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ABSTRACT
The spatial segregation between dwarf spheroidal (dSph) and dwarf irregular galaxies in the
Local Group has long been regarded as evidence of an interaction with their host galaxies. In
this paper, we assume that ram-pressure stripping is the dominant mechanism that removed
gas from the dSphs and we use this to derive a lower bound on the density of the corona
of the Milky Way at large distances (R ∼ 50–90 kpc) from the Galactic Centre. At the same
time, we derive an upper bound by demanding that the interstellar medium of the dSphs is
in pressure equilibrium with the hot corona. We consider two dwarfs (Sextans and Carina)
with well-determined orbits and star formation histories. Our approach introduces several
novel features: (i) we use the measured star formation histories of the dwarfs to derive the
time at which they last lost their gas and (via a modified version of the Kennicutt–Schmidt
relation) their internal gas density at that time; (ii) we use a large suite of 2D hydrodynamical
simulations to model the gas stripping; and (iii) we include supernova feedback tied to the gas
content. Despite having very different orbits and star formation histories, we find results for
the two dSphs that are in excellent agreement with one another. We derive an average particle
density of the corona of the Milky Way at R = 50–90 kpc in the range ncor = 1.3–3.6 ×
10−4 cm−3. Including additional constraints from X-ray emission limits and pulsar dispersion
measurements (that strengthen our upper bound), we derive Galactic coronal density profiles.
Extrapolating these to large radii, we estimate the fraction of baryons (missing baryons) that
can exist within the virial radius of the Milky Way. For an isothermal corona (Tcor = 1.8 ×
106 K), this is small – just 10–20 per cent of the expected missing baryon fraction, assuming a
virial mass of 1–2 × 1012 M�. Only a hot (Tcor = 3 × 106 K) and adiabatic corona can contain
all of the Galaxy’s missing baryons. Models for the Milky Way must explain why its corona is in
a hot adiabatic thermal state; or why a large fraction of its baryons lie beyond the virial radius.

Key words: methods: numerical – Galaxy: evolution – Galaxy: halo – galaxies: dwarf –
galaxies: evolution – galaxies: ISM.

1 IN T RO D U C T I O N

In the current cosmological framework, the fraction of baryonic
matter to dark matter (DM) is known to a high level of preci-
sion, thanks to both big bang nucleosynthesis (Pagel 1997) and the
study of the cosmic microwave background (e.g. Komatsu et al.

� E-mail: andreag@mpa-garching.mpg.de

2009; Planck Collaboration et al. 2013). By contrast, the fraction
of baryons observed in the form of stars and gas in collapsed struc-
tures in the Universe is rather scant, which is commonly referred
to as the missing baryon problem. Only massive galaxy clusters
appear to have the amount of baryons expected, mostly in the
form of hot gas that permeates their deep potential wells (e.g.
Sarazin 2009). Galaxy groups and isolated galaxies contain a frac-
tion of detectable baryons which is a factor of ∼10 smaller than
the expected fraction and this discrepancy steadily increases with
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decreasing virial mass (e.g. Read & Trentham 2005; McGaugh et al.
2010).

Disc galaxies represent particularly challenging environments.
Applying the cosmological baryon fraction to the virial mass of
the Milky Way (MW; 1–2 × 1012 M�; e.g. Wilkinson & Evans
1999), one would predict a total baryonic mass for the Galaxy
of ∼2–3 × 1011 M�. However, the currently detected mass in stars
is ∼5 × 1010 M� (Dehnen & Binney 1998) while interstellar mat-
ter accounts only for <1 × 1010 M� (Binney & Merrifield 1998;
Nakanishi & Sofue 2006). Therefore, ∼70–80 per cent of the MW’s
baryons are missing. Similar discrepancies are obtained for other
disc galaxies of comparable mass (e.g. Read & Trentham 2005).

A commonly accepted solution to this incongruity is that galax-
ies should be embedded in massive atmospheres – cosmological
coronae – of hot gas at temperatures of a few 106 K which contain
most of the baryons associated with their potential wells (Fukugita
& Peebles 2006). To date, the detection of these coronae has proven
rather elusive since at this temperature and density (and assum-
ing a low metallicity) the gas is unable to efficiently absorb or
emit photons through metal lines or bremsstrahlung radiation (e.g.
Sutherland & Dopita 1993). Some disc galaxies do show X-ray
emission outside of their discs, but in most cases this is clearly
associated with star formation and the presence of galactic winds
(Strickland et al. 2004). In general, owing to contamination from
the disc, an unambiguous detection of a cosmological corona is
difficult in disc galaxies, unless hot gas is seen at large distances
(�10 kpc) above or below the disc plane. A notable case is the mas-
sive galaxy NGC 5746 (Pedersen et al. 2006), where an early claim
of an extended X-ray emitting corona was later attributed to an er-
ror in the background subtraction in the Chandra data (Rasmussen
et al. 2009). This case alone demonstrates that these studies are
at the limit of the capabilities of current X-ray facilities (Bregman
2007, but see also Hodges-Kluck & Bregman 2013; Li & Wang
2013).

In the MW, there are several indirect indications of the presence
of a hot corona. The first evidence was pointed out by Spitzer soon
after the discovery of clouds at high latitudes as a medium capable
of providing their pressure confinement (Spitzer 1956). Head–tail
shapes of high-velocity clouds (HVCs) are also considered as evi-
dence of an interaction between them and the corona (Putman, Saul
& Mets 2011). Unfortunately, all measured distances of HVCs are
within 10 kpc from the plane of the disc (e.g. Wakker et al. 2008).
Thus, it is not clear whether they are probing the cosmological
corona or simply extra-planar hot gas. A perhaps more relevant ob-
servation is the asymmetry between the leading and trailing arms
of the Magellanic Stream (e.g. Putman et al. 2003), which is seen
further out (∼50 kpc) and could result from ram-pressure stripping
(see Guhathakurta & Reitzel 1998; Mastropietro et al. 2005; Diaz
& Bekki 2012). Finally, X-ray spectra towards bright active galac-
tic nuclei (AGN) show absorption features – in particular O VII,
Ne IX and O VIII – characteristic of a corona at T � 106 K. How-
ever, the poor velocity resolution of these spectra does not allow us
to determine the extent of this medium and the current estimates
range from a few kpc to ∼1 Mpc (Nicastro et al. 2002; Bregman &
Lloyd-Davies 2007; Yao et al. 2008).

Anderson & Bregman (2010, hereafter AB10) list a number of
known indirect pieces of evidence for the Galactic corona. They
attempt to use them to give limits on the amount of gas it can
contain. For an isothermal corona, they argued that the gas mass
should be relatively small – of the order of 10 per cent of the total
mass of missing baryons – assuming a Navarro, Frenk & White
(1997) (NFW) profile. The fraction can become significantly larger,

however, for adiabatic coronae (see also Binney, Nipoti & Fra-
ternali 2009; Fang, Bullock & Boylan-Kolchin 2013). The same
authors presented also a possible detection of a corona of miss-
ing baryons around the massive spiral NGC 1961 (Anderson &
Bregman 2011). Their estimate of the total mass for an isothermal
corona is again ∼10 per cent of the baryons that should be associ-
ated with the potential well of this galaxy. This estimate comes from
an extrapolation as the visible corona extends only to about ∼50 kpc
from the centre. Potential problems with this detection come from
the fact that this galaxy may be the result of a recent collision
(Combes et al. 2009) and shows a rather disturbed H I disc that
extends to a distance of 50 kpc from the centre (Haan et al. 2008).
A new and more compelling detection is that of the supermassive
disc galaxy UGC 12591, where the amount of gas in the corona is
estimated to be between 10 (isothermal) and 35 per cent (adiabatic;
Dai et al. 2012).

Following Shull, Smith & Danforth (2012), the low-redshift
baryon content can be divided as follows: 1.7 per cent in cold gas
(H I and He I), 4 per cent in the intracluster medium, 5 per cent in
the circumgalactic medium,1 7 per cent in galaxies [stars and inter-
stellar medium (ISM)], 30 per cent in the intergalactic warm–hot
ionized medium (WHIM) and 30 per cent in the Lyα forest. This
leaves 29 ± 13 per cent of the baryons still missing. From their
high-resolution cosmological simulations, these authors found that
about half of these missing baryons may be in a hot (T > 106 K)
intergalactic WHIM phase.

In this paper, we derive the density of the corona of the MW at
large distances (∼50–90 kpc) from the centre using the population
of surrounding dwarf spheroidal (dSph) satellites as a probe of the
hot halo gas. dSphs are gas-free dwarf galaxies – at least down
to current detection limits (e.g. Mateo 1998). They are typically
located close to their host galaxy in contrast to the gas-rich dwarf
irregulars (dIrrs) that lie at larger distances (Mateo 1998; Geha et al.
2006). The proximity to our Galaxy is believed to be the reason for
the removal of material from the dSphs, as several other physical
properties are very similar between the two types (e.g. Kormendy
1985; Tolstoy, Hill & Tosi 2009). A similar distance–morphology
relation is also observed in dwarf galaxies in other groups (e.g.
Geha et al. 2006), suggesting that in addition to supernova (SN)
feedback, environmental effects like ram-pressure stripping from a
hot corona (Gunn & Gott 1972; Nulsen 1982) or tidal stripping (e.g.
Read et al. 2006a,b) must play a crucial role. There is a vast literature
investigating these phenomena via hydrodynamical simulations in
different environments, from galaxy clusters to MW-sized haloes
(e.g. Mori & Burkert 2000; Marcolini, Brighenti & D’Ercole 2003;
Roediger & Hensler 2005; Nichols & Bland-Hawthorn 2011), as
well as observations of possible on-going ram-pressure stripping
from dwarf galaxies (McConnachie et al. 2007) and normal galaxies
(Fossati et al. 2012). For a study that combines ram-pressure and
tidal stripping in dwarfs, see Mayer et al. (2006).

Here, we concentrate on ram-pressure stripping and assume it to
be the dominant mechanism that removed gas from the dSphs (tidal
stripping plays a more minor role for the galaxies we study here;
see Section 2.3 and Blitz & Robishaw 2000). We introduce a simple
model of SN feedback and investigate its influence on the stripping
rate. We then estimate the minimum density that the corona of the
MW should have for this stripping to occur. This technique has
been pioneered by Lin & Faber (1983) and Moore & Davis (1994)
and subsequently refined by Grcevich & Putman (2009, and see

1 Due to the poor knowledge of such a phase, this fraction has been assumed
rather than measured.
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also Blitz & Robishaw 2000), who considered a simple analytical
formula for the stripping, applied it to four dSphs and found that the
number density of the hot halo within ∼120 kpc from the centre of
the MW is of the order of a few times 10−4 cm−3. In this paper, we
improve on these earlier works by adding several novel features:

(i) we perform hundreds of 2D hydrodynamical simulations of
gas stripping;

(ii) we use the measured star formation histories (SFHs) for the
dwarfs to derive the time at which they last lost their gas and, using a
modified version of the Kennicutt–Schmidt (KS) relation (Schmidt
1959; Kennicutt 1998b), we determine their internal gas density at
that time;

(iii) we use a detailed reconstruction of the orbits of the dwarfs
that fully marginalizes over uncertainties in their distances, line-of-
sight velocities and proper motions;

(iv) we include a model for SN feedback with discrete energy
injections to assess the importance of internal versus external gas
loss mechanisms; and

(v) we use pressure-confinement arguments [similar to Spitzer
(1956) but applied to the dSphs] to derive an upper bound on the
coronal density.

We use the Sextans and Carina dwarfs, which are suitable for
this study because they are small systems with reliable SFHs and
mass estimates. Moreover, they have similar pericentric radii but
totally different SFHs, providing an excellent consistency test of
our method.

This paper is organized as follows. In Section 2, we estimate
the effect of ram-pressure stripping on dwarf galaxies. We estimate
the relative importance of tidal stripping for the two dSphs we
study here, and we introduce the key concepts used in this paper to
derive our lower and upper bounds on the coronal gas density. In
Section 3, we describe our numerical method and initial conditions.
In Section 4, we show our results. In Section 5, we wrap in other
constraints on the coronal density from the literature and discuss the
implications of our results for the missing baryon problem. Finally,
in Section 6 we present our conclusions.

2 A NA LY TIC R ESULTS

2.1 Ram-pressure stripping: a lower bound on the hot
corona density

To leading order, a dwarf galaxy will be ram-pressure stripped of
its ISM if (Gunn & Gott 1972)

ρcorv
2 � ρgasσ

2, (1)

where ρcor is the density of the background medium (the Galactic
corona) that we would like to measure, v is the velocity of the dwarf
galaxy, ρgas is the density of gas in the dwarf’s ISM and σ is the
velocity dispersion of the dwarf (a proxy for its mass).

The velocity of the dwarf v is maximized at the pericentre of the
orbit, as is the background density ρcor. Thus, we can reasonably
expect almost all of the ram-pressure stripping to occur at or near to
a pericentric passage. At the orbital pericentre rp, equation (1) can
be recast as

ρcor(rp)
∣∣

min
= ρgasσ

2

v(rp)2
, (2)

which gives the minimum coronal density at rp required to strip the
dwarf of all of its ISM, assuming that ρgas is the density of the latter
just before the stripping event.

The velocity of the dwarf at the pericentre v(rp) and the pericentre
value rp are easily determined once the orbit is known. Dwarf orbits
can be reconstructed by assuming simple spherical potential models
for the MW up to ∼2 orbital periods backwards in time (Lux, Read &
Lake 2010), and in some cases even more depending on how close to
spherical the background potential is, and whether or not the dwarf
fell in isolation or inside a ‘loose group’. The velocity dispersion of
the dwarf σ can be obtained from stellar kinematic measurements
(e.g. Walker et al. 2009), which just leaves the ISM density ρgas

as a free parameter. A novel key aspect of this work is that we
introduce a new method for estimating ρgas. Using deep resolved
colour–magnitude diagrams, and fitting stellar population synthesis
models, the SFH of the nearby MW dwarf galaxies can be inferred
(e.g. Dolphin et al. 2005). This gives us the star formation rate as
a function of time from which we can derive the last moment at
which the dwarf had gas available to form fresh stars. Furthermore,
through a modified version of the KS relation, we can estimate the
gas surface density at this time, �gas (see Section 3.3). Assuming
spherical symmetry and de-projecting, we get the ISM density ρgas.
All this information can then be used to solve equation (2) for
ρcor(rp)|min.

In practice, we actually simulate the passage of a dwarf through
pericentre in order to retrieve more accurate results with respect
to the analytic ones. The simulations also allow us to include the
effect of stellar feedback. Equation (2), however, remains useful
as it captures the essence of our methodology. We consider the
accuracy of using equation (2) as opposed to the full hydrodynamic
simulations in Section 5.2.

2.2 Pressure confinement of the dwarf ISM: an upper bound
on the hot corona density

A novel idea in this work is to use the pressure confinement of the
dwarf ISM to obtain an upper bound on the hot corona density (cf.
Spitzer 1956). Matching the internal pressure of the dwarf ISM with
the external pressure from the hot halo, we have

ρgasTgas ∼ ρcorTcor, (3)

where Tgas ∼ 104 K is the temperature of the dwarf galaxy ISM and
Tcor ∼ 106 K is the temperature of the MW hot corona. Thus, for
a given total gas mass in the dwarf Mgas, the dwarf ISM gas will
extend to some maximum radius:

rgas ∼
[

3Mgas

4πρcor

Tgas

Tcor

]1/3

. (4)

We know Mgas from the SFH (see Section 2.1) while Tgas and Tcor

follow from our potential models for the dwarf and the MW. Thus,
we can estimate ρcor simply from rgas. If we allow rgas to extend to
infinity, then we obtain essentially no bound on ρcor. However, if
we assume some minimum rgas|min, then we obtain an upper bound
on the hot corona density ρcor|max.

We assume here that rgas|min is set by the radius within which the
SFH history is derived (rSF, see later). This assumption is sensible
since at the time of the last star formation event, the gas had to
be at least as extended as the stars that formed from it. It is also
self-consistent since rSF is the radius out to which we estimate
Mgas. However, it relies on the stellar distribution not significantly
expanding after its stars formed. Tidal shocking (e.g. Read et al.
2006a) and/or collisionless heating due to SN feedback (e.g. Read
& Gilmore 2005; Teyssier et al. 2013) could both cause the stellar
distribution to expand. For Sextans, which had its last burst long ago,
this could be a potential worry; for Carina, which had its last burst
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Table 1. Physical properties of the Carina and Sextans dSph galaxies. From left to right, the columns show
the distance to the dwarf, the V-band luminosity, the pericentre and apocentre, the orbital period, the radius to
the last measured kinematic data point rlast, the mass within rlast and the time to the last star formation burst
tlb. Data are taken from Mateo (1998) (distance, LV), Walker et al. (2009) [rlast, MDM(rlast)] and Lux et al.
(2010) (rp, ra, torb). tlb has been derived from the SFHs in Lee et al. (2009) (Sextans) and Rizzi et al. (2003)
(Carina).

dSph Distance LV rp ra torb rlast MDM(rlast) tlb
(kpc) (106 L�) (kpc) (kpc) (Gyr) (kpc) (107 M�) (Gyr)

Sextans 86 ± 4 0.5 60 ± 20 200 ± 100 4 ± 3 1 2 ∼7
Carina 101 ± 5 0.43 50 ± 30 110 ± 30 1.8 ± 0.8 0.87 3.7 ∼0.5

very recently, the effect should be small (see Fig. 2). In Section 5,
we show that additional constraints from pulsar dispersion and X-
ray emission measurements give an independent upper bound that is
consistent or stronger than that derived from pressure confinement.
This suggests that our assumption that rgas|min ∼ rSF is sound.

In practice, we must solve equation (4) iteratively since we do
not know ρcor, yet we require rgas to calculate ρcor. We describe
this iterative calculation in Section 3.3 where a more realistic gas
distribution, derived from the reconstruction of the SFH of the dwarf
galaxy, is also used.

2.3 Tidal stripping and shocking

In addition to ram-pressure stripping, dwarf galaxies will also expe-
rience tidal stripping and shocking. Tidal stripping becomes impor-
tant roughly when the dynamical density of the dwarf matches the
dynamical density of the host galaxy. As for ram-pressure stripping,
this is most effective at pericentre (e.g. Read et al. 2006a). We have

rt ∼
[

Md

3Mh

]1/3

rp, (5)

where Mh and Md are the dynamical masses of the host galaxy and
the dwarf, respectively, and rt is the tidal stripping radius outside of
which tidal stripping will become important. For typical MW dwarf
galaxies like those we consider here, rp � 30 kpc (e.g. Lux et al.
2010), Md � 3 × 107 M� (e.g. Walker et al. 2009, and see Table 1)
and Mh(<rp) ∼ 2 × 1011 M� (e.g. Klypin, Zhao & Somerville
2002). This gives rt � 1.1 kpc, which agrees well with the more
careful analysis presented in Read et al. (2006b).

Whether significant gas will be tidally stripped from the dwarf
then depends on whether the dwarf ISM extends beyond the tidal
stripping radius. Using equation (4) and assuming a typical gas
mass of Mgas ∼ 106 M�, a coronal density of ncor ∼ 2 × 10−4 cm−3

and Tgas/Tcor ∼ 0.01 give rgas ∼ 0.9 kpc. Thus, rgas < rt and we
do not expect the gas in the dwarf to experience significant tidal
stripping (see also a similar calculation in Blitz & Robishaw 2000).
Read et al. (2006b) also estimate the likely effect of tidal shocking,
finding that it is unimportant unless rp � 20 kpc which is unlikely
for the dwarfs we study here (Lux et al. 2010).

For the above reasons, we model only the ram-pressure stripping
of the dSphs in this work, deferring tides and/or other collisionless
heating effects to future work.

2.4 Adiabatic versus isothermal coronae

While it is likely that the MW has a hot corona of gas, it remains un-
clear what its thermodynamic state should be. Recent cosmological
simulations produce a hot corona that is neither isothermal nor adi-
abatic (Crain et al. 2010), although these simulations are presently
unable to make fully ab initio predictions for disc galaxies in the

real Universe (e.g. Mayer, Governato & Kaufmann 2008). For this
reason, we consider here three cases of a fully isothermal, a fully
adiabatic and an intermediate-state (so-called cooling) corona. As-
suming a polytropic equation of state P = Aργ for the gas, spherical
symmetry, a background potential model for the MW �(r) and hy-
drostatic equilibrium, we may calculate the expected gas density
profile ρ by balancing pressure forces and gravity (∇p = −ρ∇�;
e.g. Binney et al. 2009) which gives

ρ =

⎧⎪⎨
⎪⎩

ρ0

[
1 − (� − �0) γ−1

γA

] 1
γ−1

γ �= 1

ρ0 exp
(−�−�0

A

)
γ = 1

, (6)

where ρ0 and �0 are, respectively, the density and potential at the
reference radius r0. For isothermal haloes, γ = 1 and we may write
P = Aρ ∝ ρT and therefore T = T0 = const., as expected. For
adiabatic haloes, γ = 5/3. Thus, we consider models in the range
1 ≤ γ ≤ 5/3. Note that the potential �(r), ρ0, γ and A are all
effectively free parameters in this model which must be matched to
the MW.

Throughout the paper, we will assume a truncated flat (TF) po-
tential model for the Milky Way (Wilkinson & Evans 1999):

�(r) = −GM

a
ln

(√
r2 + a2 + a

r

)
, (7)

with a = 170 kpc and M = 1.9 × 1012 M�. This was one of two
profiles used by Lux et al. (2010) to determine the orbits the MW
dwarfs, and for consistency we use the same potential in all our
calculations. Lux et al. (2010) found that within current observa-
tional uncertainties, the choice of potential does not significantly
affect the orbit determination. In fact, for highly eccentric orbits,
only the potential at pericentre �(rp) is relevant for the purpose of
this work;2at 30 � rp � 100 kpc this is reasonably well constrained
for the MW (e.g. Binney & Tremaine 2008).

If we probe only one – or several very similar – rp across several
dwarfs, then equation (6) is only required to extrapolate our results
to larger and smaller radii. We must assume some value for the
coronal temperature Tcor(rp). But we may then after the fact assume

2 To see why that is the case, note that in the limit ra 
 rp, and assuming
spherical symmetry, the pericentre of the dwarf orbit is completely deter-
mined by its specific angular momentum (e.g. Read et al. 2006a):

J 2 � −2r2
p �(rp), (8)

while the velocity at pericentre is then simply vp = J/rp. The dwarf’s specific
angular momentum J simply follows from its current distance from the centre
of the MW and its tangential velocity J = dvt that comes from a mixture
of its Doppler velocity and proper motion (depending on its orientation
on the sky). Thus, for eccentric orbits, rp follows observationally from a
measurement of J and a model assumption about �(rp).
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an adiabatic or isothermal corona and explore what this means e.g.
for the missing baryon fraction in the MW (see Section 5.1). If,
however, we have data at multiple rp of wide separation, then we
must specify a model up-front since the temperature Tcor (required
to calculate rgas; see equation 4) is in general a function of radius
through equation (6): we must perform a joint analysis of all dwarfs
simultaneously. For the moment, we restrict our analysis to two
dwarfs (Sextans and Carina) with very similar rp within their uncer-
tainties (see Table 1). We model each dwarf separately using this
independent analysis as a consistency check of our methodology
and its assumptions. In the future, it would be interesting to analyse
the only dwarf (Fornax) with pericentre radius significantly differ-
ent from Carina and Sextans (rp = 110 ± 20 kpc). However, Fornax
is 30 times more luminous than our two dwarfs, and to obtain re-
liable results from the simulations will be much more challenging
since it would require about 102 times more grid points than our
current simulations (and possibly 3D simulations).

3 M E T H O D

We use the code ECHO++ (Marinacci et al. 2010, 2011), an Eulerian
fixed-grid code based on Del Zanna et al. (2007), to run a series
of high-resolution, two-dimensional hydrodynamical simulations
of dwarf galaxies moving through a hot rarefied medium, repre-
sentative of the Galactic corona. The simulations were performed
over a Cartesian grid with open boundaries. The dwarf galaxy is
located on the y = 0 axis and embedded in a hot medium, which
moves along the x-axis with a speed that varies with time, allowing
us to model the motion of the dwarf along its orbit. The simulations
include both radiative cooling and SN feedback. In the following
subsections, we describe the initial conditions.

3.1 DM and coronal gas

We set up a dwarf galaxy as a spherical distribution of cold isother-
mal gas (Tgas = 1 × 104 K) in hydrostatic equilibrium in a fixed po-
tential. Given that dSphs have mass-to-light ratios typically above
10 (e.g., Battaglia et al. 2008), we assume that the potential is to-
tally dominated by DM, and we neglect both the stellar mass and the
self-gravity of the gas. The gravitational force, which determines
the initial cold gas distribution profile and at the same time counter-
acts the ram pressure, is computed by using the NFW profiles taken
from Walker et al. (2009) (see Table 1). For each dwarf, the spheri-
cal DM halo is located at the centre of the computational box. Note
that the DM parameters used in this work refer to present-day ob-
servations. Since tidal stripping can remove DM from these haloes,
we are potentially underestimating the gravitational restoring force
which acted against the ram pressure at the time of the last stripping
event. As a consequence, the coronal value recovered with Sextans
might in principle be higher than the value obtained, while Carina
should not be affected given that the last stripping event occurred
very recently.

The cold medium of the dwarf is in pressure equilibrium with an
external hot medium, which represents the Galactic corona. This
hot medium fills the whole computational box and it is assumed to
have constant density, temperature and metallicity; it moves along
the x-axis with a velocity that depends on the orbital path of the
dwarf (see Section 3.2). The metallicity of the corona is fixed to
0.1 Z� in agreement with the recent observational determinations
for NGC 891 (Hodges-Kluck & Bregman 2013), while our default
corona temperature is Tcor = 1.8 × 106 K (Fukugita & Peebles
2006). Different temperatures for the coronal gas are investigated
in Section 4.4.

The last parameter to set is the number density of the coronal gas
ncor, which is the goal of our investigation. In the following, with
ncor we refer to the total number density, which for a completely
ionized medium is the sum of the number density of ions ni and of
electrons ne. We assume an abundance of helium of 26.4 per cent
from big bang nucleosynthesis considerations, which makes the
electron density ne � 1.1ni. The coronal density is then found
iteratively, by running several simulations and finding the value
that produces the complete stripping of cold gas from the dwarf at
the end of the run. Note that ncor also sets the pressure of the external
medium, which in turn determines the radius at which the pressure
equilibrium is reached. We return to this point in Section 3.3.

3.2 Orbits

One of the basic parameters that have to be set in our simula-
tions is the relative velocity between the dwarf and the surrounding
medium, which requires the knowledge of the orbital path of the
satellite galaxy in the potential of the MW. For this purpose, we
use the reconstruction of the dwarf orbits derived by Lux et al.
(2010). These authors provide a set of 1000 possible orbits for each
dwarf given the potential of the MW and the, unfortunately poorly
constrained, proper motions of the dwarfs. They considered two
Galactic potentials: the TF model (Wilkinson & Evans 1999, and
equation 7) and the Law, Johnston & Majewski (2005) model. In
this work we only use the former. As discussed in Section 2.4, we
are not very sensitive to the choice of potential models: uncertain-
ties in the orbit coming from proper motion errors and other model
systematics will dominate our error budget. When extrapolating our
results to larger radii, however, the choice of the potential model and
the assumed thermodynamic state of the hot coronal gas become
important. We discuss this further in Section 5.1.

The families of orbits for each dSph are classified in terms of
the pericentric radius (rp) and the velocity at pericentre (vp). We
select only the orbits having pericentric passages compatible with
our estimate of look-back time of the last burst of star formation tlb

(see Section 3.3). In practice, given tlb and the width of the last SFR
temporal bin, we accept only the orbits which have a pericentric
passage within this bin. Fig. 1 shows the distribution of these orbits
in the (rp, vp) space. Given the non-triviality of this distribution,
we decide to focus on three representative orbits. The median orbit

Figure 1. Pericentric radii and velocities for the orbits of the Sextans dSph
compatible with a pericentric passage at the stripping time (tlb) determined
from the SFH (see the text). The large (blue) diamonds show the three repre-
sentative orbits (median, first and third quartiles in rp and in vp within ±3 kpc
from the selected value of rp) chosen for our simulations.
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is given by the median value of the pericentric radius r̄p and the
median of v̄p in the range ±3 kpc around r̄p. For Sextans, we obtain
r̄p = 59.8 kpc and v̄p = 270.4 km s−1, in agreement with the values
obtained by Lux et al. (2010) for the last pericentric passage. We
then select two more orbits at the first and third quartiles of the
distribution of rp and their corresponding values of vp. The selected
orbits are indicated by the large diamonds in Fig. 1.

Thus, as far as the orbits are concerned, we perform three distinct
sets of hydrodynamical simulations. The parameters of the three
representative orbits for Sextans are reported in Table 5. We show
in Section 4.2 that the results for Sextans’ orbits are remarkably
consistent with each other despite the large difference in their input
parameters. This is an encouraging test of our model assumptions
and systematics. Given these results, we consider only the median
orbit for Carina.

The typical orbital periods of our two dwarfs are between 1 and
4 Gyr. However, the stripping process is much more efficient at
and near the orbital pericentre, and we can save computational time
by simulating only that part of the orbit. To have an idea of the
variation of the stripping efficiency within an orbit, one can make
use of equation (1) to obtain

εstrip(r) = v(r)2

v2
p

ncor(r)

ncor,p
, (9)

where v(r) and r(t) are the position and velocity of the dwarf along
its orbit at time t, ncor(r) is the coronal density at r and ncor, p is the
coronal density at pericentre. For our two dwarfs, the efficiency cal-
culated from equation (9) changes by a factor of ∼10 from pericentre
to apocentre. After performing a series of simulations progressively
enlarging the computational time up to the full length of the orbit,
we find that including in the calculation regions where the efficiency
has dropped below 50 per cent from the pericentre does not result
in any appreciable difference in the derived coronal density. Thus,
we focus on the part of the orbit with efficiency above 50 per cent,
which leads to the integration times reported in Tables 4 and 5. The
x-component of the velocity of the hot gas is set according to the
relative velocity v(r(t)), which in turn depends on the selected orbit.
For simplicity, we keep the value of the coronal density constant in
our simulation. In this way, we derive an average value of the coro-
nal density over the orbit segment around the pericentre. Finally, we
vary ncor until we find the value that produces a complete removal
of gas from the dwarf galaxy: ncor|min.

3.3 Initial gas distribution

In our simulations, the ISM of the dwarf galaxies is composed by
isothermal (T = 104 K) gas that is in hydrostatic equilibrium with
the DM potential and has a subsolar metallicity taken from the
literature (see Table 4). Note that the metallicity of the coronal gas
is always set to 0.1 Z� (see Section 3.1). The radius at which the
cold gas distribution is truncated corresponds to the radius where
its pressure is equal to the pressure of the coronal gas. The latter
depends on the coronal temperature, for which we explore different
values, Tcor = 1, 1.8, 3 × 106 K (see again Sections 3.1 and 4.4).
Since the gravitational potential of the DM halo is fixed, the gas
density distribution in the dwarf is fully determined once we set the
central density. We estimate this central density using information
contained in the SFH, as described below.

We derived the look-back time of the last burst of star formation
(tlb) as the time when the estimated value of the SFR is consistent
with zero within the given uncertainties. At that time, we assume
that the dwarf has a negligible amount of gas left, i.e. we consider

Figure 2. SFH of Sextans from Lee et al. (2009) and of Carina from Rizzi
et al. (2003). The arrow indicates the look-back time of last burst of star
formation. In our scheme, this corresponds to the last stripping event.

the gas stripping process as completed. In Table 1, we report the
times of the last stripping event for the dSphs. We refer to this as the
last stripping event because it is likely that dSphs have suffered gas
stripping also at earlier times. Considering only the last event has a
number of advantages: (i) it saves computational time, (ii) it allows
us to probe the corona at the closest possible look-back time and
(iii) most importantly, it allows for the best possible reconstruction
of the orbital paths (see Section 3.2).

The SFHs of Sextans and Carina, taken from Lee et al. (2009)
and Rizzi et al. (2003), are shown in Fig. 2. The look-back times
of the last starburst (i.e. the last stripping event) are tlb ∼ 7 and
0.5 Gyr, respectively. From the SFHs we can then extract the SFRs
at the time prior to this event. These values are reported in Table 2.

There are two key uncertainties related to our reconstruction of
the SFR at a given look-back time.

(i) The time resolution of the SFH makes the tlb uncertain by
about 0.5–1 Gyr. This is a small error compared to other uncertain-
ties.

(ii) The presence of ‘blue straggler stars’ may contaminate the
SFH, masquerading as recent star formation. Lee et al. (2009) ex-
plicitly consider this, publishing an alternate ‘corrected’ SFH for
Sextans. The corrected SFH has no star formation at t > tlb and
a small reduction in star formation at tlb. We preferred to use the
uncorrected SFH shown in Fig. 2 because it is consistent with the
one used for Carina (where the correction has not been applied).
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Table 2. Star formation properties and derived cold gas content of our two dSphs at the time of the last ram-pressure
stripping event. The SFRs and gas density distributions are used as initial conditions for our hydrodynamical
simulations. From left to right, the columns show the radius at which the SFR has been extrapolated, time to the last
star formation burst, star formation rate at tlb, SFR surface density at tlb �SFR = SFR/(πr2

SF), initial mean cold gas
density, initial central gas density, computed radius of the cold gas distribution and computed initial cold gas mass
within rgas.

dSph rSF tlb SFR �SFR n̄gas n0, gas rgas Mgas

(kpc) (Gyr) (M� yr−1) (M� yr−1 kpc−2) ( cm−3) ( cm−3) (kpc) ( M�)

Sextans 0.5 7 4.6 ± 2.2 × 10−5 5.9 × 10−5 0.09 0.27 0.98 7 × 106

Carina 0.28 0.5 4.6 ± 1.3 × 10−6 1.9 × 10−5 0.14 0.4 0.4 6.3 × 105

However, we explicitly tested for the effect of blue straggler con-
tamination on our results by running some additional simulations
using the corrected SFH of Lee et al. (2009). We found that the final
value of the coronal density does not vary appreciably within our
quoted uncertainties.

Once we know the SFR before stripping, we use a revised version of
the KS relation to estimate the gas density at that time. The standard
KS relation connects the (molecular and atomic) hydrogen surface
density, �H I and �H2 , and the SFR surface density, �SFR, with a
power law (slope 1.4). It is valid for disc galaxies and starburst
galaxies (e.g., Kennicutt 1998a). It is well known that this relation
steepens considerably for column densities below ∼10 M� pc−2

(e.g. Leroy et al. 2008). While the �SFR seems to correlate very
well with the molecular gas surface density (Bigiel et al. 2011),
the relation breaks down at low densities likely due to the tran-
sition from a molecular-dominated to an atomic-dominated ISM
(Krumholz, Dekel & McKee 2012). Due to the low values of the
SFRs of our dwarfs (see Table 2), the expected �H I+H2 falls below
the limit and the dwarfs’ ISM is dominated by H I, as confirmed by
observations (see Table 3 and references therein). In this paper, we
do not distinguish between different gas phases in the ISM as in the
simulations the cooling is truncated at 104 K. This is an acceptable
approximation since our star formation and feedback prescriptions
are purely empirical and based on the observed SFR.

To date, there is no consensus on how to extend the KS relation
to surface densities <10 M� pc−2. Some authors have however
studied the location of dwarf galaxies in the (�SFR, �H I) plane.
Bigiel et al. (2010) studied five dwarf galaxies and found a relation
�SFR ∝ �1.7

H I . Using a larger sample of 23 very faint dwarf galaxies,
Roychowdhury et al. (2009) found that these systems depart system-
atically from the standard KS relation but they, quite remarkably,
follow the Kennicutt relation for disc galaxies only (excluding star-

Table 3. SFR densities and gas densities for four dIrrs of the Local
Group. CO is not detected in Wolf–Lundmark–Melotte (WLM)
galaxy, and there is only an upper limit, while for Leo A and Leo
T such studies are missing in the literature. References to the SFR,
H I and CO studies (when applicable): (1) Efremova et al. (2011),
(2) de Blok & Walter (2006), (3) Israel (1997), (4) Dolphin (2000),
(5) Kepley et al. (2007), (6) Taylor & Klein (2001), (7) Cole et al.
(2007), (8) Young & Lo (1996), (9) de Jong et al. (2008) and (10)
Ryan-Weber et al. (2008).

Galaxy �SFR �H I �H2 Ref.
(M� yr−1 kpc−2) ( M� pc−2)

NGC 6822 2.15 × 10−3 7.6 1.1 (1, 2, 3)
WLM 1.2 × 10−3 6.5 Negligible (4, 5, 6)
Leo A 1.1 × 10−3 4.8 Missing (7, 8)
Leo T 4.4 × 10−5 1.5 Missing (9, 10)

burst galaxies; Kennicutt 1998b). This relation can be written as
follows:

�SFR = (2.13 ± 0.6) × 10−5 �2.47
gas . (10)

Note that �SFR is given in M� yr−1 kpc−2 and �gas in M� pc−2.
In the following we adopt equation (10), where the normalization
factor and the associated errors (roughly 1σ ) have been taken from
the standard KS relation using the normalization of Roychowdhury
et al. (2009).

To make sure that equation (10) is suitable for our purposes, we
check that it holds for galaxies in the Local Group. We consider
four dIrrs that span a large range of gas and SFR surface densities.
For each of them, we calculate �SFR knowing the value of the SFR
and the area of the galaxy from which it has been derived. We
then estimate the surface densities of H I and molecular gas (when
present) averaged over the same area. The obtained values are listed
in Table 3. As expected, the molecular phase plays a minor role and
can safely be neglected. In Fig. 3, we show the obtained values of
�SFR and �H I (solid circles), as well as the relation from equation
(10). The agreement is remarkably good for all the dIrrs; the dashed
lines show the 1σ error. Note that the standard KS relation (dashed
line) would clearly overestimate �SFR at these gas surface densities
by up to an order of magnitude.

Using �SFR reported in Table 2, we estimate the average gas vol-
umetric density (assuming spherical symmetry) for the two dSphs
by inverting equation (10):

ρgas(< rSF) = 3

4rSF

(
�SFR(< rSF)

2.13 × 10−5

) 1
2.47

, (11)

Figure 3. KS relation for dwarf galaxies as described by equation (10). The
points show the location of four Local Group dIrrs (see Table 3).
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Table 4. Parameters of the simulations. Each run is denoted by the dwarf name, the initial density of the
dwarf’s ISM (see Sections 3.3 and 4.2), the pericentric distance of the orbit and the temperature of the corona
(if different from the reference value Tcor = 1.8 × 106 K). Lbox is the size of the computational domain in each
direction, 
x is the resolution, Tcor is the coronal temperature, n0, gas is the initial central density of the dwarf,
Z is the dwarf’s gas metallicity, vsat is the dwarf velocity averaged over the simulated distance range 
r and 
t
is the integration time corresponding to the part of the orbits with stripping efficiency greater than 50 per cent.

Run Lbox 
x Tcor n0, gas Z vsat 
r 
t
(kpc) (pc) (K) ( cm−3) (Z�) (km s−1) (kpc) (Myr)

SextansMidMed 80 34 1.8 × 106 0.27 0.02 228 59.8–90.2 930
SextansLowMed 80 39 1.8 × 106 0.18 0.02 228 59.8–90.2 930
SextansMid1stQ 60 34 1.8 × 106 0.27 0.02 286 33.9–59.2 420
SextansLow1stQ 60 39 1.8 × 106 0.18 0.02 286 33.9–59.2 420
SextansMid3rdQ 100 34 1.8 × 106 0.27 0.02 246 80.4–131.5 1220
SextansLow3rdQ 100 39 1.8 × 106 0.18 0.02 246 80.4–131.5 1220
CarinaMidMed 80 31 1.8 × 106 0.4 0.01 251 51.2–81.8 740
CarinaLowMed 80 35 1.8 × 106 0.31 0.01 251 51.2–81.8 740
CarinaMidMed1e6K 80 31 1 × 106 0.4 0.01 251 51.2–81.8 740
CarinaMidMed3e6K 80 31 3 × 106 0.4 0.01 251 51.2–81.8 740

where rSF is the radius within which the SFH has been derived.3 The
gas density profile is then rescaled to match this average density
within rSF. This allows us to determine the central density n0,gas

and the total gaseous mass of the dwarf within rgas, which is the
radius at which pressure equilibrium with the corona is reached. The
densities are then multiplied by a factor 1.36 to take into account
the He fraction. All these parameters are reported in Table 2.

3.4 Radiative cooling, star formation and feedback

Radiative cooling is included in the code by taking the collisional
ionization equilibrium cooling function of Sutherland & Dopita
(1993). The cooling term is added explicitly to the energy equation
of the gas and, for stability reasons, the hydrodynamic time-step
is reduced to 10 per cent of the minimum cooling time in the com-
putational domain. Metal cooling is taken into account and the
metallicity of the gas is treated as a passive scalar field advected by
the flow. The cooling rate is set to zero below Tmin = 104 K.

We include star formation in our hydrodynamical code by intro-
ducing a temperature cut, Tcut = 4 × 104 K. Only cells below this
temperature are allowed to form stars. The amount of gas converted
into stars is computed from equation (10), where the gas density
is a function of time. However, given that the star formation rates
used for our simulated dwarfs are small (see Table 2), there is no
significant depletion of gas. This is an important point as it shows
that the removal of gas from Sextans and Carina cannot be achieved
by star formation alone. Rather, it requires additional processes, i.e.
a combination of SN feedback and gas stripping.

Concerning SN explosions, we assume that our SN bubbles start
their expansion at the end of the adiabatic (Sedov) phase and we
only follow the subsequent radiative phase. In this phase, the thermal
energy is lost due to radiative cooling and adiabatic expansion, while
the kinetic energy is used partially for the expansion and partially it
is transferred to the ambient medium at later times. The explosion
of a single SN is implemented by increasing the volumetric thermal
energy density by a factor ESN

VSedov
, where ESN = 1051 erg and VSedov =

3 It is worth mentioning that equation (11) derives from a slightly different
definition of �gas. This is due to the fact that our dwarfs have to be considered
spheroidals, while equation (10) formally holds only for discs.

4
3 πr3

Sedov represents the initial spherical volume of the bubble, with
rSedov the radius of the injection region. For every different gas
profile, rSedov – the SN bubble radius at the end of the adiabatic
phase – is determined by running very high resolution simulations
of a single SN exploding in the centre of the dwarf. rSedov is then set
to the value of the initial radius that produces a match between the
simulated evolution of the SN shock radius and the analytical (two-
dimensional) one for the radiative phase. We model a SN bubble at
the explosion time with just four cells, since higher numbers cause
our simulations to be too demanding from a numerical point of
view. Thus, the resolution of a simulation is defined by the value of
rSedov by simply equating the circular area of the SN bubble with the
Cartesian one of four cells. We also adopt the overcooling correction
method described in Anninos & Norman (1994).

We compute the supernova rate (SNR) from the SFR using the
initial mass function (IMF) �(M) chosen to retrieve the SFH of our
dwarf galaxies. For Sextans and Carina, a Salpeter IMF (Salpeter
1955) was assumed (see Rizzi et al. 2003; Lee et al. 2009). In this
case, SNR � 6×10−3

M� SFR SN
yr , with the SFR expressed as M� yr−1.

Applying for the SFR found in every cell with T < Tcut and multiply-
ing the obtained SNR with the time-step, we find the number of SN
‘events’ occurring in each cell during a given time-step. From this,
we can then generate random explosions across the dwarf galaxy.
Note that, since the SFR of the simulation is tied to the dwarf’s
gas, the SNR is dependent on the amount of cold gas at that specific
time-step, assuming that the SNe form and explode instantaneously.
Using this method the SNR in a simulation of a dwarf in isolation
(without the ‘coronal wind’) is recovered within ∼10 per cent of the
expected value.4

3.5 Simulations setup

In Table 4, we list the details of our main runs. Different initial
conditions for the dwarfs are computed by exploring the main model

4 SNe alone are inefficient in removing the gas (see also Section 5.3). Thus,
the SFR remains constant along the simulation and the simulated SNR can
be compared with the predicted one. The match between the computed and
the expected value (within 10 per cent) shows the viability of our implemen-
tation.
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uncertainties: the orbit reconstruction, the determination of the SFH
and the star formation law (see Section 4.2). Each set of runs for the
two dwarfs has been simulated many times by changing the value
of ncor (which sets the dwarf’s gas truncation radius rgas and initial
mass Mgas once the central gas density is fixed) until complete gas
stripping occurs at the end of the simulation. We consider that a
galaxy is devoid of gas when the mass of cold (T < 1 × 105 K) gas
bound to the potential of the dwarf is <5 per cent of the initial mass.
The remaining small amount of cold gas can be easily stripped in
the following part of the orbit. Large sizes of the computational
box are needed to avoid boundary effects (such as reflected waves)
on the surface of the dwarf. The boundaries used are ‘Wind’ in
the x-direction (‘Inflow’ on the right side and ‘Outflow’ on the left
one) and ‘Outflow’ in the y-direction. The velocity of the inflow is
set according to the selected orbits. 
r (and the corresponding 
t)
is determined by the orbit’s choice, and it represents the range of
distances from the MW over which the recovered coronal density
has effectively been averaged. Such values have been determined
using equation (9) with a stripping efficiency of 50 per cent (see
Section 3.2).

4 R ESULTS

In Section 4.1, we describe our fiducial simulation setup for Sextans,
which has been obtained by taking the orbit with the median value
of the pericentric distance r̄p. For this fiducial setup, we illustrate

the principal results of our analysis, in particular the procedure that
we adopted to determine the coronal density (averaged over the
distance range encompassed by the orbit) that produces complete
stripping of the dwarf’s ISM. We examine, in Section 4.2, how the
estimate for the coronal density is affected by the choice of the
orbit and the uncertainties in the initial conditions. In Section 4.3,
we compare the values for the coronal density that we infer from
Carina’s simulations with those found for Sextans, and in Section 4.4
we show how the choice of different temperatures for the coronal
gas affects the results.

4.1 Ram-pressure stripping from Sextans

We first examine the stripping of Sextans with the orbit parametrized
by r̄p = 59.8 kpc (see Section 3.2) and all other parameters as quoted
in Tables 1 and 2 and in the first line of Table 4, which represents
our fiducial setup. We then run a series of simulations varying only
the mean coronal density ncor until we find the value that produces
complete stripping of gas within the time of the simulation. We find
that the minimum coronal density needed for stripping to occur is
ncor|min = 1.8 × 10−4 cm−3.

Fig. 4 shows the temperature distribution at times t = 0, 240,
470, 700, 730, 930 Myr. We see that, as the dwarf galaxy starts
to experience the ram pressure exerted by the corona, a wake of
stripped gas is formed. This wake becomes progressively more elon-
gated and structured as time passes. In this wake, knots of cold gas

Figure 4. Time evolution of the temperature distribution for our fiducial setup for the Sextans dSph with ncor = 1.8 × 10−4 cm−3. In the left column (top to
bottom), we show t = 0, 240 and 470 Myr, and in the right column we plot t = 700, 730 and 930 Myr. The bottom-left panel corresponds roughly to the time
of pericentric passage. We only show a small section of the box. The axes are given in kpc.
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Figure 5. Mass of cold (<105 K) gas gravitationally bound to the DM
halo of Sextans as a function of time from the beginning of our fiducial
simulation. The pericentre passage occurs at t = 465 Myr.

(T ∼ 104 K) and regions at intermediate temperatures (∼105 K)
coexist. The presence of these intermediate-temperature regions is
indicative of a mixing between the stripped dwarf’s ISM and the
coronal material. The gas removal is not an instantaneous process.
The mass-loss rate is initially rather low and increases after the
dwarf has passed the orbit pericentre. In Fig. 5, we show the evolu-
tion of the mass of the cold gas mass bound to Sextans (i.e. all gas
with velocity less than the local escape velocity and T < 105 K).
The mass of bound gas decreases steadily and at an increasing rate
throughout the simulation. The increasing mass-loss rate is a result
of the progressive disruption of the dwarf by ram-pressure strip-
ping assisted by SN feedback. Before the pericentre, only roughly
20 per cent of the gas is lost, and the other 80 per cent is lost in the
second half of the simulation. Approximately 1 Gyr is required to
reach a final mass of cold, bound gas of ∼5 × 104 M�, ∼1 per cent
of the initial one.

4.2 Coronal gas density: lower bounds, errors
and upper bounds

To reliably estimate the MW’s coronal density, different sets of ini-
tial conditions must be explored to account for various uncertainties.
The main model uncertainties are due to the orbit reconstruction,
the determination of the SFH and the star formation law. In this
section, we consider in turn each of them.

We start with the uncertainties in the orbit determination. Fig. 6
shows the minimum values of the density of the MW’s corona
(points) that produce complete stripping from Sextans for the three
representative orbits chosen in Section 3.2, i.e. the median value of
rp and the first and third quartiles of its distribution. The error bar
in the radius represents the range over which the coronal density
has to be considered average (see Table 4, eighth column, rows 1,
3 and 5, labelled as ‘mid’), while the derivation of the lower errors
and the upper limits to the coronal density is described below. The
orbital parameters used to derive the coronal densities shown in
Fig. 6 are quite different (see Fig. 1 and Section 3.2). Nevertheless,
the density required for the stripping is similar for the three orbits
and shows a nice decreasing trend with the distance from the MW.
This shows that the value of the coronal density is not too sensitive
to the specific choice of the orbital parameters. The resulting values
for ncor|min are reported in Table 5 labelled as ‘mid’.

Figure 6. Density of the corona of the MW that produces complete gas
stripping from the Sextans dSph. The different determinations refer to three
representative orbits for the dSph with different pericentric radii, i.e. the
median orbit, and the first and third quartiles of the distribution of pericentric
radii. The down-pointing triangles show upper limits referred to that specific
radius. The derivation of errors and upper limits is described in the text
(Section 4.2).

Table 5. Simulations that produced the complete stripping of
gas from the dSphs. The labels ‘mid’ and ‘low’ refer to the
initial density of the dwarf’s ISM. rp is the pericentre distance
of the simulations, 
r is the considered spatial range from the
pericentre found considering a stripping efficiency greater than
50 per cent (see also Table 4), vp is the velocity at the pericentre,

tlb is the simulation time and ncor|min is the inferred minimum
average coronal density needed for stripping.

dSph rp 
r vp 
tlb ncor|min

point (kpc) (kpc) (km s−1) (Gyr) ( cm−3)

Sextans

mid 59.8 30.4 270.4 0.93 1.8 × 10−4

low 59.8 30.4 270.4 0.93 1.3 × 10−4

mid 33.9 25.3 333.6 0.42 2.7 × 10−4

low 33.9 25.3 333.6 0.42 2 × 10−4

mid 80.4 51.1 284.1 1.22 1.6 × 10−4

low 80.4 51.1 284.1 1.22 1.1 × 10−4

Carina

mid 51.2 30.6 291.4 0.74 1.7 × 10−4

low 51.2 30.6 291.4 0.74 1.5 × 10−4

Next we explore both the effect of the uncertainties on the mea-
sured SFH and on the applied star formation relation (equation 10),
which influence the value of initial gas density of the dwarf, n0, gas.
To investigate the effect of a lower dwarf ISM density, we run an
additional set of simulations (labelled as ‘low’ in Tables 4 and 5).
We derive the lower limit of the initial dwarf ISM density from an
SFR of 2.4 × 10−5 M� yr−1, corresponding to reducing the fidu-
cial value of 4.6 × 10−5 M� yr−1 by 1σ (see Table 2). We then use
equation (10) with the upper +0.6 error to recover the lower n0, gas =
0.18 cm−3, which is shown in rows 2, 4 and 6 of Table 4. This gives
a lower boundary for the coronal density which lies about 1σ below
the fiducial value ncor = 1.8 × 10−4 cm−3. These values represent
the lower error bars in Fig. 6 for the different orbits.

The above gives us a robust lower bound on the hot corona
density. As outlined in Section 2.2, we additionally use pressure
equilibrium to estimate an upper bound ncor|max by setting the gas
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truncation radius rgas equal to the star formation radius rSF. In do-
ing this, we are neglecting any conspicuous redistribution of stars
after tlb. We plot the resulting upper limits as downward-pointing
triangles in Fig. 6. Given the (large) uncertainties – particularly on
the orbit of Sextans – it is quite remarkable that all the values of
the coronal density derived here appear to be consistent with one
another.

4.3 Carina

We carry out a comparable set of simulations for the Carina dSph.
For this dwarf we use only one orbit, i.e. that with median rp =
51.2 kpc, for which we find ncor|min = 1.7 × 10−4 cm−3. Estimating
the lower error as before brings the lower limit down to ncor|min =
1.5 × 10−4 cm−3 (Table 5).

We compare the coronal densities of the MW derived by using
the median orbit of Sextans and Carina in Fig. 7. As in Fig. 6, the
horizontal bar represents the range in radii that we have considered
for the simulation. We now use upward-pointing triangles placed at
the location of the lower 1σ error to denote our lower bound. The
upper limits (downward-pointing triangles) are estimated with the
method described in Section 4.2. The derived values for the coronal
density are reported in Table 5, while in Table 6 we list the ranges
of the radii and the upper and lower bounds of the coronal density
obtained for the median orbits of Sextans and Carina. The two dSphs
have rather different structural properties and orbital parameters (see
again Tables 1, 2 and 4) and yet there is a remarkable consistency
for the recovered density values in the range of radii in which the
two orbits overlap. This fact further supports the basic soundness
of the methodology that we adopt here. Note in particular that the
times of the last stripping (tlb) for the two dwarfs are very different.
This may be an indication that the density of the Galactic corona

Figure 7. Ranges of gas densities of the MW’s corona allowed by the
Sextans (blue) and Carina (red) dwarfs. The derivation of the lower and
upper bounds (triangles) is described in the text (Section 4.2).

Table 6. Average density of the MW corona to-
gether with its upper and lower limits as derived
from the ram-pressure stripping along the median
orbits of Sextans and Carina.

Radius Range ncor|min ncor|max

(kpc) (kpc) (cm−3) (cm−3)

73.5 59.8–90.2 1.3 × 10−4 5 × 10−4

64.7 51.2–81.8 1.5 × 10−4 3.6 × 10−4

has not changed significantly in the last ∼7 Gyr. Note also that
the assumption that there has been no significant redistribution of
the stellar component within the dwarf should be fully justified for
Carina where tlb is only 0.5 Gyr.

As a final end-to-end test of our systematic error, we consider a
pericentric passage at the peak of the SFH of Carina. By matching
ρgas with the value extracted from the following bin of the SFH, we
derive a Galactic corona density approximately three times larger
than using tlb. It is possible that this systematic shift implies some
evolution in Carina’s orbit over time; this interpretation will be
considered in more detail in a separate forthcoming paper. Here, we
simply note that even this extreme test results in a systematic error
that is comparable to our other uncertainties.

4.4 Varying the coronal temperature

One of the main assumptions of our investigation is the temperature
of the corona at the location of the dwarf galaxies. To study the effect
of different coronal temperatures, we run additional simulations us-
ing the median orbit of Carina with the same parameters used before
but different Tcor. In particular, we explore two additional coronal
temperatures at Tcor = 3 × 106 and 1 × 106 K. The corresponding
results, averaged over the range 51 < r < 82 kpc from the MW, are
ncor, 3|min = 1.5 × 10−4 cm−3 and ncor, 1|min = 2.5 × 10−4 cm−3. The
increase (decrease) of the coronal temperature causes the density to
be lower (higher) than our fiducial value. In Section 5.1, we discuss
the implications of these results for the missing baryon problem.

5 D I SCUSSI ON

5.1 Missing baryons and the MW’s corona

The results for the coronal density necessary for the stripping of
gas from Sextans and Carina are summarized in Table 6. Here we
show a conservative lower bound (fiducial value − lower error)
and the upper bound determined in Section 2.2. We conclude that
the coronal density, being a monotonic decreasing function of R,
averaged between 50 and 90 kpc must be in the range 1.3 × 10−4 <

ncor < 3.6 × 10−4 cm−3, consistent both with the detection claims
by Gupta et al. (2012) and with the analytical estimates of Grcevich
& Putman (2009). We recall that ncor is the total gas density ni +
ne. The lower limit is computed by subtracting the average 1σ of
Sextans and Carina lower values to the value of the coronal density
(ncor = 1.75 × 10−4 cm−3) determined by averaging our fiducial
‘mid’ simulations (Table 5).

It is possible to use our derived range of ncor as a constraint for the
global density profile of the MW’s corona. This profile is obtained
by following the procedure outlined in Section 2.4. From the density
profile, one can extrapolate the total mass of the corona within the
virial radius of the MW, which can then be compared to the missing
baryonic mass of the Galaxy. In addition to ncor, we take also into
account two further constraints discussed in AB10:

(i) the dispersion measures along the line of sight to Large Mag-
ellanic Cloud (LMC) pulsars, from which AB10 estimate an upper
bound for the coronal density of ne = 5 × 10−4 cm−3 averaged over
50 kpc from the Galactic Centre;

(ii) the upper limit for X-ray emission measure, assuming our
fiducial value of the coronal metallicity of 0.1 Z�.

The dispersion measure of LMC pulsars is the more stringent con-
straint at present due to our assumption of a low coronal metallicity.
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Figure 8. Density profiles for different coronal models consistent with all constraints: the range of coronal densities allowed by our analysis for Sextans and
Carina, pulsar dispersion measures (black triangle) and X-ray emission upper limits (not shown). The solid line corresponds to Tcor(50–90 kpc) = 1.8 × 106 K
and the dashed line to Tcor(50–80 kpc) = 3 × 106 K. The dotted line in the left-hand panel shows results for an NFW potential (as opposed to our default TF
potential). From left to right, panels consider an isothermal (γ = 1), adiabatic (γ = 5/3) and ‘cooling’ (γ = 1.33) halo.

Table 7. The fraction and mass of the missing baryons contained in coronae for different combinations of coronal
temperature, equation of state and Galactic potential consistent with the observational constraints.

Potential Tcor
M(<rvir)

Mmb

M(<rvir)
M�

– (106K) Isothermal Adiabatic Isothermal Adiabatic

TF 1.8 15–20 per cent 16–48 per cent 3.6 × 1010–4.8 × 1010 3.8 × 1010–1.1 × 1011

NFW 1.8 11 per cent 9–25 per cent 3.4 × 1010 2.8 × 1010–7.7 × 1010

TF 3.0 22–50 per cent 26–100 per cent 5.3 × 1010–1.2 × 1011 6.2 × 1010–2.4 × 1011

NFW 3.0 16–33 per cent 18–74 per cent 4.5 × 1010–1011 5.6 × 1010–2.3 × 1011

Through equation (6), we compute a series of coronal density
profiles consistent with all of the above constraints, using three
different assumptions about the thermodynamic state of the coronal
gas: isothermal (γ = 1), adiabatic (γ = 5/3) and ‘cooling’ (γ =
1.33). As for the DM potential we make two different choices: our
default TF potential [see equation (6) truncated at5 10 ≤ R ≤ Rvir =
236 kpc, with Mvir = 1.54 × 1012 M�] and an NFW profile. We
also consider three different coronal temperatures: 1.8 × 106, 106

and 3 × 106 K. The exploration of the parameter space resulted in
21 models compatible with all of the constraints considered here.
In particular, we find that, regardless of the choice of the potential,
for the isothermal models our upper limits are less stringent than
the constraint from the dispersion measure, while for the adiabatic
and cooling coronae they are roughly coincident. Hence, the upper
limits on the MW’s baryon fraction described in this section are
determined by the dispersion-measure limit rather than our pressure-
confinement method described in Section 2.2.

To derive the expected mass of the missing baryons Mmb associ-
ated with the MW, we follow again AB10 and set Mmb = 15 per cent
Mtot, where Mtot is the sum of the DM mass (Mvir) and the observed
baryon mass. For the latter, we take Mob = 6 × 1010 M� (see Sec-
tion 1). The expected missing baryonic mass is then 2.4 × 1011 M�
for the TF model.

Our results are presented in Fig. 8, where we show the ranges
given by Sextans and Carina and the coronal profiles with refer-
ence values ncor = 1.75 × 10−4 and 1.5 × 10−4 cm−3 for Tcor =
1.8 × 106 and 3 × 106 K, respectively. All the models with Tcor =
106 K yielded no solution consistent with all of the constraints and

5 This inner truncation is used to avoid any contamination from the disc and
does not affect the value of the recovered coronal mass (see also AB10).

therefore are not shown. In the isothermal case, we find for Tcor =
1.8 × 106 K (3 × 106 K) a coronal baryon fraction of 15–20 per cent
(22–50 per cent) of the expected MW’s missing baryons, marginal-
izing over all uncertainties. For adiabatic and ‘cooling’ models
instead, the temperature profile is no longer constant and so our
assumed coronal temperature corresponds to an average over the
ranges 50−90 and 50–80 kpc for Tcor = 1.8 × 106 and Tcor =
3 × 106 K, respectively. The results for an adiabatic or ‘cooling’
halo are nearly indistinguishable, with a difference of � 2 per cent
in the recovered missing baryon fractions. For Tcor(50–90 kpc) =
1.8 × 106 K, we find a coronal baryon fraction of 16–48 per cent
of the expected missing baryons, while for Tcor(50–80 kpc) = 3 ×
106 K the value is 26–100 per cent. As expected, for an adiabatic
or ‘cooling’ corona, the baryon fraction can be significantly larger
than in the isothermal case because the density in such a corona
drops less rapidly with radius, allowing more gas to be stored in
the huge volume just inside the virial radius. An adiabatic corona
at high temperature could, in principle, contain all of the MW’s ex-
pected missing baryonic mass. These results are broadly consistent
with those of AB10 and also the estimates of missing baryon frac-
tions in external galaxies (Anderson & Bregman 2011; Dai et al.
2012; Anderson, Bregman & Dai 2013), although our fractions are
higher than theirs probably due to our lower value of the coronal
metallicity.

Finally, we consider how our assumption of a TF profile affects
these results. We use instead the NFW potential from AB10 with
Rvir = 250 kpc, Mvir = 2 × 1012 M� and concentration parameter
c = 12 (see the dotted line, left-hand panel of Fig. 8). Note that
for an NFW profile, the gas density falls more steeply leading to
a lower extrapolated total mass. However, the effect is typically
quite small compared to the other uncertainties. Our results for the
missing baryon fractions are summarized in Table 7. All isothermal
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Table 8. Comparison between the predicted values of the minimum
coronal density for stripping from equation (12) (column 1) and the
results of the ‘mid’ simulations (column 2) listed in Tables 4 and 5
(see the text).

Point nan nsim ngas vx

( cm−3) ( cm−3) ( cm−3) ( km s−1)

Sextans

Median 3.6 × 10−5 1.8 × 10−4 0.09 228
First quartile 2.3 × 10−5 2.7 × 10−4 0.09 286
Third quartile 3.1 × 10−5 1.6 × 10−4 0.09 246

Carina

Median 3.2 × 10−5 1.7 × 10−4 0.14 251

models predict an amount of missing baryons in the corona between
10 and 50 per cent of the expected value (see also Miller & Bregman
2013). If the hot gas has an adiabatic equation of state, the corona
can accommodate more gas and we cannot rule out that it could
contain the whole predicted amount of missing baryons (see also
Fang et al. 2013).

5.2 Comparison with the analytic ram-pressure
stripping formula

We now compare the results of our simulations (Table 5) with
the analytic estimates computed from equation (2). As in our
simulations we approximate the motion of the dwarf through the
corona as one-dimensional, the minimum coronal density averaged
in the distance range 
r near the pericentre required to completely
strip the gas away is

ncor|min(
r) ∼ σ 2
x ngas

vx(
r)2
, (12)

where ngas is the average gas density of the dwarf within rgas, vx(
r)
is the average one-dimensional velocity of the dwarf [vx(
r) =
vr(
r) in our simulations] and σ x is the x-component of the central,
isotropic stellar velocity dispersion. Table 8 presents our findings
for the ‘mid’ (fiducial) simulations listed in Tables 4 and 5. The
analytic estimates have been obtained by considering σ = 7.9 and
6.6 km s−1 for Sextans and Carina, respectively (Walker et al. 2009).
Our numerical results are greater by about a factor of 5 with respect
to the analytic predictions of equation (12). For the first quartile
orbit of Sextans, this difference reaches a factor of 10. We can
conclude that over the small range of densities used here, the analytic
formula for stripping does not give a fairly good estimate of the
coronal density, leading to the conclusion that non-linear effects are
fundamental in recovering realistic values of ncor|min.

5.3 SN feedback

One of the novel features of this work is the introduction of discrete
SN injections. If we do not consider SN explosions, the stripping
process should naturally evolve towards a Kelvin–Helmholtz (KH)
assisted regime. Additionally, the fact that we are using a varying
dwarf velocity means that we expect the development of Rayleigh–
Taylor (RT) instabilities. However, SN explosions are very efficient
at changing the local morphology of the gas distribution, leading to
an effective disruption of the RT/KH seeds. In practice, SNe destroy
the regular flow at the interface between the hot and cold gas,
leading to an SN-assisted stripping process. Without considering
SN explosions, the gas flow past the dwarf is rather smooth and

Figure 9. Cold, bound gas mass for the fiducial simulation of Sextans with
and without SNe.

Figure 10. Cold gas mass-loss rates for the fiducial simulation of Sextans
with and without SNe. The arrows represent the time at which an SN has
exploded; the number 3 over the fifth arrow means that a burst has occurred
(three SNe in 8 Myr).

eddies form. Including SNe, as shown in Fig. 4, causes the flow
to be quite clumpy. Perhaps, these cold clumps travelling at a few
hundreds of km s−1 are related to (some of) the MW’s HVCs (see
also Mayer et al. 2006; Binney et al. 2009).

Figs 9 and 10 show the evolution of the cold bound mass and the
cold mass-loss rate for the fiducial simulation of Sextans (median
orbit and ncor = 1.8 × 10−4 cm−3) with and without SNe. SN explo-
sions increase the cross-section of the cold gas distribution, leading
to a more efficient stripping and a mass-loss rate that can become
four times larger than that without SNe (see Fig. 10). On the other
hand, the same simulation including SNe but without ram-pressure
stripping leads to an inefficient gas removal process, with a final
cold gas mass very close to the initial one. For this reason, we con-
clude that it is the combination of SNe and ram pressure that is key
for recovering the correct stripping rate. Without SNe, the coro-
nal density required to completely strip away the gas is ncor|min =
2.9 × 10−4 cm−3 – about two times higher than for our reference
simulation with SNe. This is higher than independent observational
limits on the coronal density (see Section 5.1), suggesting that SN
explosions are critical for recovering realistic coronal profiles (see
also Nichols & Bland-Hawthorn 2011).
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6 C O N C L U S I O N S

We have performed a suite of hundreds of hydrodynamical simula-
tions of ram-pressure stripping of two dwarfs, Sextans and Carina,
in order to estimate a lower bound on the coronal gas density of the
MW. In addition, we have derived an upper bound by considering
the pressure confinement of these dwarfs by the hot corona. We have
introduced several novel features as compared to previous analyses:
realistic orbits for the dwarfs, a model of discrete SN feedback and
a recovery of the initial gas mass contained in the dwarfs (deter-
mined from their measured SFHs). We find that the coronal number
density in the range 50−90 kpc from the Galaxy must be in the
range 1.3 × 10−4 < ncor < 3.6 × 10−4 cm−3. We have considered
many sources of systematic and random error ensuring that this
result is robust.

We have derived coronal models consistent with our lower and
upper bounds on the coronal density, X-ray emission limits and
pulsar dispersion measures. The pulsar constraint is particularly
important in providing a more rigorous upper bound on the coro-
nal density than our pressure-confinement calculation (that requires
an additional assumption about the radial extent of star formation
within the dSphs). We have explored different coronal tempera-
tures, Galactic potentials and equations of state for the gas, com-
puting a set of coronal density profiles consistent with all of the
above constraints. Extrapolating the baryonic mass in these models
to large radii, we have estimated the fraction of ‘missing baryons’
that can exist in a hot corona within the MW’s virial radius. Con-
sidering as a reference model an isothermal corona at Tcor = 1.8 ×
106 K in hydrostatic equilibrium with the Galactic potential, the
missing baryon fraction is 10–20 per cent. Hotter and/or adiabatic
coronae can contain more baryons than our reference model. How-
ever, of the set of 21 coronal density profiles analysed in this work,
only one model (hot and adiabatic) is consistent with all of the ex-
pected missing baryons lying within the virial radius of the MW.
Thus, models for the MW must either explain why its corona is
in a hot, adiabatic thermal state, or why a large fraction of the
MW’s baryons either never fell in or were removed by energetic
feedback.
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