704(3.

The arbitrary constants are derived from the matching

with the inner profile, whose scale is determined by ﬁriting

% " §-1‘).‘
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The outer boundary conditions on the inner solution

are obtained by expanding the outer solution for small

values of r) and rewriting in terms of z:
1 2
F N{ /2v<(z+a1) + Ko (148, ) + ...}é + S1(:»((&21’ - Ky ~29)
(z+a,) + = £ 1og &+ { -K, 0" H(z+a )log(z+a1)+ o&az(z+a1)
. 0("1K3(1+sw) 1/ 072K, 2 (148 )0 (2w )™ = 1/, (0K 0 (zva, )72
+ 8 ¢ { putayy - KxRe)? v L Yel (10287 + fx(ay;
- K,07%0) (z+a,) - «" 1K, 8(a,, - K,x"20)(log(z+a,) + 1)
3 1 g vy, = Sa & 1
-2 4 2
-maz(azL -, Kz(x e) + 0..§.£ logé_, + {—Kzﬁ(1-€)“(z+a1)

- ()("1K3€)(z+a1 )log(z +a1) +o£a3(z+a1) + 1/2 1(22<><"382((Z!.og;(z+a1))2

-1 -1

+ 2log (z+ay) + 3) - a, 26(1og(z+a ) + 1) + 1/2a22(>( +-o(
K, (148,) + 267 K2 (148, ) pl1-0) + 22K K (148, )8 (zvay)”]
v Jet 4 fa, alaray) + Kayy - Kx20) (ag; - K50720) ) e
(10g8)% +fula, - 1/,07?K % (148,)% - ™) 8 - 2K B(1-5)
(K, + 20Pa,1)) (z+a,) - 90<;1(K2(a3L - Ky07%0) + Kylapy

Ko 720)) (loglz+a;) + 1) + wlaglagy - Kyo20) + aglayy
- K,07%0)) + ...}e% togl s | - 3 gpolaea)® - gh Ky (145))

| (z+a,)% -LKR(1-0)(z+a1)? = («7'K, B + 71K, 20p(1-0) |
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+ 17,072 K,%(145.)%) (z+a,) log (z+a,) + (a, % - 2« a K
i 2 W 1 1 L Ko

@(1-0‘)) ’(z+a1) 4 0('3K2K362((10g(z+a1))2 + 210g(z+a1)
+ 3) - (>(“'19(a2K3 + a3K2) (log.(z+é1) + 1) + a0+ 4«'1K2K3
(148,) @ (1-0) + o« 1Ky (148,) = 53 oK (148,) + .. § &2

* oy _ {2.61)

Since the inner expansion is found to contain no logé

terms, it is clear that a,; = o('2K26, (2,62)
anr = X~2K.D (2.63)
3L n g :
alyLL = O, (2.61{—)
and a1 = '/, %K% (145)% + «K, 0 4 370K 0 p(1-0) L (2.65)

Using (2.62)-(2.65),
S~ 8, + 0 f(zray) + d 2K, (145,) (zra)™! = 1/ a7hk 2 (145"
(z+ay)"2 + ...}€+{o(2(LF1—o-) (z+34)% - 2K, 8% 10g(z+a,)
+ 2Ky (148 )p(1-5) + 8, + x2K (145,10 (zeay) ™! + xhg,2e?
(148, ) (log(z+a,) + '/ ) (z+a,) ™2 - w72a K, 0148, ) (z+ag) ™2
+ vni} &2 + 5K Pp(1-0) (2L0g(zva,) + 1) (z+a,) + 20°a,p(1-5)
(z+a,) - o2 K36210g(z+a1) + 830 + 25(148,) R(1-0)
+ oK, 203 (Log(zray) + 2/5) (z+ag)™! + o2 (K 0(148,) -

- 8,K,0°% + KKZ(148, )0 (1-0)) (zea))™! + L0087 + ... (2.66)
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2.3 The Inner Solution

In the region just downstream of X=Xq, the boundary
layer reacts to the sharp adverse pressure gradient, and there
is an inner sub-layer in which the appropriate coordinate

normal to the wall is
zZ = g-1r). (2.67)

Upon changing from variables (n,&) to (z,§), it may
be shown that the equations (2.11) and (2.12) now take the form

3/2€2(1+§3)"1(Fzzz «LFF, ) =m&F F, —§F€Fzz - Fz2 + g3(1+s)

.a.sl K (&) (2.68)

Jm

and

E2(s,, +oFS, 8 = 2/ o(1+82)e(F 5, - FeS,) + 2((1-¢)

(PF___ + F_%) (1 -2pk (517", | (2.69)
The solution to (2.68) and (2.,69) is sought in the form |
F = £%F(z) + £7F,(2) +&F,(2) + £°F5(2) + ... (2.70)

and
S =8, +65,(z) + &%5,(2) + &755(2) + o . (2.71)
Then
Fo't + 4/ 4FgRo" - %) 5F o2 = ¥/ 50148 )K,, (2.72)
Sy" + l"/BGFOS_,I' - 2/35;1?0'31 - 0, (2.73) ‘

| P e h/3F0F1" - 2F,'F ' + 2F "F, = 2(148) ‘KB |
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S, 4 4/ CF 8.1 - M/ P 1S, = 2/ §F 1S, - 20F,5,1 + 2p(1 =¢)
2 052’ 3Fro 2 ol 11
(BtE M1« F 0 2),. (2,75)

Pt + M gFgF" - 8/3Fof1“2' v & oy = M 5F 2 2F,F "
. 8/3Ku(1+sw) + 26,8, + B/ K, 8,, (2.76)

S3* + M/ 53,1 - 208183 = ¥/ uF 1 s, 4 %/ 557,18,

- 20F8," = B/ 5F,8,1 + 2p(1-0) (FIF "1+ Fy Q"

+ 2FO"F1"), (2.77)

and _

A N 2 10/ 3k gnEy = 19/5p, 1Ry

- 2B T - B F B/ R 12 - TSR RO & (148)

(% 3k, + 1% K5) + 8/3Khs1 + 2635, + ¥/ K S5, (2.78)
The inner boundary conditions are Fn(O) ='Fn' (0) =

F "(0) = O(n= 0,1,2,3) and S,(0) = 0 (n= 1,2,3). (2.79)

The outer boundary conditions are given by (2.61) and
(2.66).

The equations (2.72)to (2,78) are solved successively.
-1
Write K, = )0(1+Sw) . (2.80)

Then (2.72) becomes

i 2 L '
Fo't + Y/ 3FFo" = “/3Fg'2 = Y3, (2.81a)
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with boundary conditions

FO(O) = Fo' (0) = Fqo'(0) = 0,
and F ~:1/ (z+a )2 ¥ NV, an 7 sies (2.81b)
0’ 2 1 0 3 e *

The numerical solution yields

Ko(148 ) = Xy = 0.118441628, (2.82)
and a, = -1.6062864. (2.83)
Write S, = OM,, | (2.84)

Then (2.73) becomes

1
M," 4 4/ JoF Mt - Z/BwFo'M1 a0,
with boundary conditions
M, (0) = O, }(2.85)
and M1 - (z+a1) + Xoofz (z-l-a.l)"1 & 1/2\02¢"h (z+a1)'3
+ 4o 85 Z —» 004 4
The numerical solution yields
0.5751939 if ¢ =1 '
M, t(0) = (2.86)
0.59536R21 if o = 0,72

: -1
Write K, =\B,(1+8)) ™', Fy = B,J,, and a, = a5'By. (2.87)
Then (2.74) becomes

J1n| + 4/3F0J1u - 2FO'J1'+ ZFO“J1 = 2%1 + h/3)0M1, (2.88a)

with boundary conditions

J,(0) = J,7(0) = J,"(0) = O, .(2.88b)



and

J
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g e = Roaf1 (z+a,)log(z+a,) +xayt(z+a,) +'k1«“1 + 1/2X02a'3

(z-lra1)"1 - T% Xodfz (z+e.\1)"2 + eee 4 @8 7 00, (2.88c)

The numerical solution yields

" {-0.1067636 if ¢ = 1 i
171 20.1087672 if ¢ = 0.72
and -

1.
0.72. J

=0.4719941 if o

it

" ={ -0.4650589 if o

n

Write 52 = (1+SW)(B1 02 + B2Q2)o

Then (2.75) gives

L bt o _ 2
02" + /BQ’FOOZ' - /30F0f02 = /3°‘J1'M1 - 25J1M1"
with boundary conditions

0,(0) = 0,

and 0, ~ —')oa'zlog(z+a1) + ay! +'1fx"2(z+a1)”1

-~

(2.89)

(2.90)

(2.91)

+')Ozafh(1og(z+a1) - a2')0"1a2 + 1/2) (z+a1)"2 +“./

as z —» oo,

and

an ¥ L/BSFOQZ' - L/BGFO'QZ % 2(1_0-)(1?0'1;-0"1 + F0n2),1

with boundary conditions
Qz(o) = O’

Qs Nct2(1—c')(z+a1)2 + 2)0(1-r) as z —»ta,

\(2.92)
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The numerical solution yields

~0.1937759 if o =1,

0,'(0) = { -0,1968201 if & = 0.72,
>(2.,93)

1.

0 if ©
Qpt(0) = 0.72

0.0143476 if ¢

L]

‘ -1 2
Write K, = (148,07 Oy By +% 55 By), Fy = B U,
2
Then (2.76) gives
J2‘” 4 "’/BFOJZ“ - 8/3FO|J21 + 8/3FO“J2 - "‘/BJ’I'Z &% 2J1J1nw
L 8
+ 23 M, + /3x002 + /5\21,
with boundary conditions

and J, ~ -A1d'1(z+a1)log(z+a1) +o(a31(z+a1) + 1/2X02cx"3
((log(z+a.1))2 + 210g(z+a1) + 3) - o<'1a2'>\o(1og(z+a1) + 1)

2

>(2.95)

+ 1/2:;\2’ + o('1k21 +a&"3>\o>\1(z+a1)"1+ cee @8 Z->vo ,

and

L2"t +l"/3FOL2“ - 8/3F01 L2’ + 8/3F0"L2 = 14'/3)\0Q2 + 8/3'>\22,ﬁ

with boundary conditions &(2.96)

L2(0) = Lz'(O) = Lz“(O) = 0,

and L, ~ -%04(1-0‘)(z+a1)2 +ags(zray) + «=1x2

+ 2«'1)02(1-0'), as z — o , J



The numerical solution yields

% {0..0929310 1F &= 1 9
21 7] 0.0962037 if & = 0.72

-0.16635 if ¢ =1
Bag =

-0.16016 if o= 0.72
}
0 if o = 1
~0,0071220 if o = 0,72
0 if o = 1.
a32 =
-0,066L4L) if @ =

072« J
. - 3
Write S, = (1+sw)(}31 Oy + B182Q3).
Then (2.77) gives
0" + %/ oF 0.1 = 26FA10, = ¥/.03,10, + 2/ 163, M
3 37703 0“3 i g Iy
- 2¢7,0," 8/30'J2M1',
with boundary conditions
03(0) = 0,
0, ~ = o= log(z+a,) + a o~ 2(lo (z+a, )
3 L i 31 Ay hlogleray
+ 3/2)(z+a1)'1 + m'z(%21 5 ::12'A0)(z+::11)“1  wew 3
as Z -y oo e
and
Q" + B GF Q.1 - 26F.1Q, = ¥/.T.1Q, + 2/ oL, tM
3 377073 0 ®3 > h e~ |

- 260,Q," 8/ SLM 1+ 2(1-0) (Fy! J,M% + J '

1

36

(2.97)

(2.98)

>(2.99)

E
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+ 2F "I ,"), (2.100a)

with boundary conditions

QB(O) =0 -

2

Q3~-7\0(1—c‘)(210g(z+a1) + 1) (z+a;) + 2«%a," (1-¢)

(z+a;) +agy + 2% (1-0) 022“'2 " 4«“2)02(1-@)[ (2.100Db )

(z+a1)"1 + eae 4 85 Z — 80 ,

The numerical solution yields

0.1471404 if o =1,

05'(0) --{
0.1523021° if o = 0.72,
> (2.101)

if (v =10

Q3' (0) z{
~0.,0116558 if & =a 0,72,

J
- -1 3
Write K, = (1+5,) ()31131 + )323132 +}\33), Fy =

3 3
B, J3 + ByBoLy + T3, and &, = 2,187 + a,5B4By + a,4. (2.102)

Then (2.78) gives

LUV R 19/,47 4195 + 10/ 7 gmay = /510013, -

1 1 (201033)
6J,d," - 8, f]2 * 8040y + 600, + h2g0y + 10054),
with boundary conditions

35(0) = J5(0) = 35"(0) = O, | (2,103b)

J3 ~ —'X21d’1 (z+a1)log(z+a1) A ah1u(z+a1) + }Ox1y'3

('(log(.zara1 f)*a: 219g(z+a1) + 3) - e<'1(a2‘)1 + a34%)
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(log(z+a1) + 1) +cxa2fa31 + u'1k31 + eee 5 88 Z->00, (2.103c)

and
L 10 10 1
Lyt o+ /BFOLB“ - /3F0'L3' + ./BFO"L3 = /3(1OJ1'
L2' - 6J1L2“ - 8J1“L2+ 8A22M1 + 6A1Q2 + AAOQB + 1OA32),
with boundary conditions
LB(O) = LB‘(O) = LB“(O) = o,
Lyw =Apel1=6(z+a1)? = (@ 7hpp + o« GP(1-0)) (zvay)loe

(z+a1) + (ahzd - 2“32'10(1-F))(?+a1) - 0(-110332(108

(2.104)

(z+a1) + 1) + ag'agsol + hu"1>\0)\1(1-—v) +o<"1)32 *eee s
as z —» to,
and
L 10 10/ 1

thu + /BFOTB“ s /BFO'TB' + /3FO"T3 o /3(2F0'2
- 7FOFO“ + h.')o + 10.)\33),
with boundary conditions

TB(O) = T3"(0) = TB“(O) = 0,

2
o N
T3 ~N - -51‘.-062(24-&1)5 - -1-% (z+a1)3 --%04 2(z+a1)log(z+a1)

+ awc((z-raﬂ +o<"1)\j3’ - 3/200(“1)\0 + eee 5 85 2o,

The numerical solution of these equations yields

r (2.105)

-0.0790458 if & = 1
7\31 = (2.106a)

-0.0830081 if o = 0.72
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0.458 if & =1
=% My {
00468 if g = 0072
2\ {‘ 0 if W
32 7] 0.0119208 4if © = 0.72 > (2.106b)
abz =
0.06047 if ¢ = 0.72
'/\33 = -0.0394201 for all ¢
= 0.3254475 for all ¢ .

Using the values of K,,K,,K, and K given by {2.82),
(2.89), (2.97) and (2.106), the external velocity distrib-
ution is given by '

0y 2 3
1
/o (1 - o2 )(1+sw) = 0.118441628 & “ -~ 0,1067636 B &

+ 0.0929310 B,2EH + (-0.0394201 - 0.0790458 B,?)&° + ... |

ife =1, | (2.107)
2
1 - 2
and '/, (1 -—-—2-) (1+S) = 0.118441628 &~ - 0.1087672
Q
0

B,&3 + (0.0962037 B,? - 0.0071220 B,)EY + (-0.0394201 -

1
0.0830081 B,3 + 0.0119208 B,B,)E> + ... , if s= 0,72, (2.108)
Likewise, using the values of S,'(0), 5,'(0), and

33'(0) given by (2.86),(2.93) and (2.,101), the heat transfer

is given by




L0

(zvox‘ 3 (?13) 1 = 0.5751939 B, - 0.1937759 B,2E
ug \oy/, T

w

+ 0.1471404 B222 + o, , if ¢ = 1, (2.109)

(mbx%(?T) 1 ‘ )
ang U ) Ty w T; = 0.5953621 B, + (-0.1968201 B,

+ 0.0143476 B,)& + (0.1523021 B,> - 0.0116558 B,B, )&%
¥ eeey if 6= 0.72. (2.110)

It is noticeable how little each of these coefficients

changes with o,

2.4. Calculation of Displacement Thickness and Momentum

Thickness

The quantities ©,% and 8% are defined by

00
8% = (1 - -5;-! + s) dy, (2.111)
0
and 00
- _u .-
S = G (1 u1>dy. (2.112)
5 .
Using (2.8) and (2.10),
( uo )% < P 00{ . _%}
§$5§ = 14+ 8 - F7(1 - 2K(§)) d?
0
.,)1})“;%] - B - 2x(§))'%‘§ ol s a (2.113)

0

P Bl TR TRy
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To evaluate the above integral it is necessary to deal

separately with the inner and outer regions and to write

00 & é—-1 00

S d? & §5 S dz + E d7. (2.114)
0 0 é
Z A
Now Sdz =8, 3+ (1+Sw) (§B1M1(z) + §2(B1202(z)
0 0

+ ByQy(2)) + &2(B 205(z) + BBA3(2)) + ... )dz. (2.115)

From (2.85), using the equation to derive an extra term in

the expansion,

z
M1(z)dz = 1/2(24».511)2 + 'Aoo(‘zlog(z+a1) + @1 + 1/12\020("‘*

0
(z+a1)-2 - 1/50"1>\00('3(z+.':11) R s (2.116)

From (2.91) Oz(z)dz = ')Ooz"z(- 1og(z+a1) +o(2a2')\o"1 + 1)
0

(z+a,) +>\1o("210g(z+a1) I (32 + ')\Ozoz-l* (- log(z+ay)

+afay g™ = 3 ) ara) T (70T 2,

(3677 - 1))ara)? ¢ L. (2.117)
V4

From (2.92)[ Q,(z)dz = (1= )2 (1/3(z+a1)3 + 2)\oo<_2
0

(z+a1)) +(€3 + wwe & (2.118)

VTN S T TG P, R AL R T S 7 e L OO R, s o 1Sy T ot




z h2

From (2.99) g 03(z)dz = X1u"2(—(log(z+a1) - a310<2l1'1)
0

+ 1)(z+a1) + 1/2)029<"l*(log(z+a1))2 + ()21m'2 - az'xou"z
+ 3/2%2{‘*) log(z+ay) + {%h + ?\ok1u"*(-(1og(z+a1) ~ B!

2?31 - (loglzray) = ag®y ™) = 3)(zea) ™ + Lo (2.119)

4

From (2,100) Q3(z)dz = -(1-;))O(z+a1)2(1og(z+a1)
0

- a2'0<2>\0'1) + (332 + 211(1-0'))(z+a1) + (4)0204'2(1_6-)
+ X ofz)lo (z+a,) + + A uf1(2/ (1-¢) + a ﬁ71)
22 g 1 (és 0 25 V- 32
(z~~a1)"1 ¥ i (2.120)

From the numerical solutions,

1

if 6 =1, (%1 1.5393398, (3 o= 0.058227,{53 = 0,(, = 0.29,

Ps =0 (2.121)
if o= 0.72, (31 = 1.6573493, (55 = 0.12971, (b3 = -0.008264,
(54 = 0,26, %5 = 0.0730, (2.122)

Upon making the apprpriate substitutions and after
considerable further numerical integration and algebra the

integrals in (2.114) are evaluated and (2.113) finally yields

1

u “ ;
(.2_1)_.3_\ (1450778, ™ = 1.216781 + 1.606286€ - 1.074183
0*o -
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B,&%log § + (~0.289701 + 1.92998(7) B, + 0.653522 B,?) &%
+ 0.968272 B,*£%10g € + (0.608390 + 0.261137 B, + 0.29165
B,% - 0.58909 B,2)&> + (-0,033866 - 1.275520 B, )¢*10g¢

+(0.460774 - 0.0587 B, - 0.927 1312 - 0.58 B, + 0.5127

-B1h)§F *+ 4a 4 Af o= 15 (2.123)
Y0 : 1
(m) (148,)7'6,%,= 1.216781 - 0,368143 By + 0,067902 B,

+ 1.606286€ - 1.074183 B,&%log &+ (-0.289701 + 1.98299(5) B,

0.123069 B, + 0.466483 B, + 0.086764 B,B, + 0.005036 B,? )&

+

+

0.986445 B,%&710g &+ (0.608390 + 0.081966 B, + 0.092131 B,

+

0.42427 B,% - 0.113016 BB, - 0.428380 B, - 0.079677 B,B,

0.00462L; B,B,*)&> + (-0.033866 - 0.095716 B,B, - 1.305201 B,?)

£ *l0g & + (0.460774 - 0.0646 B, - 0.017177 B, - 1.008 B~

2 2

+ 0.118 BB, + 0.002960 B,® ~ 0,79 B13 + 0.21081 B,“B,

2
- 0.066505 31322 - 0.000007 }323 + 0.378899 81‘* + 0.070L74

B,B, + 0.004090 B,? BLAE* 4 g o BE &m G2,  [2.024)

Next the momentum thickness, 8 »*, 1s calculated, using
the momentum integral equation which in the transformed plane
takes the form (Curle and Davies 1971, p. 278)

du
d 2 du i | :
I (4 76%) = VO(by)w - oy =3 Sq%



: L
du1

Appropriate substitutions for u,— and 81* are made
dx

from (2.8), (2.123) and (2.124), the variable is changed

from x to £ using (2.9), and after more algebra it emerges

3

u
that (2,,020) §,% = 0.469600 + (0.255358 + 0,236883 B,)& 2

+ (0.126834 - 0.230180 B, - 0.213527 B,%)&3 - 0.063614

B,&*1log £+ (0.043334 + 0.186505 B, + 0.358552 B,%

H2MEE e y 1E ), | | (2.125)

Yo,y &%
("’2»"“"oxo> 27 = 0.469600 + (0.255358 + 0.222L6L4 B,

+

0.024983 B,)E? + (0.126834 - 0.234500 B, - 0.204293 B,*

0.022942 B,B,)§” - 0.063614 B,&%log & + (0.043334

+

0.1996848;+0.007063 B, + 0.361083 B,% + 0.013942 BB,

2

0.000303 B,* + 0.180695 B,? + 0.020292 B.,Z B,)g" + ...
if o= 0.72. (2.126)

Finally the non-dimensional shape factor H* = 31*/82* is
calculated:

H*(1+5)7"A™' = 1 + 1.320112% - 0.882807 B,&%log g
+ (-0.781865 + 1.08170(6) B, + 0.537091 B,2)€% + 0.795765
312g310g g+ (-0.487937 + 0.03886L B, + 0.69439

1

B,% - 1.048274 B.>)&*10g &+ (0.355017 + 0.0078((5)) B
1 1 1

+ 0,185862

B,® - 0.484136 B,%)€> + (-0.027833 + 0.615515 B, + 0.445320
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- 1.763 B2 - 1.14 B2 + 04214 B,M)g + L., if o= 1,
' (2.127)

and H*(1+sw)‘1>\'1 = 1 - 0.302555 B, + 0.055805 B,

+ 1.320112& - 0.882807 B,&%log€ + (-0.781865 + 1.32049(8) B,
'+ 0.017597 B, + 0.526704 B,? + 0.060966 BB, + 0.001170 B,*) €2
+ 0.810701 B,%g7log § + (-0.487937 + 0.023065 B, - 0.009586 B,
+ 0.63263 B,% - 0.016160 BB, - 0.483682 B> - 0.055986 B, B,
- 0.001074 B,B,?)e> + (-0.027833 + 0.615515 By + 0.377227 B,

- 0.024138 BB, - 1.072668 B,2)€*10g € + (0.355017

- 0.1388((5)) B, - 0.,002281 B, - 1,806 312 + 0.,000(9) ByB,

2 2

+ 0.000666 1322 o 1,05 313 + 0.03921 B,*B, - 0.060306 B,B,

- 0.000032 B,> + 0.427813 B, + 0.049520 B,’B, + 0.000950

By BoPIEY ¥ vae 4 AF T w 022, (2.128)

1

where \ = 2,591100.

2.5. Solution for & = 0(1)

Immediately downstream of X=Xy where the boundary layer
‘reacts to the sharp adverse pressure gradient, there is an
inner sublayer whose thickness is O(g). As § increasesthe
inner layer thickens and for larger £ the concept of an inner
sub-layer becomes blurred and the velocity tends with increas-
ing é to tha; given by the separating profile_derived by

Falkner and Skan (1930) for the incompressible case, by
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Cohen and Reshotko (1956a) for the compressible case where
0 = 1, and in this paper (Section 2.6) for the compressible

case where v £ 1.

To improve the convergence of the series. forthe pressure
coefficient (2.107) and (2.108) and for the heat transfer
.rate (2.109) and (2,110) it is necessary first to derive’
more terms in the series, This is easily done in the in-
compressible case and in the compressible case is possible
it B1 and 82 are not too large., From examination of the

inner solution it is clear that

K(E)(145,) = P2 + P& + Pee8 o L.,

+

B, (Py8% + Peel + ...)

+

BTZ(Phgl" § Bkl 4 was)

+

Bz(Rhgl* * R7§7 £ Gand
i e , , (2.129)

F o= 8%Fy + £Fy + 575 & e

+ B, (83, + 8%, + %1, + )

+ B2(&h, + €705 + €%, + .10)

+ By(eh, + €71 + 1014 + ..0)

¥ e (2.130)
S=5_ + ’(1+sw)fB1(§M1 +§‘*MlF + §7M7:+ eed)

+ B,2(€%0, + €905 + £804 + .u4)

+ By(e%Q, + €70, + &%y + ..0)

ek o . (2.131)
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From (2.68) and (2.69) the equations which these functions

satisfy can be derived:

n

F oo 1/3{(6n+4)P + (6n-2)P 75 ) +Z{F '((3n+2)
3n 3n+2  3n-1 n0 3r
r=0
F v + (3n-1)F ¢ T ) =-F ((6r+4)F L
- 3(n-r) 3(n-r-1) rn 3r 3(n-r)
+ (6r+7)F 0 1T )}} ; (2.132)
3(n-r-1) rn
where Tl =1, if r £ n, and = 0, if r = n. (2.133)
n-=1 n
MY a0 Z F M w f G’Z{orn)m (F‘
3n+1  n0 3r 3(n-r)-2 3 3r+1 \ 3(n-r)
r=0 r=0
+ F ! T ) - (3r+2)F . (M' + M! Ll )%,
3(n-r-1) rn ar 3§n-r)+1 3(n-r)-2 rn
(R.134)
n-1 n
Qn +0T F Q! = 2/3w :E: (3r+2)§é
3n+2 no 3r 3({n-r)-1 r=0 3r+2

r=0

(F' + ! i ) - F (Q' + QY 1 )%
3(n-r) 3(n-r-1) rn 3r\ 3(n-r)+2 3(n-r)-1 rn’

n

e Y (e e awm Vo )
3r 3(n-r) 3r 3(n-r)

r=0

=S

-1
3/2 (Jtn .,.T[ (F Jn # J° ol )
3n+1 n0 5 3r 3(n-r)-2 3r+1 3(n-r-1)

=3
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. n
= 3(n+1)P + 3nP . T+ Z{F '(3(n+1)J !
3(n+1) 3n n0 3r . 3 (n-r)+1
r=0
+ 3nd ! 5§ )- (3r+2)F (J n + J " [ )
3 (n-r)=-2 rm 3r\ 3 (n-r)+1 3 (n-r)=-2 rn
- 3(r+1)d (F n + P T ) M ((3(n-r)+2)
‘ 3r+1 \' 3 (n-r) 3 (n-r-1) mm™ 3r+1
P + (3(a-r)=1) P T % . (2.136
3(n-r)+2 : 3(n-r)-1 rn) 36)

-1
3/ (tht T - F 1® i I "
e 3n+2 no E , ( 3r 3(n-r)-1 3r+2 3(n-r)>>

r=0
, n
= (3n+4)R + (3n+1)R T+ Z{F ' ((3n+4)L'
3n+lk 3n+1 n0 3r 3(n-r)+2
r=0
+ (3n+1)L T )- (3r+2)F (L" + LM T )
3(n~-r)-1 rn 3r\ 3(n-r)+2 3(n-r)-1 rn
- (3r+4)L (F" 4 F® T ) + Q ((B(n-r)+2)P
3r+2\ 3(n-r) 3(n-r-1) rn 3r+2 3(n-r)+2
+ (B(n-r)-1)PB(n”r)"1ﬁrn)}’ | (20137)
n-1
0 " +0TT ZQF 0! +J M )
3n+2 n0 = 3r 3(n-r)-1 3r+1 3(n-r)-2
Y=
n
= 2/30' Z {(3r+1)M (J' + J1 T ) + (3r+2)
3 3r+1 3(n-r)+1 3(n-r)-2 rn
=

(o (F’ + F! ™ )-—F (o + O T ))
3r+2\ 3(n-r) 3(n-r-1) rn 3r\ 3(n-r)+2 3(n-r)-1 rn

- 3(r‘+i)J (M' + M! ‘R )}. (2.138)
: 3r+1 3{n-r)+1 3(n-r)=2 rn
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n-1
3/2(J“' +T Z(F Jn P
3n+2 nO 3r 3(n-r)-1 3r+1 3(n-r)-R
r=0
SO, | F" )) = (3n+4)P + (3n+1)P §74
3r+2 3(n-r-1) 3n+4 3n+1 nO

n

+ Z{j%F' (f3n+h)J' + (3n+1)J? i ) 1/2J'
3 3r 3(n-r)+2 3(n-r)=1 rn 3r+1
=

L)J? (3n+1)dJ? T )= (3r+2)F (J"
<53d- 3(n=-r)+1 Tt 3(n-r)-2 rn) o 3r\ 3(n-r)+2

+J " 1 )- 3(r+1)d

Jgn + Jn i )
3{n-r)-1 ™m

3r+1( 3(n-r)+1 - 3(n-r)-2 rn

- (3r+4)d pe + F" i ) + M
3r+1

3r+2 ( 3(n-r) 3(n-r-1)

(3(n-r+1)P + Bl % )+o (§3(n-r)+z)
3(n-r+1) 3(n-r) rm 3r42

+ (3(n=r)=-1) P o )}. (2.139)

"3(n-r)+2 3(n-r)-1 rn

The inner boundary conditions on these equations are

B

F3,(0) = F3 7(0) = F3 "(0) = 0,

I3n+1 (0) = I 3n+1 () = I3ne1 (0) =0,

- (2.140)
I3n+2 (0) = 95,,5(0) = d5,,5 (0} = O,

Lane2 (0) = L3ne2 (0) - L3n+2 (0) = o,

and

M3n+1 (O) = 03n+2 (O) = Q3n+2 (O) = O. J
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The outer boundary conditions on the equations are

derived from the series expansions in powers of 15 of £,

S
SO, ¢1, and ¢1 0
f |
0
oo
2 n 3n
fgll =< 2 Sy 1
' . n=0
- — 5
WHEFS: By, = 1/2’ B o 1/51’ g %%’ 3 = T%%z’ . g;%%z,
-3817137 , _ 865874115 . _ =303083960103
fg = 177 0 %6 T 200 Rgw 231 ’
a 155172279780289 o o =111431991012221729 e (2.181)
261 T 291

So(f))-S +6r)§ b, n3n+(’a(1 0‘)")0( E D(nf)Bn

n=0
and &y = 1, ¢ = syle+ °/3), oy = 900‘2+1gzzc'+246’
¢y = 4(324063+658562+103145+15510)’ o | ———

113

¢)1(1+S y1 oo~ 2 d 0( t) 10('17 Z_foanBn('(Bn+2)

n=0
a logr)+ e, ) + B (1~s')o(r) 2 n an
n=0
1 -2 657 -142083
where dg = -1, d¢y = 73, dy = 75.87» 93 = 761> 9, = 30,911 °

SR F S S )

2300 B (=2 L0524 =123
a5 = 300, .., ep =0, oy = FZEL, o) o MOE L,
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= (112062 -2645°+13045-6435)

- " o s g
ey = v y wii g By w Ay Ly 41(1*%5)’
. 9062+ 1416+616 -(2268063+3126652+641795+288750)
= ? f = P}
2 7.81 3 70.111 ’
(2.143)
on o
B e iEE o B n 3n
4’} 'O (1+Sw) = Byo™"n Z gk 7+ B2(1-0') Z
o n=0 n=0
oD
h P B12u'2 % % 3n((3n+1)bnlogr7+in) + ByBy(1-0)1)
n=0

(o]

z%n 3n ((3n+2) Cnlogr)+ jn) + B22(1_°,)20(21)2200(nl)3nkn’
n=

n=0

2 z
where g, = -1, g = 52451, g, = ~(2800¢ 54.-810806’-34) ’
(56005>+58806%+4360-45 ) .
g i se e h = ‘-2 h ST Senemm——"—"
3 2.101 ] $ 0 ? 1 l;, ?
-(9005%+21456+3318) 324002+928805°4+150210+ 22590
h, = y by = :
10.7¢ 101
4 - -2 . ; - =
10 = O’ i1 = '_%62-_-1, eee 9 JO = 1, 31 = (1hggoh0)’ so 0
.= g +50
ko = 2, k1 = 5‘. 9 oo @ (20111-14')
From these the outer boundary conditions are
FBn No(n"'1an(z+a1)3n+2 - ')\Oo(n'1dn(z+a1)3n + eee (2.145)

1"1311_'_1Nc>(nbn(z+a1)3n+1 —'Xoezn"zgn(2+a1 PR v {20108)

n+2

(2.147)

Q3n+2~°" cn(1-0')(z+a1)

] LR 2R



52

I3neq ™ -)O«“"1((3n+2)(log(Z+a1) - az'a220"1)an +e)
(zeag) M1 -\ g (200 )70 4 L (2.148)
Lyn,p ~ - Nt (1-0) (zea) )P1H2 4 a5 1 (3n42)a
(z+a1)3n+l g | (2.149)
O3z ~ X2 ((3n+1) (log(zvay) = a'®Ag )b + i)

(z+a1)3n -)1un"2gn(z+a

220 4 (2.150)

J3n+2:v -)1dn'1((3n+2)(log(z+a1) - 331N2X1 "1)an + en)
(z+a1)3n+1 L S {2,151}
Solving these sets of equations gives

]

P(&)

+

1

+

K(E)(1+

+ BE3(- 0.1067636 + 0.0552033 £ > - 0.0372567 £° + 0.02816(6)¢

-

2 :
Poe% + Po&® + Pue® v .. = £%(0.118441628 - 0.03942014 &7

0.02253761 &£ © - 0.0154805 £ + 0.0116713 £ 12
0.0093072(0) & 1% + 0.0077042€'® - 0.006545 £ ?

0.005683 £ *% - 0,005005 £ %7 + ...) (2.152)

>

5, = P(&)

2w

+ B,2e%(0.0929310 - 0.065856 &7 + ...)

3
+ B1 é
* oo g

K (£)(1

5(-0.0790458 + ...)
(2:153)

if e=1

+5,) = P(§)

AL Iy Tl Y € S At
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+ B,&3(- 0.1087672 + 0.05465055> - 0.0362980&°

+ 0.02714(2) £ 9 - ...)

+ Byeh (- 0,0071220 + 0,0059420 &3 - 0.005161(4) £ ©
+ osoonbll 27 < a0

+ B,2£4(0.0962037 - 0.065235£> + ... )

-+ B1B2€5(000119208 - e e )

+ B,7%£°(~ 0.0830081 + ..o )

+ see Y if o = 0072 . (201514-)
Al (33-935)%(?-2) A~ = B,(0.5751939 + 0.0027410 & >
e A, T TR ’ 5
- 0.0055113 §6

+ 000071812 7 « oui)

2 5 3 ,
+ B %&(- 0.1937759 + 0.05280 &7 - ..)

3.2
+ B,7& (O IETILOL = weud

¥ ers y i en i, (2.155)
i %(?i-'-'! 1 . B.(0.5953621 + 0.0004433 &> - 0.0039735¢°
V() - oy 003362 - 0,007

+

0.0036(2) ég v ooo)

+

B,&(0.0143476 - 0.0019877& > + 0.0009128 £°

- 0.000621& 7 + ...)

2 .
B, %2 (- 0.1968201 + 0.04357&7 - ...)

+

B,B,£7(-0.0116558 + ...)

+




54
3.2 '
+ B¢ (0.1523021 + ws9)

+ eae ’ if ¢ = 0.72. (2.156)

It is interesting to note that if B1 is small the
expression in (2.155) and (2.156) varies very slowly withci.
This result is similar to that obtained by Stratford (1954)
and Curle (1977) who showed that, in the incompressible case,

F.. varies very slowly with.{, where

p

2
dC

1 u12
= ,,.g and Cp: /2 (1 ---—-5).
Yo

The series for the pressure coefficient P(§) clearly
has a singularity at § = -1, corresponding to x=0, the leading
edge of the flat plate. This can be confirmed by considering
ratios of successive coefficients of the series and extra-
polating to the limit using Neville tables in the manner
suggested by Gaunt and Guttman (1974, p.187-194).

The Euler transformation is therefore made:

3
r=-5— . (2.157)
£7+1
This gives

P(é) = P¥(r) = ng}g (0.118441628 - 0,03942014 r - 0,01688253 r2 :

- 0.0098250 r° - 0,0065774 v’ - 0.00L7746 1> - 0.003655((6)) 6
~ 0.002904 r/ - 0.00235 r8 - 0.0018(5) r? - ...). (2.158)

'K(g)(1+sw) = K*(r) (148 ) = P*(r)
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" B1(ﬁ%§;)(_ 0.1067636 + 0.0552033 r + 0.0179466 1<

+ 0,00885(6) r° + ...)

+

L ‘
812(T§;) /3 (0,0929310 - 0,065856 r = ...)

+

5
3.2
B1 (1-1‘) 3 (—000790}-"58 + ao.)

+ eee ’ if 0 = 1. - (2.159)

K*(r)(145,) = Px(r)

+* .

By(755 )(-0.1087672 + 0.0546505 r + 0.0183525 r* + 0,00919(7) r’
+ eee)
r h/B 2
5 BQ(T:;j (-0,0071220 + 0,0059420 r + 0.000780(6) r

+ 0.0002(6) 12 + eos)

L

/
+ B,%(75) 2(0.0962037 - 0.065235 r - ...)

i
i
+ B,B,y(75) 2(0.0119208 - ...)

(_2_3/3 (- 0.0830081 + ...)

3
+ B T-r

1
* ees , if S = 0,72, (2.160)

The heat transfer rate (2.155) and (2.156) can be

transformed in the same way.

It is these values of the pressure coefficient and the
heat transfer rate which will be used to determine the

constants-in the solution for large &.

2.6. Solution for large &

Following Cohen and Reshotko {(1956a) and Curle (1976b)
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(appendix) a solution to (2.2)-(2.4) is sought in which the

external velocity
uy =yugz v(z), (2.161)

where 2z =(x/x - %) and ) and a are constants,

0

Making a change of variables similar to that made by

Falkner and Skan, write

3
2
,\# =(X uoPoXo) F(z’?)z%(mﬂ ) .

m+1
(2.162)
S = 5(z,9), F
m-1
Xm+1)ug 3 -3
and 7 = 2V0x0 > Z Ve J

Substituting into (R.2)-=(2.4) gives

2 , 2 2 2
;n-;—f—{F,)Fz') = FZFW)’% = Fr),)r) + FF,m = Eﬁ‘- F,) # == (aVV
+ mV?) (148) (2.163)
and
2m
1 2 1=0c). 2 2
E-Sqq + FS,) = =5 z(F?Sz - FZSq) + 21—;~lx Pz (qu
: 2 2,241 -1
+ FQF?QW) ? 1 -p(1 -z mv(z)] 1.)} (R.164)
Write ‘
F(Z,Q3°3Sw,%)
-2 (5,3 _,6)
= Fo(q’G’Sw’%) + 2z 15 %'F1(q’rssw16)
22, (¢,8 ,B) X, (c,S ,[)
+z wl Foly0,S0b) + eeu + 2 2\ 15wl F,*(f),tf,-sw,%)



o7

(Ao (&55,,P) +\ (5,5 ,p))
(alesSy ) 2 (035, ) Fak(n),6,5,,0) + oov 5 (2.165)

+ 2

S(z,r) y V;Sw’%)
X,(G}Sw,%)

n

So(q,r,Sw,G) + 3z

-2)\1 (F"SW’ (ﬁ)

81(W’F’SW,F)
Ap(e,5,,,()

+ z sz(f),@,sw,(s) * see ¥ ¥ 31*(.7,a-,sw,(%)
e g 2lESnl) - 1’(r’s‘*’@”sm(r),«,sw,(z) £ ees 5 $2.166)
and

V(z,5,5,,0)
. zd’(g’s“”(ﬂg(msw,[;)
+ 2_2()\1(0-’3“"(5)K2(0*,Sw,(5) R— znlz(y’sw’G)K1%*(r,Sw,@)
g g BT ”\1(?’5*“’%))1{**(@,3?,,(@) ¥ aue oy RaE7)

where )1 = -2m and’l2 is the smallest value of Awhich
satisfies the appropriate eigenvalue problem, the compressible
analogue of the incompressible eigenvalue problem in Curle

(1976b) (appendix).

The equations satisfied by Fo etc., together with their

associated boundary conditions are readily derived,

Then it is clear that further expansion is possible:
2
Write Fo(q,wysw,c) = FOO(?’SW) + (1-50F01(7,Sw) + (1-¢)

Foz(’) 1Sy) + e

Fi(065,,[) = (1=00F14(9,5,,0) + (1—0’)2F12(|),Sw,[;) A
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Fa(nieiSu@) = (1=0)Fp (1),5,,,0) + (1=60%F (0 15,p ) + oo

Fi¥(0,608,,f) = Fig*(0,8,) + (1-00F  %(n,8,) + (1-6)%F, *

(‘),Sw) ¥ eon

F**(r),r,sw,@) = (1—v)F1**(r),Sw,(%) + (1-¢)2F2=-**(z),sw,(%) + eee
. . (2.168)
Expand S and V similarly, and write
2 = rg(s,) + (1-adry(s,) + (1-9%ry(5,) + ...
(2.169)
2)2

oz = Pao(8,) + (1=odg (8 + (1-00%mn(5) + wut

If, as in section 2.5 , it is assumed that S and @ are

2

not large and, if ¢ = 1, only coefficients of 1, S , and Sw

w?
are retained, whereas if & £ 1 only coefficients of 1, Sw
and (5 are retained, then still further expansion is possible
and sets of ordinary differential equations with associated

boundary conditions can be derived. These derivations are

straight forward, but.tedious. When the equations are

solved in turn, V(z) and the heat transfer rate are

determined,
Given that 'X (G-’Sw"%) =7LOO +XO1SW +x028w2 B e
+ (=60 (X105, + Xq01 B+ o)

+ (1-6)2(X21OSW +X201@+ % 6.
S (2.170)

e T 2
and K *(5,5,,0) = Kigo + K098y, * K1025," + «ee

& A0=8) s g8l # wis)
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+ (1 --5') (K121 w + oao)

t oaee (2.171)

-.');2

. 2
V(z) = 1 + (K1OO + K1o1 3 + K1028W + ooo)z T see

W

A X -2
+ (1=6)(z (= 0.,0182455B8% 00> * wee) + 2 2(KjqqS, + ut)

=(M+23) 2 2
+ 2z (- 1.898788 X510%00 {3+ ven) B eend ¥ {Tni]

S -2 -2, +2,)
(Z 1(- O.OL;O’-}OSB(S’XOOZ + ooo) + Z 2(K121SW + aoo) + Z L 2

X
(= b 1771 R Ko Xop” *+ see) *+ e0a) + (1=03(z (- 0.0397190
=%
2 -(l1+x2)(

2
@XOO *oead) + oz (K131Sw ¥ vee) * 2

- 7.515846

-\
Bo1oXgo2 * eee) * aes) * (1-0)*(z V(- 0.0368369@1002 + eea)
"‘(11"’) )

=2 2 2
‘. ...)+ LA ) L (2‘172)
¥

(2,0) = -0.3258111 S - 0.0230575 5.2 + ...

o/
-

2 (= 3.0683987 (K, 0o, *+ Kygq8,2 + ev) = 1.7400635

2
K1OOSw * ees)

-X
+ (1-¢)(0.,0878766 S + ..o + (= 0,1302331pY g7 + seedz |

+ (0.4558656 KqooS, + +ve)z 2 + (= 1.54038 Koy Koo b+ »eo)

z + e s

+ (1-6)2(0.0348091 S + ..u + (0.00185050Ko0° + »o0)z |

+ (01698977 K oS, + +»a)z 2 + (= 0.8381918 Koy Xgoofo + «ve)
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—(11"')\2)

Z + e

| i
+ (1-6)3(0.0211265 S + ... + (0.0077149(Xgg> + ove) 7 |

+ (01461291 KyqoS, + ee)z 2 + (1.091895 Koy ohoo B + «e)
=%, +2 o
P

+ ees)

. »
+ (1-0)%(0.0149472 5, + vuv + (0.00741220% 0" + o0d)z

A
+ (0.1458170 K8, + +..)z = + (= 0.1700329 KpyoXao f + «+e)

-(A, +)\,)

g 1 % 4 ,..)

* gwe s (2,173)
=20 _ _ 0,19883774 + 0.,1020737 S, - 0.0448122 S.° + ...

+ (1-6)(0.0343396 S_ + ...)

+ (1-6)%(0,0218330 8_ + ,..)
+ (1-)3(0.0164886 S_ + ...)
+ (1-0%(0.0134646 S + ...)

+ L . (2017l|')
—2 = 3,7615197 + 0.0110326 S_ + 0,0033665 S.% + ...
+ (1-5) (-~ 0.2123742 S + ...)
£ (1-0)%(= 0.7357164 S, + ...)
+ (1-0)3(- 1.463326 5 + ...)
+ (1-0)%(- 2.345605 S, + ...)
+ L R L (2.175)
If § =1, m = - 0,00042856 + 0,0422238 Sw - 0.0165769 Sw2 T oeee

(2.176)
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g = 1.7106854 + 0,0844303 S, - 0.0294133 5.° + ... .

(2.177)
T . 2. 55 Fhp
¢ = 0,72, V(z) =1 - O.OOQAA.XOO pz + 2z (K1OO
={X,+15)
102 2
+ KigS, + eos) = 3 Esucheo” PleTRlol # wie
' (2.178)
38 (5.0) = (- 0.2978(9) - K ooz 2 2.922(9) + ...) S
’bf) Z, = e L] - 1002 - se 0 w
24 A2 2
+ Z ("' 0003608 - K1OOZ Oo’+7(5) - ooo)Xoo (é
+ aee (2.179)
2m
m = - 051988377811» + 0011387 SW + see
(2.180)
m = = 0.09014»2856 + 0.0&710 SW + eee
J
212
"'rm = 3.7615197 - 0.1616(8) SW + eee
(2.181)
’xz = 1.71068514- C 4 O¢0301 Sw + s e -

As in the solution for small £ the displacement and
momentum thicknesses can be calculated and finally the shape

factor H* = 51*/82* evaluated:

H%/4,,0292280 = 1 + 0,6407587 S_ + 0.0476295 8 % - 0.0342470 5>

+ ¢ o0

-2

# (= 1501113 Kygo = 3.577145 Kyq = 2.975636 K;5)8,% + ...)

+ “ae'e



+

(1"'6)(0.2155614-0 Sw + os e + (000016386X002@+ ...)Z + *ee o

-2 2
+ 3 2((- 0.864357 Kypg - 2.975636 Ky14)S, + «v2)

-y M5) :
vz 1 P LRI Kigkan B wes) # wnk )

)2 ( 0.1370547 S (0.0746578 X nr? yo
(1-6)°0 0,1370547 S + wou + (0.0746578 K o Pt o00)z + eee

+

3

z'xz((o.537498'x100 - 2.975636 K151)S, + +..)

=N +%5)
s 2L 3787 Kiogkg R eee) + oens )

+

(1-6)3 ( 0.1035057 S (0.0745488 X nn? 550 4
1-6)7 ( 0.1035057 S + ..o + (0.0745488 A 50 B+ «.0)z

- )
2 2((1.987217 Kqqq = 2.975636 Ky50)8, + o..)

+

=(hg+25)
+ 31 2(27.55408 Kyohoo B * ees) # ees)

-X
(1-)% (0.0844809 S, + vuv + (0.0673214 Xo2f + +a)z | + o

4

+

-\
2z 2((3.619247 Kyq = 2.975636 Ky 1) S, + o.l)

+ = 0%02) (39.69103 Ky oghool R * eee) + aee)
+ eee o (2,182)
If & = 0.72,

-
H¥ = 4.0292280 (1 + 0.7148(2) S_ + ..o + 5 (0.0085% 2P+ +..)
.* L

-
+ 7 2(-2.9756362 (Kygp * Kqgq S,) = 3.69 KqgoS, + <v)

R )
+ 2 1 2 (l-l-o1 K‘]OOIXOOZ%"' ooo) + o.o) . (20183)

It remains to determine’y ,a, K,ny and K1*1. This is
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done by writing the external velocity and the heat transfer

rate for both small and large { in powersof S and % and
comparing the coefficients of Sw and @»over suitable intervals
of £, It is not possible to derive accurate values of a,

K100 or K1*1 but it is clear that

Jo.9's + 0.06(3) S - 0.0k(3) 8% + ... , if ¢ =1,

i [ (2.184)

0.95 + 0.06(6) S + 0.003% + ..., if & = 0.72.
Even with poor values of a,K,,,, and Ki%q 1t is never-
theless possible to draw graphs showing the external velocity

and the heat transfer rate.

2 -
VOO + VO1Sw + VoS,  * eee , if 6 = i I

b
VOO 4+ VO1SW + V10§ + sae ) if 0 = 0.72'

Then VOO is the incompressible term and thus does not
depend on ¢ ; Vg is a function of & and is up to 5%
larger when ¢ = 0,72 than when ¢ = 1, but on the scale of
the graph the two curves (for « = 1 and ¢ = 0.72) are
indistinguishable;

lV10"< 0.001; VO2 was only calculated for ¢ = 1. VOO’VO1,

and V., are plotted in figure 2.1.

G Y SR - G o SN A

0R i

Let . :

W S + Wan S 2 + ifo=1 g

; i 01 “w 02 “w g = :
2Yo%0)" (2T) 4 |
Pl i (5-3;2’ T = (2.186)
0 W WO‘ISW + W10(5 * ewe 3 ILC % 0,72 i

|

Wo4 and WOZ’ for § = 1, are plotted in figure 2.2
and wo1 and W1O, for o = 0,72, are plotted in figure 2.3.

ot e B bttt o=
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Figu‘re 24 External velocity
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Figure 2.3 Heat transfer rate (& = 0.72)
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3. DEVELOPMENT AND SEPARATION OF A COMPRESSIBLE

LAMINAR BOUNDARY LAYER UNDER THE ACTION OF A VERY
SHARPLY INCREASING ADVERSE PRESSURE GRADIENT

3.1« Introduction

This chapter considers a compressible laminar boundary
layer on a finite flat plate with an adverse pressure gradient
which, although small near the leading edge, becomes increas-
ingly sharp towards the trailing edge. The assumption is
made that the ratio of the viscosity)w to the absolute
temperature T is a function of x* alone, where x* measures
the distance downstream from the trailing edge in the

direction parallel to the plate. Thus

*
p= Clx ) g T/ T (3.1)
whereﬁAO and TO are values at a suitable reference position.

The theory holds for all Prandtl numbers ¢ of order
unity; detailed numerical calculations are presented for

6=1 and ¢=0,72 (appropriate to air).

Accordingly a transformation of variables due to
Illingworth (1949) and Stewartson (1949) is made, which
partially reduces the equations to incompressible form.
After transformation, the equations of motion becomeA

(equation (1.28))

3 Ers ;
23U 2y
~ LA o (3.2a)
3%° T :
ot vt WU (es) | vg 22t ‘

>x Y ax Y




2
« g %
v*3s , v'as _Y02% _”0(1““)[51_ AV
T o WS T o P u,
il .
I (:"5‘ > ~ (3.2¢)
0

-1
where { = 151 Mo2 ( 1+ 151 Moz) .
MO is the upstream Mach number and S is related to the

temperature by

#*2 |
=1 w2y T =1 2 U (3.3)
1
In these eguations Y* represents distance measured
normal to the plate and X* represents distance measured
downstream from the trailing edge, both in the transformed
plane, with associated transformed velocity components g

and V*. The suffix 1 refers to values at the edge of the

boundary layer.

From (3.3) it is clear the S = 0 at the edge of the

boundary layer, where o™ - U*1 and T A>T1. Likewise at

the wall
8, = T ST, =1, (3.4)
where
" 1 2
T, = T, [1 ¢ 3 -1) M2,

The equations are non-dimensionalized by writing

U*
= U/l
.O ’ 0 % ¥
X* = Lx, where L = C(x*)(—l) ¥
o

=1
T g

-1
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and 1 is the length of the untransformed plate,

Gl LR"%y, where R = Luo/vo,
and V* = u, R-%v, £348)
2u 3V _
Then SE oy 0,
uda , vau _u, duy (1+5) +'32u > {3..6)
X L dx 3 2 1

2 -1
2 S 1. 278 3 %
u2s , vasS _ - 2 _ - G)C‘(1 - @+ R 2) (u )

-’

The external velocity uy is selected to be
e ~
w, = (-x) , where O0< ¢ << 1, (3.7)

This problem is thus a generalization to compressible
flow of the problem first studied by Riley and Stewartson
{1969) and for which a more accurate numerical solution
was computed by Williams (1976). 1Its solution must
therefore be obtained in each of the four regions which
they consider, which are indicated in figure 3.1 (which
is not drawn to scale). The assumption that & is of
order unity removes the need for further regions, as

there will not be separate thermal layers,

It is necessary to examine (a) region I in which the
flow is irrotational (b) region II, the classical Prandtl
boundary layer of thickness O(R"%) between I and the body,
Now it is found that near the trailing edge and specifically
withiin a distance O(c /2) of it, region II spllts into (c)

region IIT, an inner boundary layer of thickness O(ééﬁ"z),



L€ 3dNYl4
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and (d) region IV, This is an essentially inviscid region

of thickness O(R'%) into which vorticity from region II is
convected, The structure of the solution in regions II,

IIT and IV is analysed.in detail using perturbation techniques.
The response of the flow in III to the rapidly varying

pressure leads to separation taking place before the trailing

edge is reached and within a distance O(ég/z) of it.

3.2. Solution in Region II

In this region write & =1 + x.

Then
u, du 00
1 E§l w o s R e i Ez: gn £ 0(e?). (3.8)
n=0
The governing equations (3.6) become
X 3= 2
u2u v 33U n u ;
£t 3¢ e sz E°(1+3) + g;g + 0(e”), (3.90)
n=0 :
3 . v .1 8 (1-0) o gt
u v -
O TE 32T fﬁ{“z%e} =y
Sy
n=0
2l 3% ., 2
+ 0(e”) ;*2*(11 )y (3.9¢)

00 (}.10)
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The stream function ¥ is introduced, such that u ='$%

and v = ~4%; then  is written as

00
v = (2§)%%ff3(ﬁ) +c §?+1 £,(/) + O(EZ)z y 3t
n=0 =48
where P)' = Eé)—g .
00
S = S5(R) +e Z ™1 5 (%) + o(c?). (3.12)
n=
Then fg"! + fpfp" = 0,
{3:13)
where f5(0) = fg'(0) = 0, fB'(ﬁ) — 1 as ﬁ~—» 00, )
and Sp" + oS! = 20(1-¢) { £FgtEgtt + (an)z‘g .
(3.14)
where S5(0) = S, Sg(f)— 0 as § — 00,

Considering terms of 0O{¢) and equating coefficients of

gn give

LR b LN - R(n+1)fg'f ' + (2n+3)fp"F = 2(1+33),

where }(3'15)

£.(0) = £,1(0) = 0, £,* » - (n+1)™" as § - 00,

n
and S_" + w88 ¢ - 2e{ne1)fy'S = ~o(2043)S' £,
¢ 2(1-s) UL T+ LRV 4 £ N wmly .18

(£5785"0 + (£5M3)Y

where

s,(0) =0, S, > 0 as — 00.

J

Although these equations cannot be solved in ¢ losed
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form for arbitrary n, the solutions for large n are important

since they lead to the terms which are singular as § — 1.
Since fn = fB' satisfies the homogeneous version of
(3.15) and is such that f,' - 0 as 4 — 00, for n>>1 £, can

be written as
) R 1
fh = H%T N v (TE:TTE) + Dy fy'y (3417

where Dn is a constant.

Then f3'Q' - fg"Q + 1 + Sp = 0; Q' - 1 as § - 00; (3.18)

f Q"
fB'R' - fB"R = fB"Q + g + 9—;—1-; R* — 0 as ?'\--> 00. (3.19)

These have particular integrals
00
1 + Si(t) % .
g = fB'(ﬁ) B -4.} At - D) fB'(q)

A L ggr(e) (3.20)

U L ) £g(8)Qn(s)
R = - £5'(R) —— { f5"(s) Qle) + B—— (3.21)

ﬁ fB'z(s)
5 g...s_s_x_} s
2
For small ﬁ
1+S ) ;
W AL e ~ R~ ~2
Q = - _oquogq+°(A r)+0(p' Yo
>(3.22)
and R = - + 0(1)
6u2ﬁ2 : g
where « = f5"(0) = 0,4696000, 1.
»(3.23)
and B = S5'(0),
and A® is a constant.
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Ifse=1, = --ulSw.

If ¢ £ 1, © must be evaluated numerically:
if & = 0.72, 8 = -0.4180913 5_ - 0.0636704 R .

For no constants Dn can the inner boundary conditions
be satisfied. It is clear that there is a thin inner

region in which the scale perpendicular to the plate is

different, To .discuss this region it is necessary to write

§ = n73g, (3.24)
5
g = EG), G‘E/’ + o(n™73). (3,25)
n 3
Then F"! - 2uéF! + 2«F = 2(1+Sw), ]((3.26)
F(0) = F'(0) = O. )
GMY - 268G + 20 = 20¢,
(3.27)
G(O) = G*(0) = 0.
Differentiation gives piV . RufF" = 0 (3.28)
and GV - 2¢gG" = 20, (3.29)

Excluding the complementary function which is exponent-

ially large as§ — 00,
L%
F'" = a Ai((2«) © &), . (3.30)
Moreover F%'(Q)} = 2(1+SW) = (Rx) /3, a Ai'(0)

Vo . 2%
implies that a = - F(1/3)3/-” o @ 273 (1+8). (3.31)

Integrating twice with respect to & gives
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Vs

. [(20 g

F(E) - al2s) ~ & Ai(t) dt

0
P 1

= 3(20() /3 '{_ Ai'(o) — Ai‘((z‘x) /BQ)} = (3032)
he = 00, 2. N 1
&) = - () 1o 2 22 37 (14s )

148 '
A + terms which are exponentially small. (3.33)

Matching with the outer solution gives

-2
D, =—Le 4 o((ne1) /3) (3.34)
(n+1) /3
and C = - "% 2% 313 (17.) 1
<L) 8 (a8, (3.35)

Solving (3.27) gives (after excluding the complementary

function which is exponentially large as ?')~> 00)

1 1 1
G" = b AL ((2¢) &) - 273 2, 01 (2426, (3.36)
a

where Gi ({) is as defined in Abramowitzand Stegun (1965 ):

(p.Lk8), 5

/3
S (3.37)

G*"'(0) = O implies that b = = ....2_/._._.
ol "3
Integrating twice with respect to{ gives

1
(2¢) /5g
G () +Q§§ (,1}_1,(‘[:_39})_ + Gi(s)) ds - !
0

-1

e 1/‘3
} 9-5 (200 /3 {Al((j%(l &) % Gi!((2¢)1/7’§)} ~ (3-38)




e

As §3~+ 00
] /.5
Glg) = (§10g§, + BS + s +0(7¢7)), (3.39)
w
where B = -B-—f_; -1 4 / ¥+ /3 log(6w) , (3.40)

where ¥ = 0.57721566 is Euler's Constant,

If Q and R are expanded for small r) it is found that

matchlng occurs provided

C 1 1, © 0 =
D. 5 ——— e (L % 1ogn -~ ~=B -wxA )
n (n+1)2/3 o In#1) 3 o o
‘ -l
+ 0l(n+1) 73). (3.41)
8o f =A1 (/) 0((n+1)"2)
T (n+1)
g " ‘
+ ____,Q_é____ _1/3632.ogn +_eB“A +O((n+1)h/3)§
(n+1) /3 «“(ne1) o (ne1) '

and in the outer region

, 00
Al (28)% (£5(4) +e{f3'(ﬁ) Z §n+1 ("—Q‘i_ -
n=0

(n+1)73
1 Dlog n
3 otz(n+1)
5 00 §n+1
th( A ) *‘l\1(""]) Z =—~—— 4+ terms which remain f{inite as
(n+1) Lo {nwd) -
£ - 1} + 0(c?)). _ (3.43)
As % - 1

vy, % — vy, 3 ¥
Y = 2'12 fB( /22) -:-e{C fB'( /2 ) (=-x) /3 + terms which tend to



73
infinity more slowly as & — 1 } + 0(62), (3.44)

where C = - :

5 |
2;2’“1 (/3) 10 (145, (3.45)
LB 3l (L3),

Similarly the wall skin friction

4
: 00 o+ f
| (32:2,:) U [ X ( F2(0) , G;(Q)) é;__f
w0 (28) /2 A o 2 72
n=1

+ terms which tend to infinity more slowly as § — 1]—+ 0(&2).

(3.46)
As £ > 1

r 1 _2/
2 /¢ 3
(é—%a = -;%f +c%{ 1/ "2:'2 . 5/ (-x) (1 + Sw)
y=0 o7 {135y 570

: (2“;2 (=x) 3?;
2
5 65 '3 [(,’/3\,:[ -

+ terms which tend to infinity more slowly as £ — 1} + 0(e?).

®

(3.47)
The energy equation (3.16) has solution
sot M) -2 '
B + 0((n+1)7%) (3.48)
Sn = SB' D(n) + -~y n+1
B
outside the thin inner region near the wall,
-1
In the inner region in whichi3= n 34;
_ _A 1
S, = 2 + 0O /n). | (3.49)
n‘3

Then (3.16) implies that




Th

"
A - BuBh = S20P, (3.50)
where A(O) = O and A does not become exponentially large as

€5 DO,

If ¢=1, this equation can be solved analytically:

1/
, L 39 (1+8,, ){__ R /3§) ot 1) /3,;,
oz
o (2a) 3 &
+3° 1"(1/3) Ai(t)dt , {3.51)
0
which gives.
2
5vlel w2 36 (1+8y) l"(1/31 N . (3.52)

L, 1 2 1
<3573 (V3 Brols
If ¢41, this equation must be solved numerically:
if = 0.72, A'(0) = -1 -795&6729(1*'3“,). {3.53)

So, in the outer region,

00 §n+1
= SB (f“)) +e{sB'(F‘)) c Z ———~2—/—— + terms which tend to
n=0 (n+1) /3
infinity more slowly as & — 1’\§ + 0(e?), (3.54)
As & — 1,

- ny
S = Bl vl | 464 5| ~L C, (-x) 3 + terms which tend
B 1y B 1 1
22 ‘gL 2%

to infinity more slowly as & — 1}S+ O(ez). (3.55)

Similarly the heat transfer rate
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00
n+1 .

(%%) = _—5177— + € 3 1/ A;(Ol + terms which tend

ni1
to infinity more slowly as §—a1} + 0 (e2). (3.56)

Asé—> 1,
-2/

(?ﬁ) - - +€§J'z'w bl +0((-x)-1/3)}
Wyo 2 3e/3)
+ 0(e?), (3.57)

where A'(0) is given by (3.52) and (3.53).

One of the conditions (3.83) to be imposed on the solution
in region IV is that it must match asymptotically as ¢ — O

with (3.44) and (3.55).

Likewise the skin friction (3.47) and heat transfer
(3.57) in region I1I must match asymptotically with the
skin friction (3.78) and heat transfer (3.79) in region III.

3.3. Solution in Region IIT

The variables appropriate to region III are given by

1 1
3 1 sV : Yy =
x=20Re2X, yu2Pute® T, uuc?U, v “we V.
(3.58)
The governing equations become
%%"':%-YY' =O’ (3o59a)
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2
Vel Vol o (207" (1 + Oleloge)) (1 + 9) »+§-Y-g , (3.590)
2
IJ%E% + Vi%% = %:’égg + 0(e). (3.59¢)
At Y=0 U=V=0; S=5_.
, 1
As X — =00, U=> Y +°0 (e ?); *(3.60)

Y
20y
S--;Sw+,e = + 0(e).

-’

Moreover the skin friction must match with region II.

1/2

Introduce a stream function « = 2 o('1 ¢~ so that

oaie. Faow

Y . (3.61)

o/
o/
r$ﬁ

The solution is given by

¥

1/2
%o‘“ c %1 # eere
1 (3.62)

2 <
5, + € Z1+...

w
i

o1) + Fo Fo,, ~Fo, Yo, =X (148, + kg . (3.63)

-
The solution of this equation can be written in the
form
00 Ry -2
— /3 /3m o Y
&0 = (=X) (1+8,)" £ (n), where n = —-—-1/3 ,
: - (=X)
M=

o

(3.64)

and f (0) = fm"(O) =0 Vm,
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fof(q) % 7 as 17 - 00,

%m'(?) is bounded as q - 00m > 1 (to make matching with
region IV possible),

and Em is independent of Sw Vm,
- 1 2
Then fo(y) = /29 ;

3f1nr - q f1n

3,

~|2
£, ™y

!
!}

3§2nt & qz 52"

35331 - 72 53"

2r)fé' + 2fé

hf)fB‘ + hf3 hf1'f2' - 2f1" fa,

3fh"' - qz Foro 6r)fh' + 6?‘[+ = 651'55' ” 352'2 - 451"53
2F.0f
2 %24
35;"' % 72'53“ = 875" + 855 8(f 'y '+f2'f3')
- 6? wf o Lf Uf - 2f.¢ (3.65)
L 2 3 3 2’
4 28 o »
3EMT - 9 fig¥ - 1or)f6' + 1Of6 = 10(f 'f5'+f2'fh')
~ 12
+ 5f3 - 8f1"f5 - 6f2‘f1& - L}f3 3 - 2fl+"f2’
etc..

The linear equations (3.65) can be solved successively
‘without great difficulty. Applying the condition that
f;'(?) should not be exponentially large as o) s 00 gives
that fm' tendsto a constant for m > 1,

3%,

As )=>00 57 ~ Y - g(X),

00 1/ ~2/ i
where g(X) = - z (-x) "3 737 F 1{00) (145 )0, (3.66)

m=1

Hence ¥, 9,1/2 ) g(X)Y, as Y — 00 for finite X. - (3.67)




78

i
€ 2y .

of Energy equation:

¥ oWy B el : .68
op =1y 7 Fog Zay " w21y 15.65)

At Y*"—'O, 21300

As X— -00, T, ~ 1.

The solution can be written in the form

© S 1/ -2/ m
- v 8 3 *3~ g m
PINR Z () Spl9) (143,)", (3.69)
m=0 '
where Em(o) = 0 Vm,
SO =y a31)~»00,
gm is bounded asq > 00 for m > 1
(to make matching with region IV possible),
and gm is independent of Sw Vm.,

Thus So(9) = -9,

s

~ 1 2 ~
Sz;s - /Br) Sy —r)Sz = /Br)fz + /3f2 + /3f1'S1,
~ 1 2 5 1 ~
S5, = /3053t <303y = 5Est + gty 5105

~ 1 ~ ~ L" ~ 2 ~ ~
2'Sp + /3f3'8y - /384105 - /38,1y, 43.79)
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These equations are also solved successively and for

~

m > 1 in each case S,> aconstant as n - 00.

So write

21 = {’—Y £ g (X) + ... s @8 Y — 00 for finite X. (3.71)
Then (3.69) implies that

i g LI, -
g +.°(g(X) 0.

Since g*(X)~a 0, when X — -00,

g (x) = - 2 g(x). (3.72)

So%y ~ — (Y - (X)), as Y 00, for finite X. (3.73)
1 .

O(c./2): Momentum equation

ib

T -

Oyy

Ty T E g - - T
v o Tyx \ETIYOYX qox&’mf

Tx

R (3.74)

S R
= iyyy

At Y=0, U, =V, =0,

3 )

As X — -00 the skin friction must match with region I1I.

The solution of these equations can be written in the form
§ 00 1/ 2/ "
~ A © 3 2 Sl Tl m
Ty = -2 Z (-x) Ba(g) (148)™,  (3.75)
m=0

h 1(0) = 0O Vm,

=
o 3
4]
5
0]
2
o
]

h_does not grow exponentially as q—aOO,

and h_is independent of Sw Vm .
ThUS ho"' - 1/3".‘260" +1/3r]h.0' S 1/3h.0 = SO’ (3076)

e, 2,.; ~ ~ { ~ A~
byt - 1 gnth < 1 gqhyt + /R < 8, by £,
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etc. L ]

These equations are solved successively as before.

It remains to check the matching of the skin friction

and heat transfer with region II:

As X —» -00,
-2 -4

2 = ”
(1"-—%) = £57(0) + (=X) § £,7(0) (145) + 0((-X) /3)
Y "

Y=0
1 -1
ne —1 .

+ Q/2 {-% (-X) /3 hy"(0) (148 ) + O((-X) )§+0 (cloge),

(3.77)

which, from (3A3) and (3.414),

g wii
. R2ualt1+S :
(1+5,) i) /3 + O((-X) /3)

= 1 -

5
3 /6 (<1751

;
v e /2{, (g;)ze(-}c)
373 (171

-1
/3
o+ O((-X)'1)}~ + Olc loge), (3.78)
] 2

which matches with (3.47) as required,

As X - -0,

S 1/2 © ~2/3 - —h/B
(ﬁ)no ol (=8, = = (-X) S, '.(o)(ﬁsw) + 0((-X) ))

e/

+ 0(e). (3.79)
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If o =1, §1’(0) can be obtained analytically, and from
(3.A22)

§1'(o)=§}‘{ s - sl }
370 L vy B Lodsp)?

~

When & £ 1, $,'(0) must be obtained numerically:

if &= 0,72, 5,1(0) = 0.5590510,

So (3.79) matches with (3.57) as required.

3.4. Solution in Region IV

The variables appropriate to region IV are given by

3/2

x=20% ¢ 2 X, y=%, =+ (3.80)

The governing equations become

e , 3, 1
Pz ~Fgbgenies o BEE &5 Vg v Oheousl,

. N 3/2 ' ~(3.81)
“l/'*Y-. Si -1‘»’5{ SYr.O(E s

As ¥ = O from (3.67) and (3.73)
1

" N '
Vgl u? - e 7% Tg(X) + Ole(10g0)?),
2" : 1 (3.82)
= _ o/
S~ S, + 2 Rgt-c'?

%g(i) # O(e(loge)z).

As X — -00, from (3.44) and (3.55)
l4
/
3

A ¥ Vowi * 5 Y —-1/3
-\l, ~ 2 fB ( '2-7172"-'> + € 21/3' fB'<';17;) (-X)

+ O(e(loge)z), L (3.83a
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_ 1 F= -1
15 & 70 3
S ~ SB ___1_Y__ + C 2"'5—"- SB' "".'I"X— (=X) /3
: 2/2 /¢ /o
' 2 2

+ 0(e(loge)?). 4 (3.83Db)

As Y — 00, from (3.7) and (3.4)
%E% ~ 1 + O(cloge) and S— 0. (3.84)

So a solution to (3.81) is sought in the form

—

1 .
- fig a
o + € 2-&3 + 0(e(loge)?),

¥ =
1 F(3.85)
S = 5y +e 23, + 0c(loge)?). |
0(1) + { - =0 |
\!’of \{"'OX— “T"OX "l"o—- ]
o o - (3.86)
Yo- So. = V¥o- Sp-
OF %0y 11’ox 0§ =0, :

with boundary conditions
% i 1 =2
as Y > 0, Yy~ s T*, 88 , from (3.82), (3.87)

1/ - -

= 3 2 ¥ i

as X-»-00, "{"O ~ 2 fB (-2-:]-7;), S~ SB{_%—/_E)’ from (3,83),
B 2

as ¥ »00, ¥, ~7Y, S0, from (3.84). (3.89)
(3.86) have solution
- 1/ _ N
2 o8
& - " (3.90)

4. b ~E;_§
0 B 1 *
(2 /2 :




with boundary conditions
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- (3.91)

as 'Y-—wo;m}1~ - Yg(X), 8, ~ - % g(X), from (3.82), (3.92)
2 . .
" - w3 ¥ M
as X=-00, %, ~ ) 'Tl/{“‘ (-6 2,
Y
x ' 3¢ = e
By g Byl ) D) 2, from (3.83), (3.93)
2 "6 g e
’ 2,
as Y >~ 00, — -~ 0, S, — 0, from (3.84). (3.94)
oY
Gons T 1—[@ /%o, ]=0 (3.95)
’ Uy oF ~ "1 " T8¢l )
Sy = 7 (6) fB'L 1;’2) v (D). (3.96)
2
. A
(3.92)> F, (%) = - BEE T (1) = o(D), (3.97)
and (3.93) is satisfied provided that (‘1(Y) = 0
(using (3.45)); ‘ (3.98)
(3.94) is then satisfied.
Then (3.91) = 8, = - &5 sB'( jz )+ L3 (3.99)
(3.93)» [, () =0; (3.100)

(3.92) and (3.94) are then satisfied.

t

The matching is complete
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3,5 Position of separation.

From (3.64) & (3.75) the following series for

2U -
T = (-—-—) was obtained :
DY Y=0

va 1w Fr0)x 5002 + Emond + Fronk 4 L.

1/2 %) 1/

- e X R (Bg"(0) + Bym(0)X + BHy"(0)XP

1
ol(1+Sw) /2
5 €3n<o>x3 # o0e) + O(e(loge)?),

where X

_2/
(-x) 13 (148,). (3.101)

1

/
Write T =Yg + € 211 + O(e(loge)z). (3.102)

i

Substituting numerical values gives

Tyo= 1 - 1.85747x - 0.73139%° - 0.91578x7 - 1.51241%"

- 2.84792%° - 5.79375:C - ...
OO N
Writing Ty = Z a, '){n gives ag = 1 and
n=0 > (3.103)

the coefficients a, (n 1) as in table 3.1.
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TABLE 3.1

n an n an

1 -1.857472236 11 ~347.2687130
2 -0.731394491 12 -834,.6808880
3 -0.,915777155 13 -2029 499242
L -1.512413003 14 -4983.104139
5 -2.847920469 15  -12338.09366

6 -5.793747622 16 -30771.50532

7 -12.40519071 17 =77233.97433

8  -27.54582352 18 -194940.8295

9 -62.85547009 19  -49LL9L.9315
10 1464964750 20  -1259963.433

The boundary layer separates at the first zero,K , of
this function (3.103); the value of R can be estimated by
various methods, of which the following proved the most
convergent, Using the fact that the radius of convergence
of the series (3.103) is kK, consider the ratios of successive
terms of it and then extrapolate using Neville tables (Gaunt

& Guttman, 1974, p.187-192).

Table 3.2 gives three series of estimates of 1/k: the

second column gives the value of an/a the third column

n-1?
gives the first Neville extrapolation and the fourth column

the second extrapolation,
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TABLE 3.2

n an/an_1

12 240355914

13 243146725  2.76636458

14 2.45533678 276564074  2.76129771
15 2.47598551  2.76506775  2.76134332

16 2 49402429 2.76460596 2.,76137339

17 2.50991863  2.76422796  2.76139299

18 2.52402950  2.7639143k  2.76140540

19 2.53664116 2.,76365103 2.76141283

20 2.54798048  2.76342760  2.7614167%

The common limit of these sequences is 1/K = 2,76142,

and thus R = 0,362132((5)).
' 1
Including terms of 0O(¢ 2) it is clear that 7 = O when

(3.104)

1/2 o

X=x5=K+e m‘—i—-.‘"x + LB

(3.,105)
¥ (145) /5

Write Y = X /lsep‘ Then, from (3,101),

‘
\ = 1im§‘<-/2

el 7 (Bg"(0) + Wb "(0)R + RERM(0)X% + L)
X1y g/ 5 .

(£,7(0) + 2¢Fp (01T + 3PE3M(0IX° + 4 2F "(0)%7

+ ...)'12.

If G’=1,

(3.106)

X o= -3.955&3A9Kfiﬂ(§ —{}— (1+ 0,7000507x,,
: =0 (L2

»
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v 133813678 % + 2.9797876x > + 7.0632692 *
b *®
+ 17.324866%5 + 43.423143x8 + 110.47241%] + 284 .14078xS

10

+ 736.95635¢2 + 1924.0401%10 + 5050.1560¢1" + ...)

(1 + 0.7875159x, + 1.4790700x2 + 3.2569273k3 + 7.6661185%%

+ 18.714942¢5 + 46.749735x5 + 118.637897 + 3045532618

sha
3R

+ 788.687301] + 2056.5346%1°0 + 539236631 + ...)‘1§

~3.9554349 iZ?K{}?$%5 (1-0.08746521R
n

0.07205302¢% - 0.09102963x3 ~01397227x% - 0.2402128:2

0.4450109x2 - 0.8693851%% - 1.767377<5 - 3.7058123

7.965175%Y - 17.47098X L + .Y .

Repeated Aitken extrapolation gives

€= -2,2518(2). (3.107)
If ¢ = 0.72,
R K .
A = =3.95543L9 é':f)e§,<‘1/2’ (1 #: 0;709191~|»OH*+
%

+ 1.3529351k§ + 3.0095#15K2 + 7'12926A5Ki + 17-47937K2
+ 43.797280,0 + 111.39924k] + 2864745708 + 742.905203
+ 1939.3482¢10 + 5089.8504% + ...) (1 + 0.7875159%,

+ 1.479070002 + 3.256927303 + 7.66611852% + 18.714942x3

¥

{043

o 467497358 + 118.63789x] + 304.5532618 + 788.68730:3

%k

+ 2056.5346100 + 5392.3663x1! + ...)“1}

lim 5 K

LR,

(1 - 0.07832197%
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- 0.064455061& - 0,08078268x2 - 0.1228139x% - 0,2090123¢3
- 0.3831158¢8 - 0.7406530¢] - 1.489366xS - 3.0883473

- 6.562952¢10 - 142285701 - LY,

Repeated Aitken extrapolation gives

Y = =2.2665(4) . (3.108)

3.6, Analysis of flow close to the position of separation

To analy8e flow close to the position of separation,
following Goldstein (1948) and Stewartson (1962) we introduce
a length scale 1*, defined by

o
* o U, (X))

ay]
E-X*#; (1'+Sw)

S

and a Reynolds number R, defined by
LR SR
Uy (x)1

»
0

Buckmaster (1970) showed that in the neighbourhood of

separation, if ¢ = 1,

% 2 #* e %* *
1R 2 U
: . = 212 § (0(10108§ + o<1zlogllog§ l+0(11
ey A wrt

Y e i ~

LS ESd *3 b 2
B 0(13 1ogilog§ /log & + ...) + O(& (10g§ ) )g (3.109)
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=1f ' s : %

and 1R ‘% (-8 %01 _

s (38 - E s - mione” o e g
w

log é*‘/log g* ¥ wew)
+ O<§*2<10g g*)z)}, (3.110)

* % 1/
* (X -x \/4 «
where & = | ——p— » X9 = = 0.091148 B", oLy,

* «
+ 4o logllogé I +o(11 +0(13 log

s
(3111
* e oy
= 0,035210B", &5 = -0.013601B", and g, (0) = - 1.111552,

¥
In incompressible flow, however, B = 0, and it is possible
to take the series for the skin friction much further as

Goldstein (1948), Stewartson (1958) and Terrill (1960)

showed :
..1/

o R 4 iz - o3

QU 2

( ) =2r§{o<”g + 1.77848005, &

£ 3%
U1*(Xs) Y
o 5 '

+ 3311013, £+ 757316, &+ e (3.112)

In this particular problem

UT (X:) = ug(1 + Oleloge) ),

1
. B '
% ¥ E (-XS)L

1 = 5
2072V (X )Ry (1 + O(eloge)),
and R =
(1 + Sw)
Lu
where Ro . .
3

o
L'
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v, /.
(-x) "% e ™ (1 4+ O(eloge))(?_l_l)

P -

-1
Then < 1R 12 (w*)

* 7 oY
U’:(X:) X/ (1+8,,) /2 W
(3.114)
3 _1 1/2,- -1/‘*—
and 1'R /2 (?_Q\ _ _(“}*-{S) & = 1140k loge))(?i)
e o =
(1£5,) Y/ (1 + S'w)3/2 NI/ w
(3.115)
* 1, 1 1.
Now £ = '™ (148, " [(5%)-1] o5 (3.116)
s

; 1 1
Since (3S/2Y). = O(¢ /2), it is clear that B" = 0O(e /‘*).
w

-1

However, since (BU/BY)W = 0(1) it is clear that o«(,, = O(& l*).

11
So, although this flow is compressible, in the neighbourhood
of separation it behaves to first order like an incompressible
flow. This argument, of course, only holds for < = 1_ but

it is clear from (3.101) that if ¢ £ 1 but is of order unity

the same result holds.,

-1 -1 1
We write o4 = ¢ € /L’(1+Sw) /i + 0(e /l*loge:) 2

-3 S, 1 3 BB
B w2 % /1*(1+S'w) /1"€ /1*6\7»1 + Ofe /l*loge),

[(-x)] 3
: }

and (N

(-X,

3 1 1/.
Then (%—-%)w _2m b {(3/2) /2 §1-w) /2 + 1.77848

3 3
& /i ¢ 201-017 % 4 3.31101 (%/5) $(1-w) + 7.15731

5, 5
Cr gk LY, S (3.118)
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Following Curle (1979a) rewrite (3.103) in terms of

m .

?

subtract the leading term of (3.118) (expanded in
powers of w); and equate the nth partial sums (evaluated
at w=1) to zero. This gives a convergent sequence of
estimates for ¢. A better sequence of estimates is
obtained by retaining the ¢2 terms and an even better one
by retaining #h terms as well (the §3 terms have no effect

on the result)..

The estimates of ¢ from the quartic equations are shown

in Table 3.3.

TABLE 3.3

Estimates of ¢

n Quartic

1= 0.3065 523
13 0.3063 738
14 ~ 0.3062 256
15 0.3061 014
16 0.3059 967
17 0.3059 079
18 0.3058 323
19 0.3057 677
20 0.3057 125

Extrapolation gives

¢ = C.30538 (3.119)

-1 -1
and thus %,, = € /‘f 0.30538(1+S_) L (3.120)

*6 * %6
The terms of O( & 1log & ) and O(& ) in the series
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for the skin friction (3.112) were determineq by Teirill
(1960), who shcwed that the coefficient of {félgg gp is
a function of ., but that the coefficient of £ EITE
is independent oft¥11. Accordingly we made an attempt

to obtain the value oftgss, but its results were inconclusive.

We next consider the heat transfer: from (3.70)

{2 = & i
T n(—,é-i-l)Yzo = - g{-1 + 31'(O)X + 32'(0)X2 + SB'(O)XB + o'-} .

(3.121)
Ifo=1,

¢ =-2 {-1 + 0.5861005y + 0.5096957x% + 0.7546612%°

+ 1.3575500x% + 2.7045185%° + 5.7378054x° + 12.703829%

+ 29.00799338 + 67.800243%% + 161.38880%'C + 389.84201% 1
+ 953.09801%'% + } : (3.122)
If o= 0.72,

£ = - %{-1 + 0.5590510X + 0.4880867x% + 0.7232773'C

+ 1.3017150%% + 2.5941815)% + 5.5053291° + 12.192204%”

+ 278460099 + 65.097537%7 + 154.98401%'0 + 374.43446X"]

+ 915.57277x}% + } (3.123)

As % -> X , these series (3.122) and (3.123) converge
jncreasingly slowly so that they only give extremely rough
estimates of the heat transfer at separation. However,

2
since (even though the heat transfer is not small) B is
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small, more terms in the series for the heat transfer in
the neighbourhood of separation (3.110) can be derived

for general & (Akinrelere 1977) and it can be shown that

145 1
t =9€>1{1 + 2.223100'/1‘*(%) /L’ ¢(1—w)1/l‘°

4 1 1 1 1 ~
. (2.620980 72 + 2.096796-/“)(%> /2 $2(1-0) 72 4 ...i :
(3.124)

If o = 1, the next term in the series can also be derived,

3 3
10,69395(3) 7% $3(1-a /%, (3.125)

Expanding Akinrelere's series ((3.124) and (3.125))

and dividing into (3.122) {(rewritten in terms of w) give

!

1 1 3
t/{ 1+ 0.751316(1-w) + 0.538845(1-u) /2 + 0.411245(1-w) /1”“‘5

0.7882829 8(1 + 0.0711935w + 0.0186168W° + 0.0077084y°

+ 0.00L0L0LGY + 0.0024393P + 0.001616700 + 0.0011443u7

i

0.0008505¢8 + 0.0006562, + 0.0005216° + 0.00042471 "

+

+

0.0003528w'° + ...) , 1P & = 1. (3.126)

It is useful also for purposes of comparison to derive

1 1
e/§1 + 0.751316(1-u) /by o.538885(1-0) 12}

0.92983520(1 -~ 0.,0125869 ~ 0.009187&32 - 0.005781.;3'\:,3

0

0.0039,020% - 0.0028645w° - 0.0021848.° - 0.0017272w/

0.0014036u8 - 0.00116597 - 0.0009856 0 - 0.00084550]

00007320 " = seshs S0 5= 1. ' (3.127)
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1/ 1/
6/§1 + 0.6920789(1-0) /4 + 0.4746184(1-0) /21

- 0.98281930(1 - 0.01307060 - 0.,0091562u° - 0.00567300>

- 0.003827OQF - 0.002763&.3.5 - 0.00ZOQ?Z&@ - 0.0016515Q7

- 0.0013379& - 0.0011083&7 2 0.0009349 9 - 0.0008004 o'
- 0.0006938w'% - ...) , if o= 0.72. (3.128)

At separation repeated extrapolation gives

ts = 0,87788 ifeg=1.
(3.129)
ty = 0.9300 if 5= 0.72.
1/
2T of w2188
SO(“— mw T === € (“*)
D = S J2 Y
Y)y‘o sep L ¥=0 | sep
T xt :
.8, o(e/2)
Jo
1
= eT_t_"(¢) + O (e/2)
where ts*(1) = 0.2915
(3.130)

ts*(o.72) = 0.309 .
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APPENDIX TO CHAPTER 3

EVALUATION OF £."(0), £ 1(00), hy"(0) and,

_when_s = 1,5,1(0).

From (3.65) 35‘1"' = r)z £,

. il - (3.A1)
where f, (0) = £,1(0) = 0, F1 '>0.constant as n-r oo
00
”» 3
=> £,7(q) = - & /9§ /9 4t (3.A2)
1 ') 9
S
= £,"(0) = - i o~t/9-4t - : = . (3.A3)
0 37/6(.1/3),
00 00
» 3 3
£,1(00) = -f 1779 { et/9 4t dn (3.44)
0 i
2 P
= "[1('/3) 3 B( /3, /3)
L
e DT (3.A5)

Y
B
F n o 1 2 g 1 Nt 13 % o

where ?10(0) s ho'(O) = 0 and HO does not grow exponentially

as r)—%Oo i (3.46)
(2.:86) 5 B ¥ = ‘/37260"' - 1/3760" & s (3.47)
Write z = Jgr)B, Flo" = h™: (3.A8)

2. X% ¢
d™h 2 dh 1 % 1
- SR = ———— A
Zdzz + (/3 z) 5= /3h Ts % L3 9)‘

g 33’
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Following BErdélyi et al. (1953, p.265),

1
/
set h = (1/,8) ' eé’q(@), & = 1 a (3.410)
& 5/
Then J"(&) + 1/ J*(€)- (1 | ')J(g) N - T
g5 365 ;/2 32/ 3

(3.A11)

The solutions which do not grow exponentially as r)_>54
are '

00
5% -5

) = Es—4 1, (&) £ K, (s)ds + K, (&)
372 ( le T Je s g g

£ I, {s)ds + B (3.A12)
1. !
o8 % 1/6

where E is a constant.

a*h
Now, since ——3 {0) %0,
4
00 -S
B =f1§: g ® _ k, (s)ds
0 s./"2 /6
- -2-; (using Luke (1962, p.107)). (3.A13)
2N
d™h 2
So = g (O) = 5/ (QW) . ) (3¢A1h)
d? 3773 (F(2/3)>2 ‘

If ¢ = 1, %1“ - 1/3q2§1' - 1/3q§1 = 1/3qf1' (from (3-70)))

where §1(O) = 0, §1»o.constant as ik oo

(3.415)
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Write §1 = e 51' + 8% (3.A016)

)

- 1 2 ek 1 i
Then S - = /3q SET /3qS% =1,

' : (3.A17)
where S*(0) = 0, S*., 4 constant as 958 o
1
Set S% = .(1/2@ /6 &% I(8), & = qlgrf . {3.418)
& 216
Then I"(¢&) + 1/_ I'(g) - (1 4 >I£( ) w25 .
STk 3662 ) 0 %3/2 s
(3.419)

The solution of (3.,A19) which satisfies the boundary

conditions is

216 0y =8
3 £ s 6
& -s
2 ‘ (3.A20)
(‘ T I 1/6(s)ds » .
S
0 1/6 -3
so 98% (o) - - /2 S— K, (s)ds =
& 3% oty 2 e
0
2
i (21) ; (3.421)
33 ply ) 2
8o §,1(0) = &8 { . = - L } . (3.422)
1 5t 7
L) (edyy)?
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L AN ACCURATE CALCULATION METHOD FOR TWO-DIMENSIONAL
COMPRESSIBLE BOUNDARY LAYERS WITH AN UNFAVOURABLE
PRESSURE GRADIENT.

L.1. Introduction

This chapter provides a method of calculating compressible
boundary layers, predicting positionsof separation, skin
friction, heat transfer, displacement thickness and momen-
tum thickness. The method is a generalization to compres-
sible flow of the work of Stratford (1954) and Curle (1977),
which is summarized in chapter 1 ((1.8) to (1.23)).

Sections 4.2 to 4.6 present the method and its derivation for
the case ¢ = 1 making use of the results of Davies and
Walker (1977) for .a. compressible flow with a linearly
retarded external velocity (untransformed); section 4.7
gives the generalization to the case & = 0(1). The whole
procedure makes use of the Illingworth (1949) -~ Stewartson
(1949) transformation.

4.2, A Criterion for Predicting Boundary-Laver Separation

Following Stratford (1954) the following definitions

are made:
, o -
Cp=1"_.'_£, (ll'-1)
%0
Aw LR (4.2)
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2 2 |
- s -
dx ax

{mﬁ%%?%z Cp, .. n (4.4)

and F

Where X is the transformed co-ordinate parallel to the plate

and U1 the transformed external velocity.

We begin by examining the compressible boundary layer
for which the pressure is constant when X < XO and the

transformed external velocity U1 is chosen such that

T ™ E% % SEl Eﬁ
Uo daX TS

is constant, where Tw is the wall temperature and TS the
stagnation temperature. This will be referred to as the
sharp quasi-uniform pressure gradient problem; the solution

was obtained by Curle (1978).

From his paper it is clear that at separation

F = o,74514(1+sw)'3{1 + 0.0412690 31 0-00359‘*%2)*-2

s

where Sh = Tw/Ts -1
and o, = 5,/(1+5,).

It is easy to show that at separation

1/5

We, = o'l r o). (4.5)

Eliminating N\ gives that at separation
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1 1 2f
(1+sw)F/3 = 0,90659 + o.3831va/3 + o.17970'w215 2

¥ eun (4.6)

The compressible continuous incipient separation

problem (chapter 2) gives

1/3

(1+SN)F - 0.839087 (1 + 0.001020r - 0.010695r2

1
- 0.011794r3 = ...) + 04137105, O/3(1 - 0.029665r

2
- 0.021212r% - 0.0175270% - ...) + 0.20697102 A 73

(1. - 0.069787r = ...) + 0.1053600 7 I\ (1 = ...) + ...,
(Le7)

where r = 1 - XO/X.

. 1
It is clear that the coefficients of powers of G;,£5/3

1
in the expansion of (1 + S )F /3 vary very slowly with X,
Just as F varies very slowly with x in the incompressible

case (Curle, 1976b}.

The compressible analogue of the Riley and Stewartson

préblem (chapter 3) gives

1 1
/3 + 0.65215%&/3 . .

(lp.8)

:
(148,)F /3 = 0.77399 %

as ' = 00.

A new solution for a problem in which the pressure is
uniform when X<:XO and the transformed external velocity

U1 is chosen so that for X >-XO -

X U,I _d_lil (1+Sw)= _ )(2{'_,. . 1) ’
ax Lo

il
O IO
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where A is large and constant, the compressible analogue
of the solution derived in appendix A of Curle (1977),

gives

/3 /3 2

y
(148y)F * 7 = 0.96743 + 0.37360, A

2
A./3

+ 0.1501Gﬁ

T a0 (h'g)

The number 0,96743 is a more accurate value than the number
0.9704 quoted by Curle. The details of the solution are

not presented here,
From these results it is clear that, if DA<< 1
1/ 1/ 2/
2.0 3 R 3
(145 )F = ag(M) + a, (D)o, O 7+ ay(0)e A
+ o0 0y (L“O"O)

where 85,24, and a5 are shown in table L.1.

TABLE 4.1
I %0 a1 a
It 0.8391 0.4137 0.2070
0 0.9066 0.3831 0.1797
/s 0.967k 0.3736  0.1501
=00 0.7740 /3 0.6521 unknown

Moreover, examining the results from the continuous
incipient separation problem (4.7), we see that, if A is
not small, a, changes onlj very slowly as X changes and
is roughly constant along the line along which ag is

1
constant., Now an may be closely approximated by Fc /3,
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where Fc is an approximation to the value which F would
have at separation for an incompressible problem with the
same /A and [ as the compressible problem, The approxi-

mation used is that derived by Curle (1977), that is,

F, = 0.46367 X_ + (0.10161 xc2

C

+ 0.36224 X_ +
+ 0.74514)e~2X/3, (4.11)

wher'e'Xc is the greater root of the equation

c

X2y (Lhel783 1.2462) X, = 13.379% + Lol
(L.12)

Furthermore, extrapolation is logical; so the above

suggests that to a good approximation at separation

1 1 1 2
LT i ke 13 + aylX ) o, A/B = az(xc)o-wz 5/3/

_ 1/ ' ;
(1 - az(x e, £/3), . (4.13)
where ay = 32/31 .

It might appear best to choose ay and a, S0 that the
formula (4.13) gives exact results as A\ — 0. However,
closer examination of the continuous incipient separation
problem reveals that as X increases the curve defined

parametrically by

A
and U

D(X)
™ (X}, ;
along which (1+S )F /3 is a slowly varying function of X,

#

depends significantly on the wvalue of Oy I_n fact.in the

case of this problem much better results are obtained by
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taking the value of a, when X, is - 1/2 as 0.366 rather
than 0.414. |

In the case of the linearly retarded external velocity
solutions (Davies and walker, 1977) it is found that better

results are obtained by taking the value of a1'when Xc is

1-/2 as 0,405 rather than 0,.374. So we take as our

approximation

a (X,) = 0.6521 - (0.0231X% + 0.1398 X_ + 0.2690) ™%X/ 3.

(4.1L4)

This is exact at O and as Xc-a 00 and takes values 0.3662
when X, = =1/, and 0.4051 when X = /..

a, is approximated by
1
2/0
az(xc) = 1.1 a1/Fc 3 5

which is exact at O and probabiy has the right form as
Xc—e 00.

In the case of both the linearly retarded external velocity
and the continuous incipient separation solutions better
results are obtained by taking ag slightly larger than
a2/a1; it seems best therefore to predict that separation

occurs when

W5 /3

1 1 1 2
(1+SW)F /3 = Fc + ay G'WA/B + 1.11(a$/FC /B)G‘WZA /
1 1
{1- 1.3 (a1/Fc /B)G‘w A/3 Je (4.15)
We write

1
(148) (F/F,) /3

@
%

(}-l—o16)

3

1 1 2 2
1+ (a,/F, EIINEIPRT CIMETAINEY
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1 1
(1 - 1.30a,/F, /3o /3, (4.17)

and z = ©/ ‘1?0 . (4.18)

Then at separation gz should equal 1,

In the continuous incipient separation case some values
of 2 are shown in table 4.2. 1In this table the values of A,

I' and z may not necessarily be accurate in the last decimal

place.
TABLE 4.2

Sw o £ A i z
fy 64 0.4808 0.173 ~0.851 1.004
A1, 0.2 0.6300 0.374 -1.095 1.007
7, o o.8736 0.901 -1.667 1.010
1 0.1 0.4808 0,150 -0.546 1,000
1 0.2 0.6300  0.312 -0.680 1.001
1 0.k 0.8736  0.69 -1.035 1.000

To use the method ((4.16) - (4.18)) to solve a particular
problem it is necessary to make the Illingworth-Stewartson
transformation and to calculate F, i and [* and hence X_,

Fo, a, and z for each of a number of values of x. The

approximate separation position is given by the criterion

z = 1.

The results of applying the method to five of the
linearly retarded external velocity solutions calculated

by Davies and Walker are shown in table 4.3,
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TABLE 4.3
Exact Predicted
Mach :
S, Separation Separation
Number " position position
1 -, 1.3305 1.3343
1 1 0.5240 0.5252
1 | U 0.9934 0994k
1is -, 1.3833 1.3886
1/ 1 0.,5711 0.5720
2

4L.3. A procedure for predicting the distribution of skin

friction.

We begin by examining the sharp quasi-uniform pressure

gradient problem in which

2v,X 2
o> (U - o = 9 < B -
0

(4.19)
where F,, F, and F, are given by Curle (1978) as
Fol8)/(1 =€) = 0,22052 - 0,06722& - 0.01731 E 4

-~ 0.00904 £3 - 0.,00590 £%* - 0.0043185 - ...,

100F, (£)/(1-&) = - 0.1860 log(1-&) - 1.37350E + 0.38298 E <

+

0.04506 £2 + 0,01157& % + 0,003178% « ... ,

and 1000F,(E}/(1 -&) = - 0.09175 log (1 -&) - 1,12594F

0.39670 £2 - 0.04009 £3 + 0.00354 £ %

+

+ LR L

The definition of z (4.18) gives
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1 2
_ (1 + O.l;.2266'wﬁség + 0.19836'3’ Aség + aee)
z = &

/3

+ see)

1 2
(1 + 0.42266, A /3 +.o.19830—f, N

- 1 L
Since & = (/.\/Asep) /3 + Of A/B), eliminating Ase and

P
writing E as a function of z give

= /3 2/ 5
E = z - 0.4226 (1-2)5,0-0. 1983(1-2)(1 + 27 )e5 &
+ eee e (4.20)

Substituting into (4.19) gives

20X 2 1 , 2
""'—"ug (%"%) = Fo('z) 4 i A/3 F,Ik(z) +0‘,,21 A /3
0

) 4 ans (ha21)

-0.01905(z" 11og(1-2) + 1) - 0.00297z
-000269622 = 000113823 - 0000305Z1+ = e aee ’

=0.0029z - 0.00102° = o0

where F1*(z)/(1-z)

and Fz*(z)/ﬁ-z)

We note that, unless z is very near 1, F1*(z) and Fz*(z)
are small compared with Fo(z), éven if N is not small; so
it seems reasonable to suppose that the same function of 2z
which gave a good approximatio-n in the incompressible case
may give good results in the compressible case too. So

we take as our approximation

17

2V X 2

1 0 W\

(F) 0, 2
where o = 0,4696000 ' £ (L.23)

/2 3/1,

-1
and T(z)= 0.48213(1 ~2z) "< + 0.37428(1-2) "% + 0.14359(1-2),
(La24)

following Curle (1977).
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Some values of T (their notation) for the two solutions
tabulated by Davies and Walker in their paper are shown in

table 4.4 together with the predictions of the formula (L.22).

TABLE L.4
S =1
x . g W T T,
' (exact) (predicted)
(6 Ay Q2113 0.9132 0.9132
0.2 0.4122 0.5417 04,5420
0.3 0.6033 0.3488 0.3494
0.4 0.7850 0.2082 0.2092
0.5 0.9578 0.0694 0.0714
1
Sy ="/2
& b 5
W W
x 2 (exact) (predicted)
0.2 0.1872 0.6679 0.6699
0.5 0.4403 . 0.3459 0.3487
0.8 0.6638 00,2052 0.2083
11014 0,862, 0.1040 0.1065
1.3039 0.9828 0.0276 0.0297

helhe A procedure for predicting the heat transfer

In the compressible continuous incipient separation

problem the heat transfer can be shown (from (2.155)) to

be given by -
2w x\ /2 :
G)‘.: - < 4 ( 0 (> T/> YSW (4.25)
4 U, T « T
W 3
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- 0.57519 + 0.002741r - 0.002770r° - 0.003502r° = ...
1

2
+ 0.0296626w2 a3 T B (4.26)

It is noticeable how slowly the coefficients of powers of

;
Oy O /3

vary with r.
In the sharp quasi-uniform pressure gradient problem

1 .
B u GO*(Z) +o -A/3 G >"(z) . S (4.27)

g
where G (z)/ {1 + o 628505(1-2) T% & 0.377082(1-2) ! 2

+ 0, 2&07&0(1—2) /WY - 0.445170 (1 + 0.0284002
+ 0.0044972° + 0.00122423 + 0.000382z% + 0.0000762° + ...)
(4.28)

and G,*(z) = 0.039093z + 0.010159z° +0.0058732° + 0.0041852%
+ aee . & (LP029)

In the sharp increasing pressure gradient problem

(see(4.9))

, 1 :
¢ = 6% v, A6t (2) v L, (4.30)

1
where G, (z)/§;1 + 0.681751 (1-z) / + 0.443681 (1-32) /2

+ 0.308418 (1-2) /‘*}
= 0.410872 (1 + 0.048637z + 0.0116962° + 0,004718z>
+ 0.002456z% + 0.0014842° + ...) ' (4.31)

and G,*(z) = 0.047976z + 0.0145212° + 0.009172z°
+ 0,007002z% + ... . (4.32)
In the compressible version of the Riley-~Stewartson

problem (3.126)

¢ .
6 = 6gN2) + o 73y, | (4.33)
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1 1
where Gy (z)/{ 1 + 0.751316 (1-2) /by o.538845 (1-2) 2

+

3
0.411245(1-2) 7 4 |
0.370178 (1+ 0.071194 z + 0.018617z 2 + 0.007708z>
0.004040z% + 0.0024392° + ...). (4.34)

+

%X

If A= O the values of G at separation, Gg, ., are

shown in table 4.5.

TABLE 4.5
P
:ﬁ Gsep
-/ - 0.5752
0 0.4606
1 0442
/2

-~ 00 0.4122

It is not possible to fit these values of G:ep to a

2 4 cl + d) e'nr‘where n< 1.5

function of the form a + (bVh
which does not increase rapidly for 1/2<:(‘<.2; if, however,
n = 2, the function of that form which fits the data will

decrease continuously. So if & = 0 we approximate
*

Gsep by

-2
G, = 0.4122 + (0.0883r% + 0.02107 + 0.,0484) e .

Equation (4.26) suggests that if ¢, is very small

A

G;ep may well be constant along the same lines in the ', A

pr
plane as Fc 183 B0, 1D G is very small, GSe may be

p
approximated by

~2X

G, = 0.4122 + (0.0883X % + 0.0210X_ + 0.0484)e  °,
(4435)
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where X  was defined in (4.12).

If &, is not small, following (4.26) we look for an
approximation to the heat transfer at separation of the

form

2 1
Guan @ B+ by (X)W & /3/(1 - bo(X o, A /3), (4.36)

where b, £ b1/Gc.

It is not obvious exactly what the correct form of 51(Xc)

is. After some experiment we take

0.0707 + (0.0429 - 0.1222X_ + o.11x§)e‘2Xc

s 58:37)
1/3

by =
(X + (1.1 - 0.6x )e"%%c)

1
which decays like )\/Xc /3 for large X, and has roughly the
right values at X, ='V2 y 0, ~ 0.4 and - 0.8. Then we take

b, = 1.15b‘/Gc.

This gives good results in the case of the tabulated
solutions of Davies and Walker (given in table 4.7) and in
the case of the continuous incipient separation problem,

In table 4.6 some values of the heat transfer, 4, for the
latter problem together with‘the predictions of the formula
(4.36) are given, where

1
203\ /2 (O T/>Y) .
Q = Q. ““*ﬁr——w = ~d5 G .
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TABLE 4.6

'S, r & Q (exact) Q(predicted)
.‘/2 0.1 0.4808 0.253 0.250
-1, 042 0.6300 0,250 0.248
7, o 0.8736 0.246 0.246
1 0.2 0.6300 0142 ~0.144
1 3 0.8736 ~0.145 -0.150

It is possible to derive an approximate formula for the
heat transfer at points other than the position of separation,
From (4.27) to (4.34) it is clear what form of approximation
we should try: the following formula gives an exceedingly
good fit for those three problems and we take it as our

approximation to the heat transfer:

1
g" = Gc-{(1 + (0,7513 - 0.1228e"xc)(1—z) /h

1
+ (0.5388 - 0.1618e7%¢) (1-2) /2 4 (0.4112 - 0.1705¢~%¢)
(1~z)3/h)(1 + (0,0712 - 0.04158"X°)z + (0.0187 - 0,01333'XC)22

+ (0,0077 - 0.0059e™%¢)2z3/(1 = (0.6734 + 0.2223¢~X¢ _ 0.2856022
1
%))/ (1.1135 - 0,0568e™"¢ - o.ozzoe”zxc)} + (R o, A /3
1
(T - 1950 % I /B/GC)L(z), (4.38)

where L(z) =4 z(0.4467 + 0.1162z + 0.06712%°
+ 0,047822/(1-2)), if z< 0.5,

1/, .
z{1 = 0,55(1=-2) %), if "z> 0.5. (4.39)

Some values of the heat transfer, Qg (their notation),

for the two solutions tabulated by Davies and Walker (1977)
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in their paper are shown in table 4.7 together with the

predictions of the formula (4.38).

TABLE 4.7
Ha = N
X z Qy Qs
' (exact) (predicted)
0.1 0.2113 0.5103 0.5130
0.2 0.4122 | 0.3480 0.3493
0.3 0.6033 0.2704 0.2714
Q.h 0.7850 0.2174 0.2182
0.5 0.9578 0.1647 0.1659
sep 1 0.1209 0.1191
Syi “'1/2
X Z & Qe
(exact) (predicted)
0.2 0.1872 -0,7302 -0.7328
0.5 0.4403 -0 4448 =0 Lhhd
0.8 0.6638 -0.3306 -0.3284
1.1014 0.8624 -0.250L -0,2481
1.3039 0.9828 -0.1809 -0,1812
sep 1 -0.1272 -0.1268

L.5. Estimating the displacement thickness

In the case of the sharp quasi-uniform pressure gradient
problem (Curle (1978))
1/ :
u 2 5 < - =
(——-Q-) S 1" (145,077 = AF = 121678 + 271 B (D)

RVqL 1

- 0.003976;, X 210g)E % - 0.00228 %2 £ 3 «5, 272 Q,(2)
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B ol i B
+ O30, X7 & % wue (4.40)

2 <2 £.3

where 1OB1(§) = 0.60425& + 0,17897& .+ 0.09h79ée
. =6

+ 0.06084E + O,0442LE  + .,,

2 ,

. 2., . -
and 100 Q,(§) = O.49874L &  + 0.39669& log¥ -1.13129F

| b o B =5
~0.14865& -0.06143E -0.03302& - ... .

Using (4.5) and (4.20),

AT = 1.21678 + NE BlE) s B /106 5 Pars(z)

2 2 2
i A/3 P2(Z) +¢5"WA/3 st(z) i o'wz A/B PZéS(Z) + 0 (Alogh),
(4.41)

Where P,(z) = 0.61872z + 0.183262° + 0.09706z> + 0,06230z"

+ 0.045302° + ... , (4.42)

-Pst (z) = 0.13865z , (4.43)

Py(z) = -0.23887z + ... , (4 bl
Pos(2) = -0.18943% - 0.165042° - 0,073002°

| <0.0L4188" « .., (ko45)

and  Pyaq(2) = 0,11879z, (L4e06)

Following Curle (1977) the singularity in P, can be

extracted and P1 rewritten a's

1/ 3
P1(Z)£: =1.33115 (1-2) % i 0.66931 (1-2) /‘P + 2.,00046
- 0.54884z - 0.04588z° - 0.012282° - 0.00440z%/(1 - 0.388925).
(L.47)

At separation
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A’j‘ = 1‘.21678 + 1.38625 A1/3 + 0.13865¢,, A2/3 log &
- 0.23885 A3, P28(1)0"w-l&2/3 + 0.11879¢2 NG
+ 0 (Alog A). (4.48)
The exact value of P23(1) is unknown but is clearly

approximately -0.6.

In the case of the continuous incipient separation

problem (2.123) substitution for & in terms of A gives

2
/3 + 0.128320, A /310g TAN

2/3

. 1
AT = 1.21678 + 1.40322 A

2/3

e i 3 2
- 0.,22108 A = 0.6)7¢cch + 0.109986‘w AN

+ 0063276, % Alog A- 0.109005;, A - 0.014525, A+ 0.05423r A
L
+ 0 (A /31og[3). (4.49)
We note that the coefficients in the series (4.48) and
(4.49) are approximately the same and also that the ratios
0.12832 : 0.06327, - 0,22108 : -0,10900, 0.10998 : 0.05423

are in each case 1 : 0.49305, which is the same ratio as

These suggest that a good approximation to /_S? is likely

to be of the form
1 B
AT = 1.21678 + NG Pilz) +0, O /3108 i Pors(#)dg +

2/ 2l3 VE
ANT/3 P2(z)§_>o v, N (1 + 0.02560, O °) st(z)

P b

where, following the incompressible problem,

P,(2) = - 0.238872z + 0.017792° (4o51)
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and, in order to give rdughly the right answer at z = 1,
Pog(z) = -0.18943z - 0.16504z° - 0.073002°
- 0.044182z%/(1 - 0.80772). C (4.52)

The accurate calculation of the remainder term would
need a larger number of available solutions. For the

present the best that can be obtained is

3k
b, (A/BIOgAPhL(Z)+D), (4.53)

where, following the incompressible problem,

P,plz) = - 0.00768 7 + 0.00110z° (L.54)

A/B

and D = = (0.35222 + 0.15542%) A + (0.03102 - 0.04852°)

/3.

) 5
CA 73, (0.3911 + 0.02830) 2 N (4.55)

*
So we take as our approximation to £51

3

By

1 - 2
= 1.,21678 + A/B P1(z) +Q‘WIL/310g&P2LS(z)®O
2 2 1
+ 873 b, ()b, +G‘wl§./3 (1 + 0.02560, NGD Pog(2)

2 k
NI NED P SN /3(1ogxsphL( z2) + D&, (4.56)

w

where Pys Porgs Poy Pogs P2SS’ PhL’ and D are defined in
(ho47), (L.A3), (L.51), (4.52), (L.46), (L.54), and (4.55)

respectively.

Some values of 51 for the two solutions ﬁabulated by
Davies and Walker (1977) in their paper are shown in table
4.8 together with the predictions of the formula (h;56).

It should be noted that to obtain the predicted value of
.81 requires the calculation of the predicted values of both

51* and %2* "




0.1
0.2
0.3
0.4
0.5

Sep

0.2

0.5
0.8

0.2113
Q.4112
0.6033

0.9578
1

0.1872

0.4403

1.1014 0.8624
1.3039 0.9828

sep

1

TABLE 4.8

&1 &1
(exact) (predicted)

S, = 1

1.3922 1.3916
2.0497 2.0343
2.6377 2.5914
3.2573 3.1631
L.1051 3.9601
L4 .,6342 L6241
S..= =1/5
0.5429 0.5635
0.9261 0.9795
1.2960 1.3602
1,764k 1.8216
2.3236 2.3587
2.5661 2.5814

®2

(exact)

0.2152
0.3121
0.3925
0.4661
0.5368
0.5537

0.4996
0.6616
0.8196
0.9304
0.9456

4.6, Estimating the Momentum Thickness

thickness, we first calculate the momentum thickness for

the sharp quasi-uniform pressure gradient problem, where

it is found that

= [32 = 0.46960 + (0.21055 - 0.09172¢0, )z [N

116

®2

(predicted)

0.2130
0.3073
0.3860
0.4598

0.5332
0.5520

0.3069
0.5084
0.6719
0.8220
0.9191
0.9335

Following the procedure adopted for the displacement

2/3
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, L
+ { (0.088966'W - 0.03876%2) + qz( z)} A+ 0o( D /3108 A),
(L.57)
‘2

where q,(z) = - 0.11489z + 0,022222° + 0.00352z>

+ 0.00124z% + 0.000582° + ... . (4.58)

At separation

A* 2/3
o = O.h6960 + (0.21055 - 0.091726ﬁ)£>

L
+ (-0,08682 + 0.088966;\’ - 0.038766‘w2)A + 0 (A /310g Ay,
(4.59)

Likewise for the continuous incipient separation problem,

from (2,125),

2

L
+ (-0.07198 + 0.096080, - 0.04186%2)& + 0 (N /310g &),
" (4.60)

The reason for the difference between the coefficients
)
of N 3 can be derived from the momentum integral equation,
which in the transformed plane takes the form (Curle and

Davies, 1971, p. 278)

2 QU du "
& U §,7) = ”o(u = U L By
dX
Upon setting
. oy e

2 2U - Q

Uy = uo (1-Cp) and( —T)w = 0.46960u, v )(3 Ts
0

this becomes

*
& La 'CP)Szl"O‘*G’%O(zox) 2 4 "V, $RY,
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When the pressure gradient is sharp, this may be written

as

1

: . o KV o

d * 0’ dC smaller
5 L1 - Cpﬂ&z] = 0,60839 (1+5,) ( u, ) dxp + Rerms

immediately downstream of the commencement of the pressure

gradient, from which it follows that

Q.

& [(1 - Cp)AZ*] = 0.60839 (1+5,)

and hence
(1 = CPIIN, = 0.46960 + 0.60839(145,)Cp + +uu .

Since Cp is small; it follows that
D5 = 0.46960 + (1.07799 + 0.60839 8,) Cp + uv o (4.61)

From the definitions of A, F, @O, and z in equations
(L.2), (4.11), (4.17) and (4.18) respectively, we deduce
that

P = \700 T+S,, < ’
using which (4.61) becomes

/3 5 &)
EAS = 3 3
05 = 0.46960 + (0.23225 - 0,101176;) F "2 &z OO

+ eea ’ ) (4062)

which is readily shown to be consistent with (4.57) and
(4.60). The accurate calculation of the remainder term
would need a larger number of available solutions, . For

the present the best that can be obtained is

Mg, (z) A\ _ (4.63)

where M = 0.0925 + 1.1800F _ & . (4.64)

: 3 *
So we take as our approximation to A.z
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/3

*x

’ 1 >
A 5 = 0.46960 + (0.23225 - 0.101176ﬁ)FC /3<§Oz 5.3
+ MQ2(Z)& ’ (14-065)

where M and g, are defined in (4.6L4) and (4.58) respectively.

Some values of 552 for the two solutions tabulated by Davies
and Walker in their paper are shown in table 4.8 together

with the predictionsAof the formula (4.65).

L.7. Generalization of the method to 6 = 0 (1)

If ¢ = 0 (1) the dependence of the position of separ-
ation, heat transfer, etc., on Ty is replaced by a depend-

ence on the two parameters B1 and B2 defined in chapter 2

by

By = 5'(0)/(148,)

(4.66)
B/(1+8,)

and B2

where s(q) is the solution of the Pohlhausen equation
given below (4.68) and

B=Yu? (+xta)”

and MO is the upstream Mach number,

(4.67)

The Pohlhausen equation is the energy equation for compress-

ible flow in a boundary layer with no pressure gradient:
S* + ofSt = 2p(1-0) § £revr 4 £R] (4.68)

‘where S(0) = S, S(?)-ﬁlo as n - 00,

and f is the solution of the Blasiwus equation

£t o4 £f" = 0,
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where £(0) = £'(0) = O, f'(?)—e 1 as q— 00.

In the case of the shafp quasi-uniform pressure gradient
problem (Curle 1979b) it is observed that when the separ-
ation position is written as a function of B1 and B2 the
coefficient of B1 varies little with ¢ and the coefficient
of B2 is small, In the case of the compressible version
of the Riley~Stewartson problem ((3.105) - (3.108)) the
same is true. The external flow for the compressible
continuous incipient separation problem ({2,159) and (2.160))
when written as a function of B, and B, has coefficients
which vary little with ¢ . So defining N\ and ® as in

(4L.2) and (4.16) respectively we write

| =1 1 1 2

$p =1 - (a,/F, /3) B,A/3+ 1102 (2/F_73)
BY AT (a,/e,/3) B, &'/3) (4.69)
and z = ®/ , , ' (4.70)

where &, a, and F_ are defined in (4.23), (4.14) and

1
(4.11) respectively. Then the approximate position of

separation is again given by the criterion

z =1, (14'071)

As in section 4.3 the skin friction is given by

1
13@/2(@)4() (4.72)
o ug BYW'-C.Z’ by uif
where T is defined in {L.2L)

To predict the heat transfer we define

1 | |
. 2v.x\'/2
o ___( 0 ) Qr/e1), | (4.73)
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If o =1,

Pook
G

.x.

]
)]

Examination of the heat transfer rate in the compressible
version of the Riley-Stewarféon problem ((3.124)-(3.129))
shows that when "= 00

. 2.2901
¢¥* =~ o.4122

1 1 i
1 + 0.9908w/l* + 0,2993€ /2
1

| /2 /1, |
1 1 56 8 1
(1 + 0.75136'/1*(1-2) /l" + 0.5388 ( il )(T—Z) /2>
9

(1 - 0.01267 - 0.0092z° - 0.005823/(1 - 0.83z))/0.9441
1
+ 0 (A /3)0

This gives excellent results at separation and retains the
1

correct dependence on ¢ in the coefficients of {(1=g) /h

while omitting it in the coefficients of z where it has

only a small effect.

Taking into consideration also the sharp quasi~uniform
pressure gradient and the sharp increasing rressure gradient
(see (4.9)) problems, we take as our general approximation

X

Wk 2.2901 - 0,28L6e °©
C

-X 1 i3 ;
1+ (0.9908 - 0/1947e C)S'/h + (0.2993 - 0.089e C)g

/1,

X, 1 1 -X
| { 1+ (0.7513 - 0.12286 ©)s b(1-2) T h 4 (0.5388 - 016180 ©)

1 1 1 ~&
( 5018 ¢ L /1) (1-2) /2}{1 - (0.0126 + 0.0199¢ ©)z
. .
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- (0.0092 + 0,0025¢"%¢)z® - 0,005823/(1 - 0.832)2 /
(0.9441 - 0.0224e~%c) - (><“1.b1(xc)131 A1/3/(1 + 1,150
b, B, A1/3/GC)L(Z) + 0,05 (1-0) By A1/3 i(z), (L4a74)
L
where ifz) = 2(1.5399 -~ 0.2613z - 0.0867z° - 0-047323/
(1 - 0.75342)) | (4.75)
and G,, X, b, and L(z) are as defined in (4.35), (4.12),

(4.37), and (4.39) respectively.

Ile1'<<1, this approximation breaks down; in this
case the heat transfer is small anyway. If B1 = 0 a

rough approximation would be

1
= 0,05(1=v) &/3 i(z) . (4.76)

(2vox /2 () |,
Uy ) 82 Tw
Obtaining an approximation to the displacement thickness
does not prove easy; there is not as good a match between
the displacement thicknesses for the sharp quasi-uniform
pressure gradient problem at separation and the continu-
ous incipient separation problem (written out in powers of
B, and B, and 051/3) when & = 0,72 as there is when ¢ = 1
((4.48) and (4.49)). Probably the best approximation

that we can give is

LY
-, ) 2 8% (145" e A3 -
(2vox 1 SRS a4e pq(2)

2 2/ _
g = B1A/3 log A Py o(2) T P,(2) G- )

B, 0%/3 (1 - 0.0256 " B, &/3) Pyg(a)
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5 ;
+ u-Z B% & /3 sts(Z)@Qi'iﬁo_Bb%(log APIJ-L( Z) + D), (1-!'.77)
00
where 1.21678 +j, Sdn
'\‘/‘ = O ) - (4078)
1 + S

W

S is defined in (4.68),

and P1 etc, are defined in section 4.5.

Following the same method which was used to derive the

approximation to the momentum thickness in section 4.6 we

obtain
iy

u *® 1 2 -1

0.\ §- - o0.6960 + F, /38,2073 100 /3
2V.X 2 c 0

0

o &
i + = |+ Mg, (z) (4.79)
i +3,, 2) T :

when F_, M and q, are defined in (4.11), (4.64) and (4.58)

respectively.
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5., CONCLUSIONS

The aim of the thesis as agreed with Rolls~Royce and
as stated in the first chapter has been fulfilled. In
order to make this possiblé-fwo new solutions of the
compressible boundary layer equations have been derived
for flows where there is a sharp adverse pressure
gradient. The second chapter considers a compressible
boundary layer on a semi-infinite flat plate with uniform
pressure when X<5XO and with the pressure for X>-Xo being
so chosen that the boundary layer is just on the point of
separation for all X?>XO. Immediately downstream of XO
there is a sharp pressure rise, to which the flow reacts
mainly in & thin inner sublayer of thickness O(@), where

L

£ = (X/X ~ 1) " 7; so inner and outer asymptotic expan-
0

sions are derived and matched for functions F and S which
determine the stream function and the temperature. The
external velocity, heat transfer rate, displacement

thickness and momentum thickness are determined as series

in powers of £ (and log§) and involve two parameters B,

and 82 which depend upon the wall temperature and the Mach
number. Detailed calculations are presented for & = 1

and 0.72 (appropriate to air). These series have radius
of convergence 1 because of a singularity at & =-1 (the
leading edge of the plate), but the series for the external
velocity and heat transfer rate are so well behaved that

it is possible to make an Buler transformation and thus
derive values for them for & = 0 (1), When é is large

the velocity and heat transfer tend with increasing & to
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those given by the separating profile derived by Cohen

and Reshotko (1956a), if o= 1, and derived in section

2.6 of chapter 2 if 6 # 1.

Just as in the incompressible continuous incipient
separation problem Stratford (1954) suggested and Curle
(19760b)proved that F varies very slowly with g , 80 in |
the compressible problem it is found that the coefficients

. 1/3. ; 1/3
of powers of ¢ A in the expansions for both (1+Sw)F

and the heat transfer change little with distance downstream:

when ¢ = 1,

1
(1+SQ)F /3 = 0.839087 (1 + 0.001020r - 0.010695r2
1
- 0.011794r7 = ...) + 0.4137100"wA/3 (1 - 0.029665r

2
- 0.021212r% - 0.017527r> - ...) + 0.206971¢% A /3

(1 - 0.069787r = o..) + 0.10536062 A (1 = .o} + us

b

2

and - ol (35%5) QIeX) - 0.575194 + 0.002741r
w S

| 2 3 , 1/3
- 0.002770r" - 0.003502r° - ... + 0.079493c¢ A
2

i /
(1 - 0.,105558r = ...) + 0.029662<rw2 AN 3 €1 & 3ai) % siw 3
aCpI® C ”12
whereF={1OX'ay9}Cp,A= "—E"’",CP'-'"‘"“‘Q':
_ XdCp/ dx ug
r=1 - xo/x and o = 0.469600,

If &~ + 1 but is of order 1 it is shown. that the dependence
of the pressure coefficient,heat transfer, etc., ongs  is
replaced by a dependence on the two parameters B1 and B,
and that when the pressure coefficient is written as a

function of B1 and 82 the coefficient of B1 varies little
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with s~ and the coefficient of B2 is small.

The third chapter considers a compressible Boundary
layer on a finite flat plate with an adverse pressure
gradient which although small ﬁear the leading edge
becomes increasingly sharp towards the trailing edge.
This is in contrast to the second chapter where the
pressure gradient downstream of XO is very sharp but
becoming kﬁSSO.‘ In chapter 3 the transformed =sxternal

velocity U1(X) is chosen such that

U (X} =y (<2/0)°

where 0<Le<<L 1 ,
0

& ¥ -1
L= ¢(x (—-’-) -1 ax,
4o
.

1 is the physical length of the plate and x and X represent
physical and transformed distances measured downstream from
the trailing edge. This problem is thus a generalization
to compressible flow of the problem first studied by Riley
and Stewartson (1969). The boundary-layer equations are
solved using the method of matched asymptotic expansions.
In particular it is shown that separation occurs when

-2 1
hen 5 /2
(- /1) (T, /T,) = 0.362132((5)) + € "N\ B,
1
(TV/TS) /2 T see 5

-2
5 3/2

where X = 2 o X (= = 0,4696000),

and N\ (&) is a function of the Prandtl number & such that
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N(1) = =2.2518(2) and "\ (0.72) = -2.2665(4).

The flow near separation is studied and it is found
that, although the flow is compressible, it behaves to
first order like an incompressible flow. Thus the constant
(211 which arises in an expansion about the singularity (as
shown by Goldstein (1948), Stewartson (1958), Terrill (1960)

and Buckmaster (1970)) is determined :

1 w4
Bl i /u (1+48,) /4 0.30538 + ... .

11

Using this and the unpublished work of Akinrelere (1977)

the heat transfer at separation is determined :

1/2 .
Ly
29 &), .,

where ts*m = 0.2915 and " (0.72) = 0.309,

1
2*
= BTt (c) +0 (e/z),

3ep.

o/

The fourth chapter examines the solutions of chapters
2 and 3, the sharp quasi-uniform pressure gradient problem
(Curle, 1978) and another problem whose solution is not
presented in detail in which the pressure is uniform when
X< XO and the transformed external velocity U1 is chosen

so that when X > XO

X du
-2 U, — (15 8) =-x(3(--1) ;
Ug dx XO

where )\ is large and constant, the compressible analogue
of the solution derived in appendix A of Curlte (1977).
The approximate method of computing compressible boundary

layers is derived for the case where & = 1 in sections 4.2
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to 4.6, starting from the fact that for each sharp

pressure gradient problem at separation

1 1 2
(1 + 3,)F % an(C) + a,(C)o e a, (F)o? A /3

+ seey if 6—‘—— 1’

: i : 2 "2
2 - U

whereT:degp/[de},A=——C—g—-—ande=1---1-—2--
dX ax XdCp/dX g

Then to provide a general method of predicting the position
of separation if ¢ = 1 even in cases where the pressure

gradient is not sharp the following definitions are made:

= (1 +S)(F/F)/

Q’o= 1+ (a, /F)/BG‘ AN /3+ 1 11(a12/F /3)0'“2A/3

/=137, s, 873,
and 2 = @/ibog

where Fc and ay are.both functions of X_  and X_ is a function
of A and (' , both Fc and X . being the same as functions
defined in the incompressible approximate method. Then

separation is predicted to occur when z = 1.

‘The appropriate non-dimensional form of the skin friction
is found to be a function of z to a good approximation.
Examination of the sharp adverse pressure gradient problems
gives a form for the heat transfer at separation analogous
to the form for (1 + S*)FV3 at separation, and a form for
the heat transfer at all points follows from examining
how the heat transfer changes as a function of z and XC.

Estimates of the displacement thickness and momentum
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thickness are also provided. In each case the results of

Davies and Walker (1977) are invaluable both for the deter-
mination of correction terms and for the checking of the
approximate method. | The method is ‘easy to use and
remarkably accurate. A generalization to the case where
¢ # 1 but is of order 1,which makes use of the results

of chapters 2 and 3,is provided in the last section of

the chapter.

Throughout the thesis techniques ofvseries analysis,
Euler transformations, Aitken.extrapolation, Neville tables
and the ratio method (Gaunt and Guttman 1974, p.187-199),
are used with good results., This led us to look at
another boundary-layer problem in which we were able to
use series expansions and both the standard methods of
series analysis, the ratio method and Padé approximants.
This problem is one in which two parallel infinite disks
are initially rotating with angular velocity&lfabout a
common axis in incompressible fluid, the appropriate
Reynolds number being very large. At a certain time the
angular velocity of one of the disks is suddenly reversed.
This problem was originally studied by Bodonyi and Stewartson
(1977), who integrated the partial differential equations
numerically, and is here studied using series expansions
in the appendix to the thesis. Bodonyi and Stewartson
found that the boundary layer which is growing near the
disturbed disk breaks down when (2t #= 2,36, as all the
velocity components become infinite. They also con-
structed an asymptotic expansion in the neighbourhood

of the breakdown which contained the singularities of
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the numerical solution in a moderately but not entirely

satisfactory way. This work both confirms their numerical
solution and exhibits the same breakdown of the solution
but does not resolve the difficulties which they found in
fitting it to the asymptotic expansion and in fact shows

that their asymptotic expansion must at least be incomplete.
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APPENDIX: THE UNSTEADY LAMINAR BOUNDARY LAYER ON A ROTATING

DISK IN A COUNTER-ROTATING INCOMPRESSIBLE FLUID

The problem considered in this appendix is one in which
two parallel infinite disks are initially rotating with
angular velocity {) about a common axis in incompressiblé
fluid, the appropriate Reynolds number being very large.

At time t*= O the angular velocity of one of the disks is
suddenly reversed to become - (), This problem was studied
by Bodonyi and Stewartson (1977), who integrated the partial
differential equations numerically and found that the bound-
ary layer which is growing near the disturbed disk breaks
down when flt*=tE£52.36, as all the velocity components
become infinite, They also constructed an asymptotic
expansion in the neighbourhood of the breakdown which
contained the singularifies of the numerical solution in

a moderately but not entirely satisfactory way. In this
work the partial differential equations are solved by
expanding in powers of one variable, with coefficients

which are functions of a second variable. This work

both confirms the numerical solution of Bodonyi and
Stewartson and exhibits the same breakdown of the solu-

tion when t=tE but does not resolve the difficulties which

they found in fitting it to the asymptotic expansion,

The equations themselves are derived as follows:

consider an incompressible fluid with kinematic viscosity

& xn
L confined between the two parallel planes z = O and

z* = d, At first the fluid and the disks are rotating

with angular velocity {2 ; then at time t = O the
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e
angular velocity of the disk z' =0 is instantaneously

reversed, Then if R>1, where & =C1d2/v is the Reynolds
number of the flow, the principal disturbance to the
flow occurs in a thin baundary’layer near z* = 0 for a
finite range of values of Ot¥., Relative to cylindrical
polar coordinates (r*, e, z*), where the axis is the
common axis of rotation of the disks, the velocity com-
ponents of the fluid can be written as

OrSF/3z,Qr7G, - 2 (vQ)1/2F), (A1)
where z = z" Kl/u)1/2, t =()t*, and F and G are functions
of z and t only,. Further, since R>>1, the governing
equations reduce to boundary layer form

2

- 2
FoSP #20F  ~FF°+0°~1, (A2)

G

1

¢ = Gy, + 2FG, - 2GF_, (A3)

since the continuity equation is identically satisfied by

(). The boundary conditions are

F=0,G&=&1, for all t £ 0; (AL)
G=-1, F=F, =0at z =0, for all t>0; (A5)
G~ 1, F, ~ 0, a8 2.~ 00, for all t. (A6)

We introduce the variable 7

where n = z/{t (A7)
and we look for a solution of the form
G = go(?) + t2g1(7) v th g(0) + eu (A8)
where g (0) = -1 , g (00) = 1, —
g,(0) = g ,(00) = 0 for n > 1,

and s ‘
3
F = -t /2{ fo(q)'+ 2 f1(?) + th f2(7) + ...} , (410)
where fn(O) = fn'(O) = fn'(OO) =0 for alln. (A11)
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Substituting into (AR) and (A3) gives

gO“ 4 1/2‘1g0' = 0,

£t Vg - £g1 = -1 4 oo,

g1“ + 1/2qg1' - Rg, = 2(fogo' - fO'gO)'

£ e Ygnty" = 38y0 = 264807 - "% + 2808y,

go" + /g - hep = 2(foey" + fgy! - To'e; = 14'8g),
£+ /" - 5Tyt = 28" ¥ 84857 - 2041y

* 2808, + 21" -

By" * /gyt - 68y = 2fomyt v fyet v Da8g" - Io'ey
-£i'8y - £5'845)5

00 4 T o YE Y = BUEELW o )20 w0 B0 8] & BE 0L

_f1'2 + 28y + 2818y, otc.. (A12)

The boundary conditions are given in (A9) and (A11).

These equations are linear and are solved successively.
The wall derivatives can be obtained accurately, but the
accuracy of the Qalues of fn(OO) tails off rapidly because
one of the complementary functions of the equation for fn
is a polynomial of degree 4n + 3, Thea;alues of gn'(O)
T2

and fn"(O) are given in table A1, -t F(00, t) is given by

- t—3/2 F(00,t) = H(u) = 0,8352827988195 + 0.230123851184 u
+ 0.059040047051 u® + 0.01395760982 u> + 0,00311923162 u®
+ 0.00067068781 u> + 0.0001403001 v® + 0.00002875783 u”
0.00000580326 u® + 0.00000115672 u” + 0.00000022828 u'°

+ 0.00000004468 u'! + ..., (A13)

+

2
where u = ¥ »
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TABLE A1
n gn'(O) x 101 fn"(O) x 10"
5 1.128 379 167 096 0.616 635 619 812
1 -1.962 357 309 89 0.218 126 572 18
2 -2,352 744 992 97 -0.17k 892 132 65
3 ~2.,718 507 180 57 -0.855 709 582 46
L —2.147 013 957:6 -1.621 607 4,88 9
5 0.158 822 778 7 -2.013 256 765 1
6 L.401 763 495 O -1.502 576 731 7
7 9.419 680 233 0.160 736 620
8 12.367 008 930 2.610 276 199
9 9.638 888 540 ' L.813 475 L61
10 -0.678 598 28 5.507 080 60
11 ~15.847 334 32 ' 3.969 239 31
12 ~27.533 599 5 0.556 432 3
13 -25.673 740 9 ~3.638 719 1
14 ~7.,292 054 7 -7.966 270 5
15 15,268 Li6 6 ~12.919 579 2
16 17.519 069 2 -18.379 687 6
17 ~14.099 592 4 19.175 848 6
18 =47.325 878 -2.488 453
19 6.92 908 43.855 L5
20 229,932 747 106,675 378

These coefficients are interesting because, whereas
the coefficients of the series for H are of constant
sign and fall into a very regular pattern, the wall-

derivative series have coefficients of variable sign which
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do not fall into an obvious pattern.‘ The reason for this
is that the former series is dominated by a singularity on
the real axis while each of the latter is dominated by

singularities in the complex plane which do not lie on the

real axis.

We béegin by examining the series for H(u). Since it
has a singularity on the real axis, we use the ratio method
to estimate }\: 1/uE where u = U is the value of u at the
singularity. The second and third columns of table A2 give
two sequences of estimates of/u ¢ the second column gives
the values of M = a‘n/an,_1 where a,  is the coefficient of
u™ and the third column the first Neville extrapolants)w;:.

t
The latter sequence clearly tends to a limit/m where

A’ = 0.17945 + 0.00003 . (A14)
If we invert the series for H(u) the inverted series has
coefficients of variable sign and no singularity at u = Ug 3
so it seems reasonable to suppose that the singularity in
H is a.simple or multiple pole at u = Up e This idea is
supported by the fact that if we assume that

-(1+g)
Hu) = A(1- pu) f1+00 -pl, umag  (a15)

then we can form a sequence of estimates of g (Domb and

Sykes 1957)

g = “(}:..Q ~1) . g{'] + 0(1/ )% y as n— 00, (A16)
n /\A- n

These estimates, taking V} = 0.17945, are shown in the fourth
column of table AZ and appear to be tending to 1. This
result is in accordance with the results of Bodonyi and

Stewartson (1977, p. 674); so we use this value of g to
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form a more rapidly convergent sequence of estimates of M

from the sequence (Domb and Sykes 1961)

N
Mn = Y a }m{‘] + 0(-12)}, as n - 00. (A17)

n+ g n
These estimates are shown in the fifth column of table A2

and have a 1imit/\~" where

/&u = 0.,179435 + 0,00001, (A18)
Then .
w; = 5.5730 + 0.0003 ;
1/ (419)
tp = up | 2 = 2,36072 + 0.00005.

Finally the amplitude of the singularity, A, may be esti-

mated from the sequence (Sykes and Fisher 1962)

a
PRI < ST
A = k) (A20)
£+n
(B
which in this problem becomes simply
a, ;
An i 0 ; (A21)
{n+1 )/\A

These estimates, taking/.\“ = 0,179435, are shown in the
sixth column of table AR. The limit is sensitive to

the value of M" but can be given as
/\.\

A' = 0,599 + 0.001. (A22)

Thus near t = trs

F(00, t)& - T f(tg-t)?),
where o = 1.038 + 0,002.

(A23)
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TABLE A2

+ *

f }Ln )Ln gn Nn An
0.2150170 - 10.9910  0.1791808  0.6009%
10.2091885  0,180046  0,9943  0.17930hL  0.60051
0.2049736  0.17968L  0.9956 0.1793519  0.60023
0.2017976 0.179566  0.9963 0.179376 0.60003
0.199322  0.17952  0.9967 0.179390  0.59988

O 0 3 O wn

Having determined the nature of the singularity in
F(00, t), we need also to evaluate F (0, t) and G_(0, t)
up to breakdown. Since Jjust adding up the series gives
poor recults as breakdown is approached especially when
evaluating é% (Fzz(o’ t)) and é% (G,(0, t)) we use the method
of Padé approximants (Padé, 1892; Wall, 1948) which enables
several singularities lying anywhere in the complex plane
to be studied simultaneously and provides a method of
approximately analytically continuing a function beyond
its radius of convergence. The (L, M ] Padé approximant
to a function F(z) is the ratio of a polynomial PL(Z)
of degree L to a' polynomial QM(z) of degree M,

P{z) _ Py+P 24Pz o+ . +P 2T

[, ] =22 = :

QM(Z) 1+qu+q222+..,+quM

where the coefficients Pqs P1, cee PL and Aqs Qps ees
qy are chosen so that the expansion of [L,Mﬂagrees with

the expansion of F(z) up to terms of order L+M, i.e.
F(z) = [L,M] + o (a1,

The coefficients are unique and can be obtained directly

by solving the sets of linear equations, although the set
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of equations is often ill-conditioned. It is usual to
 look at diagonal or near-diagonal approximants[h + Jo d].
Much information is provided by Gaunt and Guttman (1974,

p. 202-210), who give a very full list of references.

To determine F, (0, t) and G (0, t) we make the defini-

tions . “
- t-1/2 F_(0, t) = I{u) = £,"(0) + £,"(0) u
zz"' - D) 1
" ) ’
+ f 0 e ’ % &(A‘
and ? L0k ™ ’
g1 g (0, t) = J(u) "(0) 1(0)u * go'(0)u”
2 ’ = u = go o + g1 u + g2 u gt 3
where u = t2.

The Padé approximants to I{u) and J(u) converge well
until breakdown is approached and the results obtained for
I(u) and J{u) and hence for FZZ(O, t) and GZ(O, t) are
shown in table A3 for t = 1/2, ; I8 11/2, 2 and 21/h together

with the comparable results of Bodonyi and Stewartson,

% TABLE A3
“PBoutl, t)

t I(u) f i )

' present Bodonyi and

analysis Stewartson
0.5 0.621965453 | 0.439796 0.4450
1.0 0.635659898 0.635660 0.6373
15 0.641632281 0.785836 0.7858
2.0 0.556775 0.787399 0.7883
2425 0.4022 0.6033 0.6062
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G,(0, t)

J(U) v g A -
present Bodonyi and
analysis Stewartson

0.5 1.077806456 1.524249 T+587
1.0 0.905689843 0.905690 0.9065
1.5 - 0.532304187 0.434625 0.4381
2.0 © =0.217597 -0.153864 -0.1509

R«25 -0.7483(7) ~-0.4989 -0.4956

As breakdown is approached and H becomes singular, I
and J remain finite; so in tables A4 and A5 the [9-1, n],
[n, ntland[n+1, n]approximants to I(uE) and I'(uE)/I(uE)
and J(uE).and J'(uE)/J(uE) are shown, Attempts were
made to find the location and nature of the most dominant
singularities of I(u) by analysing I'(u)/I(u) (Baker, 1961),
but the results were not sufficiently accurate to enable

a better estimate of I(uE) to be obtained.

- TABLE AL

;SSE)
: pton]  [mon] b1, 1]
6 0.30159 0.29221 0.29309
7 0.29315 0.29423 0.29390
8 0.29391 0.29291 0.29350
9 0.29350 0.29357 0.29428
0 0.29455 0.29369 -

continued over




It (ug)/T{ug)

140

r )
n [:n-1 : n] .[n, n] [n+1 s 2]
6 -0,7692 -0.7778 -0.7800
7 -0.7815 -0.72i1 -0.7665
8 ~0.767L ~0.7545 -0.7805
9 -0.7850 -0.7879 -0.7939
0 ~0.7643 - 3
Hence I(ug) = 0.294; It'(ug)/I(u;) = -0.78. (A25)

TABLE A5
g (ug)
n tn—1, n] .[n, n [n+1, ni
6 ~0.97356 ~0.97744 -0,97611
7 ~0.97607 ~0.98L72 ~0.97283
8 ~0.97277 -0.97312 -0.97321
9 ~0.97320 ~0,97321 -0.97321
10 ~0.97320 -0.97308 -
3" {ug)/d(ug)

n [n-?, n | [n, n] [n+1, n]
6 0.3668 0. 4148 0.4154
7 0.4260 0.4220 0.4190
8 0.4361 0.3976 0.4051
9 0.4064 0.4063 0.4067
10 " "

Hence J(ug) = -0.9732;

0.4064

J'(uE)/'J(uE)f: 0.406(4). (A26)
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So in the neighbourhood of tn

F_ (0, t) = -0.452 -1.5(7) (tg-t) + ... -
(A27)

and G, (0, t) -0.6334 + 1,081 (tg-t) + ....

It is thus not possible to choose values of ¥ and % which
fit Bodonyi and Stewartson's asymptotic analysis,which

gives in the neighbourhood of t; (p.678):

F (0, ) = 1/%p — w(tg-t) + ...
and G,(0, t) = ='/,% - «fltg=t) + ... .

The asymptotic analysis must at least be inconplete.

Thus this work indeed both confirms the numerical
solution of Bodonyi and Stewartson and exhibits the
same breakdown of the solution when t = t;, but does
not resolve the difficulties which they found in

fitting it to the asymptotic expansion .
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