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Abstract Maintaining the health of aquatic systems is an essential component of sustainable catchment
management, however, degradation of water quality and aquatic habitat continues to challenge scientists
and policy-makers. To support management and restoration efforts aquatic system models are required
that are able to capture the often complex trajectories that these systems display in response to multiple
stressors. This paper explores the abilities and limitations of current model approaches in meeting this chal-
lenge, and outlines a strategy based on integration of flexible model libraries and data from observation
networks, within a learning framework, as a means to improve the accuracy and scope of model predictions.
The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor
networks, and a second component whereby model structural evolution can occur once the model is
assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary
nature of the prediction challenge, network science initiatives are identified as a means to develop and inte-
grate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model
assessment that can guide model adaptation. We outline how such a framework can help us explore the
theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry,
and, in doing so, also advance the role of prediction in aquatic ecosystem management.

1. Modeling Aquatic Health: The Evolving Role of Aquatic System Prediction

Sustainable catchment management during the current era of global population growth and climate
change is one of the most profound challenges confronting society [Bogardi et al., 2012; Gerten et al., 2013;
Pahl-Wostl et al., 2013; Brookes et al., 2014]. Inland waters have changed more rapidly in the past 50 years
than at any other time in human history. Water quality degradation and associated issues of water security,
as well as loss of biodiversity [V€or€osmarty et al., 2010; Dudgeon, 2014], have been driven by widespread
urban, agricultural and mining developments, and span both developed and emerging economies. Preserv-
ing the integrity of aquatic systems, including rivers, wetlands, lakes and estuaries, is an essential compo-
nent of catchment management as these systems provide critical ecosystem services to support societal
development [Zedler and Kercher, 2005; Carpenter et al., 2011]. However, the pace of contemporary environ-
mental change is rapid and multifaceted, and hinders restoration efforts. The development of tools and
approaches to quantify the function and response of aquatic systems is therefore essential to support a
holistic view of catchment function [Wagener et al., 2010; Montanari et al., 2013], and guide investment in
conservation and rehabilitation [Creighton et al., 2015].

Substantial advances have been made toward describing changes in catchment hydrologic function and
developing predictive ability to support water resource management [Bl€oschl et al., 2013; Vrugt and Sadegh,
2013]. However, the challenge of prediction becomes significantly more complex as we broaden our scope
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to consider water quality, and even more formidable as we attempt to consider the ‘‘health’’ of aquatic envi-
ronments in entirety. We refer to health here as the ability of ecosystems to maintain their ecological func-
tion and biodiversity, but also include in this definition the provision of ecosystem services such as drinking
water, recreation and amenity opportunities, and productive freshwater and estuarine fisheries [see Cos-
tanza and Mageau, 1999 for a discussion on what health refers to].

A diverse suite of models to simulate water quality and aquatic system function has emerged in response
to this challenge. Two recent special issues [Arhonditsis et al., 2014; Gal et al., 2014 and papers therein] were
dedicated to describe the progress in and challenges for these model communities. They highlight the pro-
gress that has been made in terms of the diversity of approaches, expansion in process complexity and spa-
tial resolution, as well as technical advances in model integration and uncertainty assessment. On the other
hand, they also point to limitations in model performance, challenges in integration and issues when scal-
ing predictions up to capture system responses, as well as the difficulty in simulating higher-level biota
[e.g., Heathwaite, 2010; Robson, 2014b]. Ultimately, the challenge that confronts us is how can we advance
models so they are able to quantify and integrate dynamics of aquatic systems based on the symphony of
local (e.g., engineering), regional (e.g., environmental flow regimes and water trading), and global (e.g., cli-
mate variability) pressures and thereby meaningfully inform policy. One of the more difficult questions
increasingly being asked of models is to estimate the level of impact that may trigger abrupt transitions or
regime shifts in ecosystem state, or alternatively, to describe the effort required either to avoid adverse tran-
sitions or to restore degraded systems back to some ‘‘acceptable’’ level of structure and function [Rockstr€om
et al., 2014]. Continued effort is therefore required to build the next generation of modeling tools capable
of predicting the diversity of attributes that contribute to aquatic system health across the range of tempo-
ral and spatial scales relevant to decision making.

No single new model is going to meet this challenge. Modeling aquatic environments across broad and het-
erogeneous landscapes requires rich streams of data [e.g., Porter et al., 2009; Read et al., 2014], and the level
of process-complexity and interdisciplinarity required to simulate the multiple attributes of system function
across a range of scales demands effective science teams [Cheruvelil et al., 2014] able to foster the integra-
tion of diverse perspectives [e.g., Ehret et al., 2014]. The emergence of integrated environmental observato-
ries that combine sensor and model infrastructure, in conjunction with human networks, has offered
benefits in terms of improving how we undertake predictions, and this is shifting how models integrate
with the decision-making process. However, to meet the demands on prediction that are outlined above, a
suitable framework for model integration and learning within observatories is required that considers both
technical (e.g., data assimilation procedures) and theoretical (e.g., capturing system resilience) aspects of
model operation.

This paper therefore aims to address two questions: (a) how well can we model the health of aquatic sys-
tems and what are the limits of our predictive ability, and (b) how can we better integrate diverse model
approaches with the expanding repositories of observations emerging out of advances in sensor networks?
The analysis is structured to first explore specific challenges associated with modeling aquatic ecosystem
health in terms of process complexity and scale (section 2). In section 3, we focus on identifying the needs
and abilities of models to simulate ecosystem resilience to multiple stressors. We then propose in section 4
that careful integration of flexible model libraries with data from observation networks within a learning
framework can serve to more efficiently link empirical and mechanistic lines of enquiry and facilitate
improved use of models for decision-making. Finally, we highlight in section 5 the importance of science
teams for bridging the gap between technical and theoretical developments, and suggest community level
initiatives required to accelerate model development and synthesis activities.

2. Model Diversity and Challenges for Prediction

Simulation of aquatic system health requires the integration of models of hydrology, hydrodynamics, bio-
geochemistry, and ecology. There are two broad categories of models that have emerged [Arhonditsis et al.,
2014]: (1) catchment-scale water quality models and (2) aquatic biogeochemical models applied to individ-
ual systems within a catchment (e.g., wetlands, lakes, large river domains, and estuaries). These two catego-
ries can be further subdivided based on the diversity of modeling approaches, demonstrating the broad
range of scales and disciplinary foci covered by the models (Figure 1).
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As these models are increasingly used to make predictions about aquatic health and ecosystem services,
integration across scientific disciplines is necessary, however, there is often divergence in modeling philoso-
phy, spatiotemporal scale, and computational methods since various model approaches have historically
evolved within well-defined disciplinary boundaries. When aiming to develop an integrated predictive
capacity to broadly inform catchment policies, amplification of model complexity is inevitable, yet a ques-
tion that modelers are often confronted with is, ‘‘what level of spatial resolution and model complexity is
required to adequately simulate the impacts of multiple stressors?’’ This section therefore explores the capa-
bilities and limits of our models to compute the multiple ecosystem attributes relevant to ecosystem health,
considering issues of process complexity, scale, and model integration.

2.1. How Much Complexity Is Enough?
Historically, water quality models were developed to answer relatively simple questions related to the
response of water column nutrient, oxygen, and chlorophyll-a concentrations to changes in nutrient loads
and hydrology. These proved to be effective tools for supporting the introduction of nutrient reduction tar-
gets, but often performed poorly in simulating variability in key water quality parameters [Arhonditsis et al.,
2006]. The increase in resolution and quality of our observational data has since facilitated the development
of more complex models that now incorporate a greater number of biogeochemical variables and proc-
esses, and this has enabled more specific questions to be addressed, such as the role of sediment storage

Figure 1. Conceptual overview of the spatial extent of simulation domains and indicative numerical resolution used by a range of disciplines to simulate aquatic ecosystem responses to
change. A nonexhaustive list of examples of models used to simulate these domains is presented in the right-hand column.
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and release of nutrients [Paraska et al., 2014] and the interaction of multiple biotic groups [Robson, 2014a].
In particular, for the case of coupled physical-ecological aquatic models, the focus of advancing process
descriptions has been on enabling the simulation of multiple phytoplankton and zooplankton functional
groups [Li et al., 2013; Chung et al., 2014; Reynolds et al., 2014], capturing stoichiometric variability and
improving descriptions of microbial interactions such as the microbial loop and viral shunt [Keller and Hood,
2013; Li et al., 2014]. The importance of considering food quality for grazers has also been recently high-
lighted, with indications that capturing the internal stoichiometry [Li et al., 2014] and fatty acid concentra-
tions [Perhar et al., 2013] of their prey is necessary to accurately resolve nutrient transfer within the food
web and the pattern of phytoplankton succession. These advances have improved our ability to predict the
occurrence of nuisance algal blooms, however, some shortcomings remain, for example our ability to simu-
late algal toxins. Simulation of aquatic geochemistry and contaminants that present an ecosystem or
human health risk has also advanced considerably, including models for pathogens [Hipsey et al., 2008],
metals, and organic contaminants [Gandhi et al., 2011, 2014], acidity [Hipsey et al., 2014], and hydrocarbons
[Perhar and Arhonditsis, 2014].

Complexity is often paramount in shaping ecosystem dynamics, depending on the specific question being
addressed, but models by necessity are some simplification of reality. The aquatic modeling community has
developed model packages that span the diversity from simple to complex (Janssen et al., Exploring,
exploiting and evolving diversity of aquatic ecosystem models: a community perspective, Aquatic Ecology,
in review), with the consequence that a plethora of approaches and packages have emerged, each with dif-
ferences in model conceptualizations, implementation, and parameterizations. Whilst this diversity is a sign
of an active and creative community exploring models of varied complexity, applications remain largely
heuristic [Arhonditsis et al., 2014], and uncertainty remains in terms of identifying clear limits of predictability
of specific approaches, i.e., for any given question how much complexity is ‘‘enough’’?. For example, it may
be the case that a simple single-layer sediment biogeochemical model is adequate to capture the long-
term changes in internal nutrient loading within an urban river system, whereas a vertically resolved sedi-
ment diagenesis model may be required to accurately resolve the impact of water level manipulation on
greenhouse gas emissions from a hydropower reservoir. Similarly, how many phytoplankton should be
simulated to accurately predict the risk of a particular harmful algal species blooming?. A handful of studies
have been undertaken to highlight the importance of carefully choosing model structural complexity [e.g.,
McDonald and Urban, 2010; Paudel and Jawitz, 2012; Li et al., 2014], however, further synthesis is required to
facilitate the development of clear guidelines able to recommend what level of complexity is necessary to
achieve adequate predictions given a particular application context. By defining the essential environmental
attributes that govern changes to the key ecosystem services relevant to decision-making as a target for
prediction, we may ultimately help the research community better focus effort on defining when models
are able to capture the dynamics of the system without being overly complex.

2.2. Modeling Food Webs and Higher Biota
The usefulness of models to support a holistic assessment of aquatic systems is increased greatly when
trophodynamic relationships and trends in key biota (e.g., vegetation, bivalves, fish) are included. Models of
lakes and estuaries have tended to have more sophistication in terms of trophic complexity than catchment
and river network models (Figure 1), although predictions of biotic responses across river basin scales have
been demonstrated [e.g., Wells and Wells, 2012; Van Looy et al., 2014]. Predicting biotic responses for the
purpose of assessing ecosystem health requires the integration of models of hydrology/hydrodynamics,
biogeochemistry, and biotic interactions. Integrating aquatic biogeochemical models with individual-based
modeling approaches has been undertaken for fish and mesozooplankton [Makler-Pick et al., 2011] as well
as bivalves [Bocaniov et al., 2014; Gudimov et al., 2015] and macrophytes [Li et al., 2010]. However, confi-
dence in predictions is reduced significantly beyond phytoplankton [Arhonditsis and Brett, 2004], and new
efforts are required to bridge the gap between physical-biogeochemical models and ecosystem food-web
models [Harris and Heathwaite, 2012]; a challenge similarly faced within the marine ecosystem modeling
community [Mitra et al., 2014].

Nonetheless, it is possible to develop predictions of habitat quality and biotic health relevant to our
decision-making needs through integration with empirical model approaches from the extensive ecological
literature on environmental-faunal linkages [Shallin Busch et al., 2013]. For example, rather than explicit sim-
ulation of biotic populations in the benthos, simulation of simple habitat metrics known to drive population
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abundance may suffice in many applications. Capturing their feedback onto the overlying water quality
(e.g., dissolved oxygen, turbidity, and nutrients) may be possible with relatively simple parameterizations
(e.g., bioturbation, sediment stabilization, etc.). Therefore despite uncertainty in simulating population
dynamics, for the purposes of capturing the role of biota on aquatic system health for scenario investiga-
tions, there is scope to combine statistical environmental-faunal relationships with dynamic models that are
able to competently simulate key habitat properties.

2.3. Modeling Across Scales
Spatially lumped models are often used to explore system-level responses to environmental change, how-
ever, it is well-documented within the ecological literature that variability across the continuum from indi-
vidual organisms up to entire ecosystems can play a crucial role in shaping function and resilience [Pimm,
1984; Kratz et al., 2005; van Nes and Scheffer, 2005]. Model studies have advanced to demonstrate more
clearly the scale of resolution that is required to resolve the inherently important dynamics of aquatic sys-
tems. For example, in lake environments it has been demonstrated that spatial ‘‘patchiness’’ that emerges
due to the circulation dynamics can shape the distribution and intensity of phytoplankton blooms [Wynne
et al., 2010; Michalak et al., 2013; Chung et al., 2014], with 1-D and 3-D simulations giving quite different pre-
dictions of phytoplankton distributions even if all other model aspects are equal [Hillmer et al., 2008;
McDonald et al., 2012]. Thus the degree of model resolution may be tailored to address the scale of the
question. For example, simulating hypolimnetic oxygen depletion within a large reservoir may be
adequately modeled with a horizontally-averaged model, but in the same system, prediction of the risk of
cyanobacterial blooms may in fact demand 3-D resolution to capture patchiness and the emergence of
niches. As a further example, avoidance behavior of fish to hypoxia in feeding zones can lead to a long-
term shift in abundance and body condition of the population [Cottingham et al., 2014], which would be
challenging to predict without a model able to resolve habitat heterogeneity. Whilst modelers already pay
attention to these issues, decisions on model resolution are often ad hoc since there are no defined limits
of predictability of models with different spatial dimensionality. Furthermore, the necessary level of spatial
resolution required may in fact vary depending on the underlying conditions and time-scale of the simula-
tion. In an ideal case, integrated model systems would allow for flexible model domain resolution that
would be able to be enhanced or reduced as required in order to adequately account for effect of spatial
variability on ecological function. However, poor understanding of the scaling of parameters and parame-
terizations in models, to account for the degree of spatial aggregation, has made the interchangeability of
models that have similar biogeochemical conceptualizations but different physical process resolutions
difficult.

Choice of model resolution and approach becomes more challenging with progression from individual
aquatic systems to interconnected networks of aquatic systems within a catchment (Figure 2). Recent
efforts in model integration have facilitated the coupling of catchment and aquatic system models (Figure
2a) to explore the impacts on large water bodies of catchment nutrient reduction plans and restoration ini-
tiatives [Waltham et al., 2014; Kim et al., 2014a], and allow for prediction of aquatic system health under
future climate change projections [Cloern et al., 2011]. These whole-catchment applications are promising,
but there is ongoing need to refine individual constituent models of the system including within-stream
and hyporheic processes [Hattermann et al., 2006; Rode et al., 2010; Gu et al., 2012]. Furthermore, linking a
catchment model with an aquatic ecosystem model may be an oversimplification for prediction problems
in cases where connecting domains via simple unidirectional boundary conditions is not sufficient (Figures
2b and 2c). Such ‘‘aquatic landscapes’’ may include heterogeneous wetland-dominated environments, lake-
rich landscapes, coastal river-estuarine systems, river floodplain systems, and river-reservoir networks. For
these examples, each landscape element (e.g., hillslopes, riparian zones, rivers, wetlands, lakes, estuary) has
a unique balance of physical and biogeochemical processes [Oldham et al., 2013], and a characteristic pat-
tern of connectivity with neighboring systems. Connectivity is critical in shaping habitats and patterns of
resource flow, and each subsystem within the network experiences variability along the ‘‘isolation-
connectivity continuum’’ [Leibowitz, 2003]. In the examples given in Figures 2b and 2c, the regularity of
hydrological pulses (either surface or groundwater) determines the degree of isolation or connection with
implications of biogeochemistry and ecology. Simulating these environments creates a prediction problem
that increasingly demands integration of model types to capture landscape heterogeneity and the complex
boundary conditions between the subsystems. Synchrony (or asynchrony) in connectivity regimes of water
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and material fluxes between the various subsystems is important [Hernandez and Mitsch, 2006; McCluney
et al., 2014], since discrete or seasonal pulses that connect systems can regulate the biotic communities and
their interrelationships. For example, within the context of Figure 2c, Furst et al., [2014] highlight the ‘‘incu-
bation’’ effect of periodically disconnected floodplain wetlands, whereby zooplankton biomass accumulates
before being delivered to the main river food-web when a critical water level thresholds is met, highlighting
the importance of designing environmental flow regimes to optimize connectivity of the wetlands.

Our model approaches for simulating the latter examples above are currently inadequate and modular
model frameworks able to accommodate simulations in complex aquatic landscapes are essential for scal-
ing up from individual systems to catchments. Whilst progress has been made in simulating at landscape
scale across wetlands [e.g., see Golden et al., 2014], flexible approaches are required able to support bidirec-
tional linkages of groundwater and surface water subsystems. Such flexible tools would enable managers to
compute the multiple services provided within each subsystem and plan intervention in the system more
effectively [Bracken et al., 2013].

3. Simulating System Resilience, Degradation, and Recovery: How Can Models
Meet This Challenge?

Whether focusing on an individual aquatic system or a complex aquatic landscape, finding sustainable man-
agement solutions ultimately requires predictions to assess how combinations of stressors impact delivery
of ecosystem services over the long-term. The theory of how complex ecosystems respond to stressors has

Figure 2. Distinct modeling approaches and model combinations are necessary to holistically assess different landscapes, systems and management or research questions. Examples
here show three contexts: (a) a catchment discharging into a large waterbody, (b) a lake/wetland rich landscape, and (c) a complex aquatic landscape.
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advanced considerably in the past two decades [e.g., Scheffer et al., 2012], and efforts are ongoing to
explore these dynamics in real-world landscapes [Carpenter et al., 2001; Suding and Hobbs, 2009; Peterson
et al., 2012]. The concept of system resilience is built on the idea that positive and negative feedbacks can
drive threshold behavior or promote stability in systems in response to stressors, potentially with the emer-
gence of alternative stable states [Suding et al., 2004; Rockstr€om et al., 2014]. In aquatic systems, it is well
established that nutrient loading leads to eutrophication and deterioration in water quality, with the emer-
gence of degraded states that are resistant to recovery [Smith, 2003]. However, depending on the context,
response pathways may not always follow simple trajectories. Nutrient enrichment may improve some
aquatic system attributes (e.g., fisheries) until thresholds are reached, after which it is common to see a
switch to dominance of cyanobacteria and an overall deterioration in water quality [Gal et al., 2009], and
the potential for toxin production and loss of biota. Some cyanobacteria have strong nutrient luxury uptake
capacity, thereby amplifying feedbacks of populations with eutrophication [Cottingham et al., 2015]. The
complexity of nutrient flux pathways within the ecosystem trophic structure can influence this trajectory
[Brookes et al., 2005]. Once a system is degraded, the various attributes of the system may respond differ-
ently to restoration efforts and have different levels of hysteresis, for example, recovery in physicochemical
attributes of water quality may not necessarily correspond with the recovery of biotic diversity [Wildsmith
et al., 2009; Borja et al., 2010].

Whether we expect to see a system undergo a gradual transition or one dominated by strong feedbacks and
thresholds in response to external pressures (e.g., degradation or rehabilitation) is therefore site and context
specific. Process-based models can help in defining and characterizing system behavior, but the ability of
aquatic ecosystem models to capture emergent behaviors remains poorly explored. Models of shallow lake
ecosystems, however, have been reported to successfully capture alternate stable states (clear, macrophyte-
dominated state versus turbid, phytoplankton-dominated state) and hysteresis in response to nutrient load-
ing changes [Janse et al., 2010; Nielsen et al., 2014]. Furthermore, shifts in dominance of phytoplankton com-
munities to cyanobacteria, indicative of transitional states, have also been simulated [Elliott, 2010].

To identify ecosystem tipping points, symptomatic of regime shifts requires multiple stressors to be simu-
lated. Understanding the interactions of nutrient load changes to water bodies in tandem with the effects
of climate change is of increasing interest [Brookes and Carey, 2011; Moss, 2011; Rigosi et al., 2015], with sev-
eral lake model applications addressing this to date [Nielsen et al., 2014]. Assessing more complex scenarios
that combine pressures from nutrient loading, altered hydrology, warming climate, and shifts in fishing
pressure or invasive species are still in their infancy. In most cases these stressors are nonstationary and
individually vary over different time scales, creating complex trajectories of ecosystem health (Figure 3). The
stochastic nature of the external stressors can also be significant in shaping ecological thresholds. Extreme
events in particular, such as pulses of turbid flood waters [Chung et al., 2009] or water level decline [Hipsey
et al., 2014], create transient shifts in function and habitat quality that may drive long-term shifts in ecosys-
tem state. System trajectories will therefore be highly site specific, and there is opportunity for model sys-
tems to extend conceptual ideas about resilience and system thresholds by quantifying more fully the
evolution of ecosystem state over time for a range of ‘‘real-world’’ systems. With increased ability to predict
an acceptable stress range (Figure 3c), a more holistic combination of management actions can be defined.
For example, using this approach Gilboa et al., [2014] recently defined a composite water quality index as a
measure of ecosystem health of Lake Kinneret, and identified a safe operating range in response to nutrient
loading and water extraction stressors.

Assessment approaches are required to build confidence that models are able to resolve complex system
trajectories. Modelers have traditionally tended to rely on testing model performance at a single point
where observations are made. This level of validation is not a robust test of the system-scale emergent
dynamics, including resilience, thresholds, and state-shifts, described here as ‘‘emergent uncertainty.’’ New
procedures and good empirical data sets are required to test the ability of models to capture emergent
uncertainty, for example:

1. Emergent dynamics in food-web structure and trophic partitioning;
2. Response to stressors and early warning signals such as critical slowing down, ecosystem flickering,

threshold behavior [K�efi et al., 2014];
3. Time lags in response to management changes;
4. Hysteresis during recovery;
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Figure 3. Predicting the evolution of ecosystem health. (a) Historical evolution of hypothetical ecosystem services, ES (WQI 5 Water Qual-
ity Index; Rec 5 area suitable for recreation; NutAssmin 5 nutrient assimilation; HabitatX5 habitat area for critical biota) computed as a
function of model variables as indicated. (b) This generates a complex trajectory in ecosystem state (as indicated by health, computed
from summing the ES metrics). (c) Our models can be used to identify management options that give a safe operating range (the shaded
area indicates the region whereby the combination of management actions leads to acceptable health; it is truncated on two faces due to
constraints such as cost preventing these from being acceptable).
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5. Sensitivity of system trajectory to antecedent conditions.

It is unlikely that models can adequately capture all of these system attributes, since abrupt transitions in
state are notoriously difficult to predict [Batt et al., 2013].

The challenges for model validation described above become more complex at the scale of interconnected
landscapes (refer to section 2.3 for context). How the resilience of systems ‘‘scales up’’ remains a topical area
for further research [Hilt et al., 2011; Soranno et al., 2014] and an area where model frameworks that are
capable over a range scales can help support advancing our knowledge base. The resilience of a system not
only depends upon the interactions of individual components within an ecosystem, but also upon the rela-
tionships between connected subsystems [Hughes et al., 2013; McCluney et al., 2014]. Subsystems can
amplify or dampen signals that they are forced by. Humans have extensively impacted patterns of hydro-
logical connectivity through engineering and land cover changes [Nilsson et al., 2005; Kuiper et al., 2014].
Therefore recovery of these landscapes requires integrated management supported by model frameworks
able to capture how connectivity regimes regulate pathways of material flow and impact upon resilience at
the macroscale [e.g., Hilt et al., 2011].

Prolonged periods of aquatic ecosystem deterioration drive environmental policy changes related to, for
example, water extraction, environmental flows, land management, and pollution. The time scale and
extent of this response is highly site and context specific [Meybeck, 2002], yet critical for identifying
long-term sustainable solutions. The ‘‘panarchy’’ conceptual framework highlights the cyclical nature of the
feedback between the natural and human systems, making long-term predictions particularly difficult [e.g.,
Gunderson and Holling, 2002]. Model approaches that can move beyond applying human impacts as a
boundary condition, and allow two-way integration with socioeconomic and land management models,
will ultimately improve links with the needs of policy makers and will inevitably demand simulations over
long-time periods [Elshafei et al., 2014], and compound issues of predictive uncertainty. This has challenged
the hydrological community to comprehensively consider the link between data, models, and predictions
in the quest for improved understanding of how catchments vary under changing conditions [Ehret et al.,
2014]. The prospect of models able to learn from new data streams offers the potential for predictive ability
to be continually updated and uncertainty progressively reduced, even as unexpected events occur
[Thompson et al., 2013]. Developing a mechanism whereby this can be achieved within observatory systems
therefore offers an attractive approach to organize information in a way that better enables scientists and
decision-makers to tackle this long-term prediction problem.

4. Learning From Data: Observatories as a Knowledge Integrator

The hydrological community is increasingly undertaking real-time observations and predictions of systems
with the ambition to provide forecasts at scales from days to decades [Liu et al., 2012; Mackay et al., 2015].
The development of integrated environmental observatories that combine data from distributed sensing
systems and model infrastructure offers benefits in terms of automating aspects of model operation (e.g.,
model integration and automatic calibration) [Werner et al., 2013]. Within the context of aquatic systems,
approaches to address the prediction challenges outlined in the previous sections through integration of
models within observatories systems has yet to be fully explored. Within this section it is our aim to outline
a framework for the evolution of predictive skill, whereby observations from sensing infrastructure and tra-
ditional monitoring are integrated with flexible model libraries that may be used to create a diverse range
of custom model structures. The framework has been designed to demonstrate a potential pathway for
integration of bottom-up (process-based) and top-down (data-driven) approaches within an adaptive loop
and guided by theoretical insights (Figure 4). In this section, we expand on key aspects of the framework to
explore how observatory systems can fundamentally advance our understanding of how aquatic systems
respond to change, whilst also discussing how outputs can be more effectively communicated to
stakeholders.

4.1. Sensor Networks for Aquatic Systems
There has been a major proliferation of sensors relevant to measurements of hydrological, water quality,
and aquatic habitat properties. Real-time sensor deployments for measuring water quality properties (e.g.,
dissolved oxygen, chlorophyll-a, and turbidity) from multiparameter sondes are now routine, and sensors
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can also measure variables such as dissolved organic carbon (DOC), phycocyanin, and nitrate [Neal et al.,
2012; Wild-Allen and Rayner, 2014]. The next decade holds great promise for new in situ measurement tech-
nologies. For example, advanced measurements such as stable isotope measurements [Herbstritt et al.,
2012], heavy metals [Warnken et al., 2009], and biosensors [Shade et al., 2009] are transforming our ability to
monitor aquatic systems. Biotechnological advances are also opening up opportunities for real-time PCR
and microbial measurements, for example of pathogens [Ikonen et al., 2013; Lopez-Roldan et al., 2013], and
online monitoring of phytoplankton diversity using flow cytometry [Pomati et al., 2013]. While sensors that
measure some fundamentally important aquatic attributes have yet to be developed or are currently pro-
hibitively expensive for widespread use (e.g., sensors for methane or phosphorus), this field is rapidly
advancing and has great potential for developing observational data sets that can be used to calibrate and
validate ecosystem models.

To complement the high temporal resolution data streams, satellite products for synoptic surveys of water
quality in wetlands, large rivers, estuaries, and lakes are also creating new opportunities for understanding
controls on ecosystem attributes [Palmer et al., 2015]. Data products derived from satellite observations can
yield spatially resolved water quality indices [Kloiber et al., 2002; Moore et al., 2014; Allan et al., 2015] in addi-
tion to changes in water quantity [Prigent et al., 2012], and generate long-term ‘‘virtual’’ time series [Schnei-
der and Hook, 2010]. These data sets create new scope for validating models across multiple spatial scales.

Data collected through citizen science initiatives is becoming increasingly important for environmental
monitoring purposes due to the increasing emphasis on understanding the intertwining dynamics of

Figure 4. Schematic overview of model learning from diverse data streams. Two learning cycles are identified: the short-term data assimilation loop (dark grey) and the long-term model
evolution loop (light grey). Model evaluation practices are categorized as assessing model state, process, or system-level predictions. The latter two comparisons seek to match the
process-based model function with empirically derived patterns, either from direct observations (solid black line) or via interpretation from data-driven models (large dash line).
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humans with the environment. For example, advances in mobile devices can complement primary data
streams (those identified in Figure 4), and are particularly useful for capturing data for which sensors are
not available, e.g., bird counts and fish catch per unit effort [Dickinson et al., 2012; Lottig et al., 2014; Thorson
et al., 2014]. Additionally, the use of unstructured data, for example, qualitative data on catchment use and
public perception of environmental condition derived from automatic web searching, can be integrated
with traditional data streams. These data streams may not be appropriate for supporting direct evaluation
of models, but offer potential to help prioritize concerns of community stakeholders and identify user
demand for scenario assessments.

4.2. Model Evolution Within Observing Systems
The diversity and density of data from sensor networks, in conjunction with data from conventional assess-
ments, requires advanced tools and workflows to convert the data into information. Seamless integration of
the data with process-based models can be used to improve model setup (e.g., better boundary conditions),
and model calibration. Since many process-based models tend to be overparameterized [Arhonditsis et al.,
2008], more diverse and high-resolution observations create advantages for testing the rigor of models at
scales relevant to the dominant underlying processes [e.g., Kara et al., 2012; Hamilton et al., 2014; Bruesewitz
et al., 2015].

The search for more formal approaches to reduce model error through better integration with empirical
data has been the topic of significant analysis, particularly within the hydrological community [e.g., Gupta
et al., 2012; Parrish et al., 2012; Thompson et al., 2013; Robson, 2014b]. Optimization of parameters and
assessing uncertainty in short to near-term forecasts has been made possible through application of Bayes-
ian Hierarchical Frameworks (BHFs) in aquatic ecosystem models [Zhang and Arhonditsis, 2009; Dietzel and
Reichert, 2014]. Running models within an observatory context allows this to be undertaken as part of a
sequential data assimilation procedure, using techniques such as the Ensemble Kalman Filter (EnKF) algo-
rithm [Kim et al., 2014b], and in some cases enabling continual (time-varying) updates to parameter posteri-
ors. Such data assimilation techniques, however, have had limited application for water quality assessments
(relative to hydrological applications), and in particular for multidimensional aquatic ecosystem models of
lakes, large rivers, and estuarine environments [Robson, 2014b]. This is thought to be due to the difficulty
and expense of collecting adequate water quality and ecosystem data sets to support application of data
assimilation algorithms, and the excessive computational demands when many interacting variables are
being simulated. Some techniques have emerged whereby modelers undertake an optimization of parame-
ters on a spatially reduced form of a biogeochemical model prior to a high-resolution simulation as a practi-
cal solution [McDonald et al., 2012] (Adiyanti et al., Stable isotopes reduce parameter uncertainty of an
estuarine carbon cycling model, Environmental Modelling and Software, in review). However, improvements
in distributed computing are opening up opportunities for data assimilation of 3-D models, as recently
exemplified in the ocean modeling community [Xiao and Friedrichs, 2014].

Whilst advances in the resolution and diversity of data sets within observatory systems will likely drive rapid
advances in data assimilation tools, there are limits to how far data assimilation alone could improve predic-
tions, particularly given the nature of the simulations required for integrated assessment. Model structural
inadequacy leads to error that is unresolvable but identifiable [Gupta et al., 2012], and once identified can
be used to support model updates. Specifically, Thompson et al. [2013] summarized four ways that model-
data learning can support predictions in systems subject to non-stationary (and potentially unexpected)
drivers: (i) by reducing uncertainty in short to near-term forecasts; (ii) by identifying model weaknesses in
reproducing essential system-level dynamics, and updating model structures or approaches as the system
of interest undergoes change; (iii) by identifying deviations from expected system behavior which may be
attributable to previously undetected feedback mechanisms; and (iv) where ‘‘hotspots’’ are noted, adapting
monitoring programs to better inform predictions, thus optimizing investment in environmental monitor-
ing. With this in mind, the approach outlined in Figure 4 identifies that model operation must be embedded
within a learning framework that supports adaptation of model parameters, structure and function, and this
is divided over two separate (but potentially interacting) loops: the data assimilation loop and the model
evolution loop.

Within the model evolution loop, the focus is on diagnostic evaluation of the models ability to reproduce
theoretically relevant metrics of aquatic system behavior. In Figure 4, several examples are categorized into

Water Resources Research 10.1002/2015WR017175

HIPSEY ET AL. PREDICTING THE RESILIENCE OF AQUATIC SYSTEMS 7033



signatures related to physical or biogeochemical process rates, and system-scale emergent properties rele-
vant to the discussion presented in section 3. As has recently been demonstrated within hydrological mod-
els [Vrugt and Sadegh, 2013; Shafii and Tolson, 2015], signatures of system function may in fact serve to
constrain the model calibration. Moreover, as experience is gained in identifying model shortcomings, the
question then becomes—can we dynamically adapt model structure to learn from new trends and patterns
present in the observational data?. This could be achieved through assessment of model ensembles or
changes to model functionality over time. There is a largely unexplored role here for data-driven models to
help shape predictions in concert with process-based models. As identified in the top right of Figure 4,
empirical relationships that may not have been anticipated or fully explored during model design (e.g.,
those outlined in section 3), may then be used to guide updates, refinements, or replacement of model
components within the libraries on which the model simulation was built.

On a practical level, there are therefore several ways updates to models and predictive ability can occur:

1. Data assimilation: sequential updating of model parameter likelihood distributions as new information
derived from a sensor network is available and processed. Besides improved parameter estimates, an
outcome is the potential to develop reanalysis products that provide a temporally continuous and spa-
tially explicit estimate of the true state of the system based on assessment of observations and models.

2. Augmenting simulations by mechanistic models with data-driven models: The quality of mechanistic
model simulations is often heavily impacted by poorly resolved boundary condition specification, partic-
ularly since essential biogeochemical and ecological variables are infrequently measured in input tributa-
ries to many systems. Use of data-driven tools to develop models for boundary condition
concentrations offers the potential to reduce input error in this regard. Alternatively, use of machine-
learning methods can be used to predict the error structure of mechanistic model simulation output,
and the joint prediction reported to stakeholders (not shown in Figure 4).

3. Use of model-structure ensembles: approaches such as Bayesian Model Averaging (BMA) have been
introduced to identify the best model approaches for a given data set [Ramin et al., 2012]. When
employed to assess competing model structures, there is potential for this approach to define adequate
levels of complexity for any given system under changing conditions [Parrish et al., 2012].

4. Dynamic algorithm reparameterization: In this case, sufficiently flexible model packages that contain
libraries of alternate algorithms for specific processes (e.g., the photosynthesis-irradiance relationship),
would be sampled to identify the best combinations to match observations [Recknagel et al., 2008a;
Ramin and Arhonditsis, 2013]. Potential exists here for direct interpretation of sensor data using data-
driven model approaches. For example, computation of ecosystem metabolism from raw oxygen sensor
data [Hanson et al., 2008] may subsequently be applied to constrain metabolism predictions within the
model simulation by applying justified constraints on parameter space (as indicated in Figure 4), or rep-
arameterizing the relevant expression within the model library.

5. Adaptive configuration of model structure: on occasion, field measurements will reveal behavior that is
not predicted by the models because the process or variable has not yet been configured appropriately
within the chosen model algorithms. Assessment of new observations, such as the emergence of unex-
pected phytoplankton species, can be used to update model configuration. Furthermore, application of
‘‘black-box’’ models, such as artificial neural networks or similar, to the observatory data may identify con-
trolling environmental factors [Coad et al., 2014], that were not obvious a priori but could inform subse-
quent changes to model configuration.

6. Dynamic updates to model resolution: where it is assessed that model predictions are inadequately cap-
turing temporal or spatial variability in ecosystem attributes, increasing model dimensionality, or refining
model resolution can be undertaken, for example, through automated nesting or regridding of models.
Furthermore, assessing the relative performance of models of different scale can be seen as a mecha-
nism to identify the limits of predictability of any chosen model, thereby guiding modelers through chal-
lenges raised in section 2.

Although these mechanisms are suggested in general terms, the intention is to highlight future opportunities
for model-learning frameworks to support the hybridizing of process-based and data-driven models. This is
only achievable with flexible model systems where modelers are able to easily design and test models of dif-
ferent resolution, complexity, and philosophy, both through quantitative and qualitative means. Whilst many
technical challenges remain to realize such a framework, the process of model evolution over time presents
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not only an opportunity to improve predictions, but also an opportunity to facilitate the engagement of
stakeholders, allowing them to build confidence in the suitability of various model approaches.

4.3. Quantifying and Communicating Ecosystem Condition and Service Delivery
The ongoing interaction of models with observations can allow us to capture the systematic feedbacks
between observation, prediction, and management that emerge under continuously changing conditions
[Clark et al., 2001; Reed et al., 2006]. However, often the best scientific knowledge is not translated into pol-
icy. In the context of online observatory systems, rich data streams and more accurate model predictions
can be supplied to stakeholders, but there is evidence to suggest that simply supplying information from
data or models is unlikely to lead to positive environmental outcomes [e.g., Hart and Calhoun, 2010]. The
problem of many emerging observatory systems that communicate data is that the information provided is
not readily digestible by those needing to make the decisions. More complex integrated models of hydrol-
ogy, hydrodynamics, biogeochemistry, ecology and society, and novel data streams only amplify this prob-
lem. An approach to successfully disseminate insights from the models and data streams is to not rely on
raw data from sensors or simulation output when communicating system properties, but focusing on user
demands and their requirements for information [Mackay et al., 2015]. The question then becomes, what
critical information do we need to distill from the sensors and models (or reanalysis products) to facilitate
the ongoing engagement of decision-makers and catchment communities in the process? For example, to
communicate that a system is experiencing regular hypoxia it may be more effective to present the relative
reduction in suitable habitat for benthic biota rather than time series of dissolved oxygen. Since modeled
variables may not necessarily be easily translated directly into metrics used by ecologists or decision mak-
ers, dedicated efforts are required to identify proxies, such as for ecosystem service provision and resilience
[Carpenter et al., 2001].

Collectively, a suite metrics that are tailored to local systems can serve as indicators of ecosystem health,
offering an improved way to communicate data from an observatory to managers and the public (Figure 5).
This process has the potential to add value to agency or ad hoc monitoring initiatives since, through the
observatory system, it would allow immediate translation of new monitoring data into attributes of direct
relevance to stakeholders. By adopting Bayesian schemes outlined in the previous section, then the value of
new observations on improving model accuracy is quantifiable, and the updated models become available
to undertake an improved assessment of health metrics and forecasts of future trajectories. Ideally, this
would ultimately strengthen connections between knowledge and action [Hart and Calhoun, 2010], with
direct translation to information for policymakers [Soranno et al., 2015]. A well-designed information portal
delivering essential information would promote effective dialog and empower communities to more
actively participate in understanding their local catchment, and provide a vehicle for adding value to citizen
science data-collection initiatives.

5. Enabling a Community-Driven Assessment of Complex Aquatic Landscapes

To realize the technical advances outlined above requires a high level of interdisciplinarity and flexibility in
software development, requiring participation from domain experts, informaticists, software developers,
and information brokers. A theme in recent transformative science expeditions (e.g., Large Hadron Collider;
genome sequencing project) is an engaged group of diverse collaborators from multiple institutions. High-
performing research teams that emerge within effective networks create research outcomes that are more
than the sum of the parts [Cheruvelil et al., 2014]. Within the environmental sciences, research communities
have begun to generate momentum from the ‘‘open data’’ trend, especially with the creation of open
source tools and model frameworks [Trolle et al., 2012]. We further advocate for a research structure that
includes open sharing of all elements of the scientific process (ideas, models, tools, and data) as being
essential to link theoretical developments and model infrastructure.

5.1. Innovating Aquatic System Assessment Through Open Communities
The emergence of ‘‘network science’’ as a vehicle to advance software and synthesis efforts is critical for set-
ting the agenda and driving transdisciplinary collaborations. Science communities that embody openness
have enabled researchers to tackle larger, more complex problems, despite some degree of resistance to
data sharing [Soranno et al., 2015]. Synthesis activities within communities are critical to identify ‘‘universal’’
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descriptors of processes, similarity in emergent behaviors, and how water quality, nutrient, and contaminant
pathways vary across geomorphologic and climate gradients [Bl€oschl, 2006; Sivapalan et al., 2011]. Whilst
synthesis efforts have historically been undertaken separately in the hydrological and ecological disciplines,
there is a need for synthesis of the ideas and data in the context of the technological needs and model
frameworks identified in section 4. Specifically, the collation and sharing of site-specific process-data span-
ning environmental gradients can facilitate the development of an improved evidence base for guiding the
choice of model resolution and process complexity, helping us address the challenges of section 2 through
the diagnostic evaluation step depicted in Figure 4. Importantly, large gradients of ecosystems provide a
diversity of data for confronting models and defining the range over which they are suitable. Synthesis
activities can also encompass systematic model comparisons, whereby model structures and integration of
different methods can be better scrutinized [Schmolke et al., 2010]. Activities such as model intercomparison
projects (MIPs) and ensemble model predictions can identify model approaches that are most suited to par-
ticular application contexts [Trolle et al., 2014].

A specific example, that motivated the development of the framework in Figure 4, is the grass-roots Global
Lake Ecological Observatory Network (GLEON), whose scientists collect and share real-time sensor data
from a variety of lacustrine environments from around the world [Hanson, 2007; Hamilton et al., 2014]. Other
networks such as the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI),
and the Critical Zone Observatory (CZO), have similarly fostered the community-driven development of
software infrastructure, collation of diverse data sets and science workshops. Network science provides an
opportunity for all to participate provided there is a common ethos of cooperation, collaboration, and trust.
The curated large-scale data sets within these networks have unquestioned research value [Vogel et al.,

Figure 5. Overview of an aquatic system observatory showing the interrelationships between observations, predictions, and management.
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2015]. By individuals and organizations committing to providing data openly, researchers can (a) see their
data more thoroughly interrogated and (b) contribute to regionalization and synthesis efforts. Within the
hydrological sciences, this approach has been established through initiatives such as the international
Model Parameter Estimation Experiment [MOPEX, Duan et al., 2006] and synthesis activities where the
power of comparative analysis has been demonstrated [e.g., Bl€oschl et al., 2013]. Examples are emerging of
the application of GLEON data to conduct comparative studies relevant to the challenges identified in this
paper [Klug et al., 2012; Read et al., 2012; Solomon et al., 2013], but these can be better facilitated through
standards defining water quality attributes (particularly beyond physicochemical properties) and efforts to
create data products. Ultimately, products developed within these communities must meet their diverse
needs of modelers by striking a balance between supporting standardization versus innovation.

5.2. Shared Libraries of Models, Tools, and Parameter Values
There are many open source codes that are now used for water quality and aquatic ecosystem prediction
(e.g., HYPE, SWAT, PIHM, QUAL-2K, MODFLOW, FABM, DATM, DELFT3D, MOHID, AED etc.). Open source
code exposes model algorithms, encourages trust, and provides inspiration for the next generation of mod-
els. There is a general view that active communities collaborating on code development and sharing experi-
ences speed up the development and testing process by involving more people and not reinventing
established algorithms [Mooij et al., 2010], and the transparency of code provides a mechanism for quality
assurance and facilitates review of scientific work. Beyond simply being more efficient, many of the ques-
tions being asked of models are highly complex, and developments require a large and diverse group of
collaborators from multiple institutions. Open source code development and online version management
now routinely support multiple remote contributors and provide accounting for attribution.

In order to accommodate a diversity of applications, research questions, and address issues of model com-
plexity identified in section 2, the proposed framework further advocates for the creation of libraries of flexible
model objects [e.g., Trolle et al., 2012; Bruggeman and Bolding, 2014; Mooij et al., 2014], that can work with
model-learning workflows. The objects might include a spectrum of modules from microbial function to phys-
ical processes, allowing users to experiment with model structure, rather simply ‘‘rolling out’’ standard model
configurations. Such libraries can archive alternate algorithms for empirically observed processes across a
diversity of sites within science networks, thereby underpinning model adaptation approaches [Recknagel
et al., 2008b]. In parallel to flexibility in process configurations, spatial dimensionality and system compart-
mentalization will increasingly be simulated via a diverse array of physical drivers (e.g., hillslope model, wet-
land/floodplain model, river model, lake model, estuary model) that need to link to biogeochemical and
ecological reaction libraries, and this requires standards and a common vocabulary within such a collection.

To accelerate the ability of the model development community to develop learning frameworks, as outlined in
Figure 4, an overarching blueprint is required that can link diverse model libraries, data assimilation frameworks,
and model automation in a manner that can accommodate the diversity of model form. The need for state updat-
ing in particular requires a high level of interaction with models that can be difficult to retrofit into legacy codes.
Furthermore, there is a need for common model typologies and interfaces, shared semantics, and flexible analytical
frameworks, with general progress in this area advanced by initiatives such as OpenMI. New workflows for integrat-
ing software frameworks for data assimilation within observatory systems are also recently emerging. For aquatic
ecosystem prediction, further advances require investment in the development of community-endorsed parameter
libraries, allowing modelers to easily gain access to parameter prior distributions for model uncertainty assessment.
Finally, approaches to guide the development of community-endorsed reanalysis products are required, since this
has received limited attention in the context of aquatic ecosystem prediction, yet have the potential to provide the
best quality information to researchers and decision-makers.

Underpinning our desire for sharing model code is the ability of modelers to accurately report on and assess
model performance. Decisions about validation, however, have historically been largely ad hoc and past
meta-analyses on aquatic biogeochemical models accuracy have highlighted that prediction skill has barely
advanced over the past several decades [Arhonditsis et al., 2006; Robson, 2014a]. This highlights the need for
agreement on improved assessment approaches as a means to better identify when a model is appropriate
for its intended use. Standards in reporting can serve to increase reproducibility and predictive capabilities
[Jakeman et al., 2006; Robson et al., 2008], and as we seek to assess alternate model approaches against a
larger number of data streams there is a need to devise general strategies to report on model predictions.
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As in other environmental modeling communities, widely agreed upon assessment protocols for model per-
formance that encourage a more rigorous validation of models will serve to create standards and a com-
mon vocabulary that will ultimately support comparisons and synthesis between model applications
[Harmel et al., 2014]. As identified in section 4.2 and the ‘‘model evolution loop’’ in Figure 4, extending
assessment to also include metrics and characteristic signatures relevant to ecosystem function is critical,
and moving beyond typically computed error statistics remains an area that requires consensus on the
approaches that are most appropriate for different motivating questions and levels of model complexity.

6. Conclusions

In the face of increasing anthropogenic stressors, scientists can use aquatic ecosystem models to identify sus-
tainable solutions for managing water resources. Despite the diversity of models available, in many contexts it
remains difficult to holistically assess the impacts of multiple stressors and/or the benefits of management
interventions. Historically, the focus has been on developing models for exploring nutrient cycling, eutrophica-
tion processes, and other drivers of water quality degradation. Whilst great advances have been made in
broadening the scope of simulations, expanding process complexity and developing integrated model pack-
ages to support management needs, we have identified areas where advances in models are required to pro-
vide more holistic predictions. Furthermore, except for a few examples, it is unclear how well they capture
system-level properties such as resilience and other emergent behaviors, yet it is essential we have confidence
in the ability of models to reproduce these features if they are to be used to plan rehabilitation and restora-
tion, and support assessments of how climate change will impact upon systems.

The expanding repositories of data now being collected through distributed sensor networks, in addition to
advances in model assessment and calibration approaches, has created new opportunities for how we can
undertake prediction. An essential aim of the paper has been to bring together ideas from both the hydro-
logical and ecological literature and present a framework for model learning within observatory systems
that pays attention to the varied motivations for modeling whilst also being cognizant of technical
limitations. An essential component of the framework is the development of flexible model libraries, rather
than the adoption of a single model of choice. Carefully constructed model libraries can allow us to identify
levels of process complexity and scale that are adequate to capture trends in observations. They also offer
potential for data-driven algorithms or models to be integrated with process-based simulations, thereby
bridging bottom-up and top-down lines of enquiry. The scale and transdisciplinary nature of the prediction
challenge requires extensive collaboration and we therefore outline network science initiatives as a means
to (a) lead to the develop of community-driven open-source software and application workflows, and (b)
undertake synthesis activities and develop consensus on theoretical metrics that may be used to guide
model assessment and adaptation.

Improved prediction will help us both explore theory and support decision-making. However, in order for
them to support shifts in policy and communicate system health, we need to generate meaningful metrics
of system health, and communicate the level of uncertainty in our predictions. Further effort is required to
identify model proxies that can be used to summarize how ecosystem service provision varies in response
to anthropogenic change. Ultimately, integrating model predictions within observatory systems offers the
advantage of increasing the worth of data to management agencies and encourages a tight feedback
between observation, understanding, and on-the-ground actions.
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