7 research outputs found

    Emerging endocrine disruptors in two edible fish from the Persian Gulf: Occurrence, congener profile, and human health risk assessment

    No full text
    The occurrence of endocrine disrupting chemicals (EDCs) has been determined in two widely consumed fish species from Persian Gulf i.e., Epinephelus coioides and Platycephalus indicus by applying a validated analytical for the simultaneous detection of fourteen EDCs. The concentrations of all detected EDCs were greater in the liver than in the muscle (except for bisphenol A in P. indicus), suggesting a prolonged exposure of the fishes to these pollutants in the Persian Gulf. Specifically, the results showed that di (2-ethylhexyl) phthalate (DEHP) was the compound detected most frequently and at the highest concentration in both species. DEHP levels in ranged from 6.68 to 297.48 ?g g-dw?1 and from 13.32 to 350.52 ?g g-dw?1, in muscle and in liver, respectively. A risk assessment study was conducted, and demonstrated that consuming two fish based- meals per week may result in a moderate risk especially for vulnerable population groups

    Zoning of heavy metal concentrations including Cd, Pb and As in agricultural soils of Aghili plain, Khuzestan province, Iran

    No full text
    Soil is an important component of life cycle affecting agriculture and food crops. Quality of soil resources is defined according to their potential impact on human health by exposure of harmful constituents through the food chain. Heavy metals especially As, Pb and Cd are among the most hazardous elements which could be released to the top soil through different wastewaters, fertilizers, herbicides and etc. In this research Aghili plain in Khuzestan province, Iran was selected as a total of 54 samples were prepared based on a systematic gridding procedure. Selected heavy metals concentrations were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and then zoning was performed using kriging method. Pollution level was assessed through single factor indices and pollution load index. A separate map dealing with each heavy metal was prepared to present the distribution of heavy metal in Aghili plain. In all samples the heavy metals concentrations were followed the bellow trend: Pb>As>Cd. Furthermore, based on the PLI, all stations were categorized as moderately to highly polluted sites (1<PLI<4). Due to toxic effects of mentioned heavy metal for human health, furture monitoring, some control measures and remedial actions should be undertaken in the study area

    Physical and chemical degradation of littered personal protective equipment (PPE) under simulated environmental conditions

    No full text
    Investigations of the physicochemical degradation of personal protective equipment (PPE) under controlled environmental conditions are largely lacking. Here the chemical and physical changes of face masks and gloves (recovered from the marine environment) were evaluated after exposure time up to 60 days of simulated environmental conditions. The results suggested that the polymer backbone of PPE suffers typical changes induced by sun exposure. Changes in the intensity of diffraction peaks indicated shifts in the crystallinity of PPE, possibly altering their thermal behavior. Signs of physical degradation in PPE, such as ruptures, and rough surfaces, which exacerbated over time were also detected. Additionally, signals of some elements of concern, such as Cu and Mo, and elements typically found in seawater were detected. The results of this study allowed us to better understand the degradation of typical PPE items in the marine environment, ultimately resulting in the release of microplastics and chemical contaminants

    Reductions of Plastic Microbeads from Personal Care Products in Wastewater Effluents and Lake Waters Following Regulatory Actions

    No full text
    Plastic microbeads were widely used as exfoliants in personal care products (PCPs; e.g., hand/body washes) in North America, but restrictions were imposed on their use in PCPs in the U.S. (2017) and Canada (2018). We provide the first assessment of whether restrictions are effectively reducing microbeads entering surface waters. We examined their abundance, character, and trends in wastewater treatment plant (WWTP) effluents in Toronto, Canada, from 2016 to 2019, and in adjacent Lake Ontario surface waters (2015 and 2018), encompassing the period before and after the bans. Microbeads isolated from PCPs purchased in 2015 provided a visual morphological key with “irregular” and “spherical” microbead categories. Median concentrations of irregular microbeads, composed of polyethylene plastic, declined by up to 86% in WWTP effluents from 8.4 to 14.3 particles/m3 before to 2.0–2.2 particles/m3 after the bans, while those of spherical microbeads, predominantly synthetic/polyethylene wax, ranged within 0.5–2.3 particles/m3 and did not differ before and after the bans since, as nonplastic, they were not regulated. Similarly, amounts of irregular microbeads declined relative to spherical microbeads in Lake Ontario, indicating that product changes may be influencing observations in lake waters. The results suggest that the Canadian and U.S. restrictions effectively and rapidly reduced plastic microbeads entering waters via WWTPs

    Reductions of Plastic Microbeads from Personal Care Products in Wastewater Effluents and Lake Waters Following Regulatory Actions

    No full text
    Plastic microbeads were widely used as exfoliants in personal care products (PCPs; e.g., hand/body washes) in North America, but restrictions were imposed on their use in PCPs in the U.S. (2017) and Canada (2018). We provide the first assessment of whether restrictions are effectively reducing microbeads entering surface waters. We examined their abundance, character, and trends in wastewater treatment plant (WWTP) effluents in Toronto, Canada, from 2016 to 2019, and in adjacent Lake Ontario surface waters (2015 and 2018), encompassing the period before and after the bans. Microbeads isolated from PCPs purchased in 2015 provided a visual morphological key with “irregular” and “spherical” microbead categories. Median concentrations of irregular microbeads, composed of polyethylene plastic, declined by up to 86% in WWTP effluents from 8.4 to 14.3 particles/m3 before to 2.0–2.2 particles/m3 after the bans, while those of spherical microbeads, predominantly synthetic/polyethylene wax, ranged within 0.5–2.3 particles/m3 and did not differ before and after the bans since, as nonplastic, they were not regulated. Similarly, amounts of irregular microbeads declined relative to spherical microbeads in Lake Ontario, indicating that product changes may be influencing observations in lake waters. The results suggest that the Canadian and U.S. restrictions effectively and rapidly reduced plastic microbeads entering waters via WWTPs
    corecore