1,604 research outputs found
Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.
BACKGROUND\ud
\ud
Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud
\ud
METHODS\ud
\ud
The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud
\ud
RESULTS\ud
\ud
All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud
\ud
CONCLUSION\ud
\ud
Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field
In-situ fluorescence spectroscopy indicates total bacterial abundance and dissolved organic carbon
We explore in-situ fluorescence spectroscopy as an instantaneous indicator of total bacterial abundance and faecal contamination in drinking water. Eighty-four samples were collected outside of the recharge season from groundwater-derived water sources in Dakar, Senegal. Samples were analysed for tryptophan-like (TLF) and humic-like (HLF) fluorescence in-situ, total bacterial cells by flow cytometry, and potential indicators of faecal contamination such as thermotolerant coliforms (TTCs), nitrate, and in a subset of 22 samples, dissolved organic carbon (DOC). Significant single-predictor linear regression models demonstrated that total bacterial cells were the most effective predictor of TLF, followed by on-site sanitation density; TTCs were not a significant predictor. An optimum multiple-predictor model of TLF incorporated total bacterial cells, nitrate, nitrite, on-site sanitation density, and sulphate (r2 0.68). HLF was similarly related to the same parameters as TLF, with total bacterial cells being the best correlated (ρs 0.64). In the subset of 22 sources, DOC clustered with TLF, HLF, and total bacterial cells, and a linear regression model demonstrated HLF was the best predictor of DOC (r2 0.84). The intergranular nature of the aquifer, timing of the study, and/or non-uniqueness of the signal to TTCs can explain the significant associations between TLF/HLF and indicators of faecal contamination such as on-site sanitation density and nutrients but not TTCs. The bacterial population that relates to TLF/HLF is likely to be a subsurface community that develops in-situ based on the availability of organic matter originating from faecal sources. In-situ fluorescence spectroscopy instantly indicates a drinking water source is impacted by faecal contamination but it remains unclear how that relates specifically to microbial risk in this setting
Photon echo studies of photosynthetic light harvesting
The broad linewidths in absorption spectra of photosynthetic complexes obscure information related to their structure and function. Photon echo techniques represent a powerful class of time-resolved electronic spectroscopy that allow researchers to probe the interactions normally hidden under broad linewidths with sufficient time resolution to follow the fastest energy transfer events in light harvesting. Here, we outline the technical approach and applications of two types of photon echo experiments: the photon echo peak shift and two-dimensional (2D) Fourier transform photon echo spectroscopy. We review several extensions of these techniques to photosynthetic complexes. Photon echo peak shift spectroscopy can be used to determine the strength of coupling between a pigment and its surrounding environment including neighboring pigments and to quantify timescales of energy transfer. Two-dimensional spectroscopy yields a frequency-resolved map of absorption and emission processes, allowing coupling interactions and energy transfer pathways to be viewed directly. Furthermore, 2D spectroscopy reveals structural information such as the relative orientations of coupled transitions. Both classes of experiments can be used to probe the quantum mechanical nature of photosynthetic light-harvesting: peak shift experiments allow quantification of correlated energetic fluctuations between pigments, while 2D techniques measure quantum beating directly, both of which indicate the extent of quantum coherence over multiple pigment sites in the protein complex. The mechanistic and structural information obtained by these techniques reveals valuable insights into the design principles of photosynthetic light-harvesting complexes, and a multitude of variations on the methods outlined here
Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.
Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli
A road to reality with topological superconductors
Topological states of matter are a source of low-energy quasiparticles, bound
to a defect or propagating along the surface. In a superconductor these are
Majorana fermions, described by a real rather than a complex wave function. The
absence of complex phase factors promises protection against decoherence in
quantum computations based on topological superconductivity. This is a tutorial
style introduction written for a Nature Physics focus issue on topological
matter.Comment: pre-copy-editing, author-produced version of the published paper: 4
pages, 2 figure
The potential of a new larviciding method for the control of malaria vectors
Malaria pathogens are transmitted to humans by the bite of female Anopheles mosquitoes. The juvenile stages of these mosquitoes develop in a variety of water bodies and are key targets for vector control campaigns involving the application of larvicides. The effective operational implementation of these campaigns is difficult, time consuming, and expensive. New evidence however, suggests that adult mosquitoes can be co-opted into disseminating larvicides in a far more targeted and efficient manner than can be achieved using conventional methods
A double coset ansatz for integrability in AdS/CFT
We give a proof that the expected counting of strings attached to giant
graviton branes in AdS_5 x S^5, as constrained by the Gauss Law, matches the
dimension spanned by the expected dual operators in the gauge theory. The
counting of string-brane configurations is formulated as a graph counting
problem, which can be expressed as the number of points on a double coset
involving permutation groups. Fourier transformation on the double coset
suggests an ansatz for the diagonalization of the one-loop dilatation operator
in this sector of strings attached to giant graviton branes. The ansatz agrees
with and extends recent results which have found the dynamics of open string
excitations of giants to be given by harmonic oscillators. We prove that it
provides the conjectured diagonalization leading to harmonic oscillators.Comment: 33 pages, 3 figures; v2: references adde
Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.
Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance
MRI for assessment of anal fistula
Magnetic resonance imaging (MRI) is the best imaging modality for preoperative assessment of patients with anal fistula. MRI helps to accurately demonstrate disease extension and predict prognosis. This in turn helps make therapy decisions and monitor therapy. The pertinent anatomy, fistula classification and MRI findings will be discussed
Evaluating compliance to a low glycaemic index (GI) diet in women with polycystic ovary syndrome (PCOS)
<p>Abstract</p> <p>Background</p> <p>A low Glycaemic Index (GI) diet may decrease some long-term health risks in Polycystic Ovary Syndrome (PCOS) such as endometrial cancer. This study was performed to assess compliance to a low GI diet in women with PCOS. Food diaries prospectively collected over 6 months from women on a low GI diet or healthy eating diet were analysed retrospectively. The women were recruited for a pilot randomised control trial investigating whether a low GI diet decreased the risk of Endometrial Cancer. Nine women with PCOS completed 33 food diaries (17 from women on a low GI diet and 16 from women on a healthy eating diet) recording 3023 food items (low GI group:n = 1457; healthy eating group:n = 1566). Data was analysed using Foster-Powell international values inserted into an SPSS database as no scientifically valid established nutrition software was found. The main outcome measures were mean item GI and Glyacemic Load (GL), mean meal GL, percentage high GI foods and mean weight loss.</p> <p>Findings</p> <p>Women allocated the low GI diet had a statistically significant lower GI of food items (33.67 vs 36.91, p < 0.05), lower percentage of high GI foods (4.3% vs 12.1%, p < 0.05) and lower GL of food items and meals.</p> <p>Conclusion</p> <p>Women with PCOS on a low GI diet consumed food items with a significantly lower mean GI and GL compared to the healthy eating diet group. Longer term compliance needs evaluation in subsequent studies to ascertain that this translates to reduced long term health risks.</p> <p>Trial Registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN86420258">ISRCTN86420258</a></p
- …