1,231 research outputs found

    Tracking and assessing practical chemistry skills development: practical skills portfolios

    Get PDF
    We present the evaluation of the student response to a novel form of practical assessment; the Practical Skills Portfolio (PSP). The PSP is a concise record of a practical activity for the purposes of assessment, which prompts students to engage in reflective practice on laboratory skills, and provides opportunities for enhanced feedback delivered in a timely manner. Key goals of this new approach are to assist students in assimilating the practical skills they are developing during their studies and to support them in developing their ability to write the different components of a full lab report

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page

    Evidence-based gender findings for children affected by HIV and AIDS — a systematic overview

    Get PDF
    This review (under the International Joint Learning Initiative on Children and AIDS)provides a detailed evidence analysis of gender, children and AIDS. Six systematic reviews provide the most up to date evidence base on research surrounding children and HIV on key topics of treatment resistance and adherence, schooling, nutrition, cognitive development and orphaning and bereavement. Traditional systematic review techniques were used to identify all published studies on four key topics, then studies were selected according to adequacy criteria (sufficient size, control group and adequate measures). A gender analysis was performed on included studies, detailing whether gender was measured, results were analysed by gender or any gender-based findings. For family studies, both the gender of the parents and gender of the child are needed. Secondary analysis by gender was performed on existing systematic reviews for treatment resistance and adherence. Of the 12 studies on treatment resistance, 11 did not look at gender. One found boys at a seven-fold risk compared to girls. For medication adherence, gender was not significant. Of the 15 studies on schooling, 12 analysed findings by gender with an overall female disadvantage. Of the 14 studies on nutrition, nine analysed by gender with mixed findings. Of the 54 studies on cognitive development, 17 provided gender data, but only four analysed by gender with few differences established. Of the 15 studies on bereavement, seven analysed data by gender again with mixed findings. Major policies fail to provide gender data for young children. WHO, UNAIDS and the international data sets are not gathered or coded by gender for young children (generally under 15 years of age)despite well-established gender challenges in later life. This review shows that the current evidence base is inadequate. Data on gender variation and outcome are urgently needed to inform policy and research on children and HIV

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    Get PDF
    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management

    Algorithms for Enumerating Circuits in Matroids

    Full text link
    We present an incremental polynomial-time algorithm for enumerating all circuits of a matroid or, more generally, all minimal spanning sets for a flat. This result implies, in particular, that for a given infeasible system of linear equations, all its maximal feasible subsystems, as well as all minimal infeasible subsystems, can be enumerated in incremental polynomial time. We also show the NP-hardness of several related enumeration problems

    Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

    Full text link
    Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.Comment: Appeared in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} \oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm \oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure
    corecore