21 research outputs found
Intrinsic Insulating Ground State in Transition Metal Dichalcogenide TiSe2
The transition metal dichalcogenide TiSe has received significant
research attention over the past four decades. Different studies have presented
ways to suppress the 200~K charge density wave transition, vary low temperature
resistivity by several orders of magnitude, and stabilize magnetism or
superconductivity. Here we give the results of a new synthesis technique
whereby samples were grown in a high pressure environment with up to 180~bar of
argon gas. Above 100~K, properties are nearly unchanged from previous reports,
but a hysteretic resistance region that begins around 80~K, accompanied by
insulating low temperature behavior, is distinct from anything previously
observed. An accompanying decrease in carrier concentration is seen in Hall
effect measurements, and photoemission data show a removal of an electron
pocket from the Fermi surface in an insulating sample. We conclude that high
inert gas pressure synthesis accesses an underlying nonmetallic ground state in
a material long speculated to be an excitonic insulator.Comment: 11 pages, 7 figure
Excited states at interfaces of a metal-supported ultrathin oxide film
We report layer-resolved measurements of the unoccupied electronic structure of ultrathin MgO films grown on Ag(001). The metal-induced gap states at the metal/oxide interface, the oxide band gap, and a surface core exciton involving an image-potential state of the vacuum are revealed through resonant Auger spectroscopy of the MgKL23L23 Auger transition. Our results demonstrate how to obtain new insights on empty states at interfaces of metal-supported ultrathin oxide films
Short-range phase coherence and origin of the charge density wave
The impact of variable Ti self-doping on the 1T−TiSe2 charge density wave (CDW) is studied by scanning tunneling microscopy. Supported by density functional theory, we show that agglomeration of intercalated-Ti atoms acts as preferential nucleation centers for the CDW that breaks up in phase-shifted CDW domains whose size directly depends on the intercalated-Ti concentration and which are separated by atomically sharp phase boundaries. The close relationship between the diminution of the CDW domain size and the disappearance of the anomalous peak in the temperature-dependent resistivity allows to draw a coherent picture of the 1T−TiSe2 CDW phase transition and its relation to excitons
Local resilience of the 1T\text{\ensuremath{-}}{\mathrm{TiSe}}_{2} charge density wave to Ti self-doping
In Ti-intercalated self-doped 1T−TiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the long-range phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the 1T−TiSe2 CDW reveals an entangled mechanism between CDW, periodic lattice distortion, and induced nonequivalent defects
Three-dimensional momentum-resolved electronic structure of A combined soft-x-ray photoemission and density functional theory study
1T−TiSe2 is a quasi-two-dimensional transition metal dichalcogenide, which exhibits a charge density wave transition at a critical temperature of ∼200 K as well as low- temperature superconductivity induced by pressure or intercalation. The electronic energy dispersion measured by soft x-ray angle-resolved photoemission is not only momentum resolved parallel to the surface but also perpendicular to it. Experiments are compared to density functional theory based band structure calculations using different exchange-correlation functionals. The results reveal the importance of including spin-orbit coupling for a good description of the experimental bands. Compared to calculations within the local density approximation, the use of the modified Becke-Johnson (mBJ) exchange functional leads to a band structure that does not need an artificial downwards shift of the valence band to fit the experiment. The mBJ functional thus clearly appears as the most adapted functional for the theoretical description of the 1T−TiSe2 band structure within the DFT framework
Tuning the metal-insulator transition in heterostructures via Fermi surface instability and spin fluctuations
We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF∼(1/4,1/4,1/4±δ)
Direct determination of mode-projected electron-phonon coupling in the time-domain
Ultrafast spectroscopies have become an important tool for elucidating the
microscopic description and dynamical properties of quantum materials. In
particular, by tracking the dynamics of non-thermal electrons, a material's
dominant scattering processes -- and thus the many-body interactions between
electrons and collective excitations -- can be revealed. Here we present a new
method for extracting the electron-phonon coupling strength in the time domain,
by means of time and angle-resolved photoemission spectroscopy (TR-ARPES). This
method is demonstrated in graphite, where we investigate the dynamics of
photo-injected electrons at the K point, detecting quantized energy-loss
processes that correspond to the emission of strongly-coupled optical phonons.
We show that the observed characteristic timescale for spectral-weight-transfer
mediated by phonon-scattering processes allows for the direct quantitative
extraction of electron-phonon matrix elements, for specific modes, and with
unprecedented sensitivity.Comment: 19 pages, 4 figure
Selective probing of hidden spin-polarized states in inversion-symmetric bulk
Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2. It is found that the measured spin polarization can be reversed by changing the handedness of incident circularly polarized light. Calculations based on a three-step model of photoemission show that the valley and layer-locked spin- polarized electronic states can be selectively addressed by circularly polarized light, therefore providing a novel route to probe these hidden spin-polarized states in inversion-symmetric systems as predicted by Zhang et al. [Nat. Phys. 10, 387 (2014).]