3,069 research outputs found

    Bandwidth Efficient Root Nyquist Pulses for Optical Intensity Channels

    Get PDF
    Indoor diffuse optical intensity channels are bandwidth constrained due to the multiple reflected paths between the transmitter and the receiver which cause considerable inter-symbol interference (ISI). The transmitted signal amplitude is inherently non-negative, being a light intensity signal. All optical intensity root Nyquist pulses are time-limited to a single symbol interval which eliminates the possibility of finding bandlimited root Nyquist pulses. However, potential exists to design bandwidth efficient pulses. This paper investigates the modified hermite polynomial functions and prolate spheroidal wave functions as candidate waveforms for designing spectrally efficient optical pulses. These functions yield orthogonal pulses which have constant pulse duration irrespective of the order of the function, making them ideal for designing an ISI free pulse. Simulation results comparing the two pulses and challenges pertaining to their design and implementation are discussed

    An Extended Huckel Theory based Atomistic Model for Graphene Nanoelectronics

    Full text link
    An atomistic model based on the spin-restricted extended Huckel theory (EHT) is presented for simulating electronic structure and I-V characteristics of graphene devices. The model is applied to zigzag and armchair graphene nano-ribbons (GNR) with and without hydrogen passivation, as well as for bilayer graphene. Further calculations are presented for electric fields in the nano-ribbon width direction and in the bilayer direction to show electronic structure modification. Finally, the EHT Hamiltonian and NEGF (Nonequilibrium Green's function) formalism are used for a paramagnetic zigzag GNR to show 2e2/h quantum conductance.Comment: 5 pages, 8 figure

    Mechanism of Cyanide Toxicity and Efficacy of its Antidotes

    Get PDF
    This paper attempts to review the various antidotes available for countering cyanide threat in the light of the toxicity associated with it. It also critically evaluates the drawbacks and advantages of these antidotes for their therapeutic and/or prophylactic utility. The physico-chemical properties of hydrogen cyanide which make it a chemical warfare agent have also been highlighted. In an attempt to make the complex chemical and biological processes understandable, the chemical structures of the antidotes have been included and simple mechanistic pathways have been used to show the role of antidotes in activating the inhibited enzymes

    Stability and Aggregation Kinetics of Titania Nanomaterials under Environmentally Realistic Conditions.

    Get PDF
    Nanoparticle morphology is expected to play a significant role in the stability, aggregation behaviour and ultimate fate of engineered nanomaterials in natural aquatic environments. The aggregation kinetics of ellipsoidal and spherical titanium dioxide (TiO2) nanoparticles (NPs) under different surfactant loadings, pH values and ionic strengths were investigated in this study. The stability results revealed that alteration of surface charge was the stability determining factor. Among five different surfactants investigated, sodium citrate and Suwannee river fulvic acid (SRFA) were the most effective stabilizers. It was observed that both types of NPs were more stable in monovalent salts (NaCl and NaNO3) as compared with divalent salts (Ca(NO3)2 and CaCl2). The aggregation of spherical TiO2 NPs demonstrated a strong dependency on the ionic strength regardless of the presence of mono or divalent salts; while the ellipsoids exhibited a lower dependency on the ionic strength but was more stable. This work acts as a benchmark study towards understanding the ultimate fate of stabilized NPs in natural environments that are rich in Ca(CO3)2, NaNO3, NaCl and CaCl2 along with natural organic matters

    Augmenting computer networks

    Get PDF
    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps
    corecore