12,805 research outputs found

    Monte Carlo Evaluation of Non-Abelian Statistics

    Full text link
    We develop a general framework to (numerically) study adiabatic braiding of quasiholes in fractional quantum Hall systems. Specifically, we investigate the Moore-Read (MR) state at ν=1/2\nu=1/2 filling factor, a known candidate for non-Abelian statistics, which appears to actually occur in nature. The non-Abelian statistics of MR quasiholes is demonstrated explicitly for the first time, confirming the results predicted by conformal field theories.Comment: 4 pages, 4 figure

    Non-Abelian quantized Hall states of electrons at filling factors 12/5 and 13/5 in the first excited Landau level

    Full text link
    We present results of extensive numerical calculations on the ground state of electrons in the first excited (n=1) Landau level with Coulomb interactions, and including non-zero thickness effects, for filling factors 12/5 and 13/5 in the torus geometry. In a region that includes these experimentally-relevant values, we find that the energy spectrum and the overlaps with the trial states support the previous hypothesis that the system is in the non-Abelian k = 3 liquid phase we introduced in a previous paper.Comment: 5 pages (Revtex4), 7 figure

    New multi-channel electron energy analyzer with cylindrically symmetrical electrostatic field

    Get PDF
    This paper discusses an electron energy analyzer with a cylindrically symmetrical electrostatic field, designed for rapid Auger analysis. The device was designed and built. The best parameters of the analyzer were estimated and then experimentally verified.Comment: 5 pages, 4 figure

    Relevance of Undetectably Rare Resistant Malaria Parasites in Treatment Failure: Experimental Evidence from Plasmodium chabaudi

    Get PDF
    Resistant malaria parasites are frequently found in mixed infections with drug-sensitive parasites. Particularly early in the evolutionary process, the frequency of these resistant mutants is extremely low and below the level of molecular detection. We tested whether the rarity of resistance in infections impacted the health outcomes of treatment failure and the potential for onward transmission of resistance. Mixed infections of different ratios of resistant and susceptible Plasmodium chabaudi parasites were inoculated in laboratory mice and dynamics tracked during the course of infection using highly sensitive genotype-specific quantitative polymerase chain reaction (qPCR). Frequencies of resistant parasites ranged from 10% to 0.003% at the onset of treatment. We found that the rarer the resistant parasites were, the lower the likelihood of their onward transmission, but the worse the treatment failure was in terms of parasite numbers and disease severity. Strikingly, drug resistant parasites had the biggest impact on health outcomes when they were too rare to be detected by any molecular methods currently available for field samples. Indeed, in the field, these treatment failures would not even have been attributed to resistance

    The X-ray Luminosity Function of "The Antennae" Galaxies (NGC4038/39) and the Nature of Ultra-Luminous X-ray Sources

    Full text link
    We derive the X-ray luminosity function (XLF) of the X-ray source population detected in the Chandra observation of NGC4038/39 (the Antennae). We explicitly include photon counting and spectral parameter uncertainties in our calculations. The cumulative XLF is well represented by a flat power law (α=−0.47\alpha=-0.47), similar to those describing the XLFs of other star-forming systems (e.g. M82, the disk of M81), but different from those of early type galaxies. This result associates the X-ray source population in the Antennae with young High Mass X-ray Binaries. In comparison with less actively star-forming galaxies, the XLF of the Antennae has a highly significant excess of sources with luminosities above 10^{39} erg\s (Ultra Luminous Sources; ULXs). We discuss the nature of these sources, based on the XLF and on their general spectral properties, as well as their optical counterparts discussed in Paper III. We conclude that the majority of the ULXs cannot be intermediate mass black-holes (M > 10-1000 \msun) binaries, unless they are linked to the remnants of massive Population III stars (the Madau & Rees model). Instead, their spatial and multiwavelength properties can be well explained by beamed emission as a consequence of supercritical accretion. Binaries with a neutron star or moderate mass black-hole (up to 20\msun), and B2 to A type star companions would be consistent with our data. In the beaming scenario, the XLF should exibit caracteristic breaks that will be visible in future deeper observations of the Antennae.Comment: 15 pages, submitted to Ap

    Post-Collision Interaction with Wannier electrons

    Full text link
    A theory of the Post-Collision Interaction (PCI) is developed for the case when an electron atom impact results in creation of two low-energy Wannier electrons and an ion excited into an autoionizing state. The following autoionization decay exposes the Wannier pair to the influence of PCI resulting in variation of the shape of the line in the autoionization spectrum. An explicit dependence of the autoionization profile on the wave function of the Wannier pair is found. PCI provides an opportunity to study this wave function for a wide area of distancesComment: 33 pages, Latex, IOP style, and 3 figures fig1.ps, fig2.ps, fig3.p

    Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites

    Get PDF
    <p>The spatial segregation between dwarf spheroidal (dSph) and dwarf irregular galaxies in the Local Group has long been regarded as evidence of an interaction with their host galaxies. In this paper, we assume that ram-pressure stripping is the dominant mechanism that removed gas from the dSphs and we use this to derive a lower bound on the density of the corona of the Milky Way at large distances (R similar to 50-90 kpc) from the Galactic Centre. At the same time, we derive an upper bound by demanding that the interstellar medium of the dSphs is in pressure equilibrium with the hot corona. We consider two dwarfs (Sextans and Carina) with well-determined orbits and star formation histories. Our approach introduces several novel features: (i) we use the measured star formation histories of the dwarfs to derive the time at which they last lost their gas and (via a modified version of the Kennicutt-Schmidt relation) their internal gas density at that time; (ii) we use a large suite of 2D hydrodynamical simulations to model the gas stripping; and (iii) we include supernova feedback tied to the gas content. Despite having very different orbits and star formation histories, we find results for the two dSphs that are in excellent agreement with one another. We derive an average particle density of the corona of the Milky Way at R = 50-90 kpc in the range n(cor) = 1.3-3.6 x 10(-4) cm(-3). Including additional constraints from X-ray emission limits and pulsar dispersion measurements (that strengthen our upper bound), we derive Galactic coronal density profiles. Extrapolating these to large radii, we estimate the fraction of baryons (missing baryons) that can exist within the virial radius of the Milky Way. For an isothermal corona (T-cor = 1.8 x 10(6) K), this is small - just 10-20 per cent of the expected missing baryon fraction, assuming a virial mass of 1-2 x 10(12) M-circle dot. Only a hot (T-cor = 3 x 10(6) K) and adiabatic corona can contain all of the Galaxy's missing baryons. Models for the Milky Way must explain why its corona is in a hot adiabatic thermal state; or why a large fraction of its baryons lie beyond the virial radius.</p>
    • …
    corecore