4,141 research outputs found

    Long-time limit for a class of quadratic infinite-dimensional dynamical systems inspired by models of viscoelastic fluids

    Get PDF
    We study a class of quadratic, infinite-dimensional dynamical systems, inspired by models for viscoelastic fluids. We prove that these equations define a semi-flow on the cone of positive, essentially bounded functions. As time tends to infinity, the solutions tend to an equilibrium manifold in the L2L^2-norm. Convergence to a particular function on the equilibrium manifold is only proved under additional assumptions. We discuss several possible generalizations

    Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

    Full text link
    In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree nn in n2n^2 variables such that any homogeneous depth 4 arithmetic circuit computing it must have size nΩ(log⁥log⁥n)n^{\Omega(\log \log n)}. Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which showed superpolynomial lower bounds for multilinear depth 4 circuits). Several of these results in fact showed exponential lower bounds. The main ingredient in our proof is a new complexity measure of {\it bounded support} shifted partial derivatives. This measure allows us to prove exponential lower bounds for homogeneous depth 4 circuits where all the monomials computed at the bottom layer have {\it bounded support} (but possibly unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et al [GKKS13, KSS13]. This new lower bound combined with a careful "random restriction" procedure (that transforms general depth 4 homogeneous circuits to depth 4 circuits with bounded support) gives us our final result

    Deliberate use of placebos in clinical practice: what we really know

    Get PDF
    Increasingly a focus of research as well as media reports and online forums, the use of placebos in clinical medicine extends beyond sugar pills and saline injections. Physician surveys conducted in various countries invariably report that placebos are routinely used clinically, impure placebos more frequently than the pure ones, and that physicians consider them to be of legitimate therapeutic value. Inconsistent study methodologies and physician conceptualisations of placebos may complicate the interpretation of survey data, but hardly negate the valuable insights these research findings provide. Because impure placebos are often not recognised as such by practitioners, they remain at the fringe of many placebo-related debates, hence quietly absent from discussions concerning policy and regulation. The apparent popularity of impure placebos used in clinical practice thus presents unresolved ethical concerns and should direct future discussion and research

    New Approximability Results for the Robust k-Median Problem

    Full text link
    We consider a robust variant of the classical kk-median problem, introduced by Anthony et al. \cite{AnthonyGGN10}. In the \emph{Robust kk-Median problem}, we are given an nn-vertex metric space (V,d)(V,d) and mm client sets { Si⊆V }i=1m\set{S_i \subseteq V}_{i=1}^m. The objective is to open a set F⊆VF \subseteq V of kk facilities such that the worst case connection cost over all client sets is minimized; in other words, minimize max⁥i∑v∈Sid(F,v)\max_{i} \sum_{v \in S_i} d(F,v). Anthony et al.\ showed an O(log⁥m)O(\log m) approximation algorithm for any metric and APX-hardness even in the case of uniform metric. In this paper, we show that their algorithm is nearly tight by providing Ω(log⁥m/log⁥log⁥m)\Omega(\log m/ \log \log m) approximation hardness, unless NP⊆⋂ή>0DTIME(2nÎŽ){\sf NP} \subseteq \bigcap_{\delta >0} {\sf DTIME}(2^{n^{\delta}}). This hardness result holds even for uniform and line metrics. To our knowledge, this is one of the rare cases in which a problem on a line metric is hard to approximate to within logarithmic factor. We complement the hardness result by an experimental evaluation of different heuristics that shows that very simple heuristics achieve good approximations for realistic classes of instances.Comment: 19 page

    Simple extractors via constructions of cryptographic pseudo-random generators

    Full text link
    Trevisan has shown that constructions of pseudo-random generators from hard functions (the Nisan-Wigderson approach) also produce extractors. We show that constructions of pseudo-random generators from one-way permutations (the Blum-Micali-Yao approach) can be used for building extractors as well. Using this new technique we build extractors that do not use designs and polynomial-based error-correcting codes and that are very simple and efficient. For example, one extractor produces each output bit separately in O(log⁥2n)O(\log^2 n) time. These extractors work for weak sources with min entropy λn\lambda n, for arbitrary constant λ>0\lambda > 0, have seed length O(log⁥2n)O(\log^2 n), and their output length is ≈nλ/3\approx n^{\lambda/3}.Comment: 21 pages, an extended abstract will appear in Proc. ICALP 2005; small corrections, some comments and references adde

    Other‐Sacrificing Options

    Get PDF
    I argue that you can be permitted to discount the interests of your adversaries even though doing so would be impartially suboptimal. This means that, in addition to the kinds of moral options that the literature traditionally recognises, there exist what I call other-sacrificing options. I explore the idea that you cannot discount the interests of your adversaries as much as you can favour the interests of your intimates; if this is correct, then there is an asymmetry between negative partiality toward your adversaries and positive partiality toward your intimates

    On the NP-Hardness of Approximating Ordering Constraint Satisfaction Problems

    Full text link
    We show improved NP-hardness of approximating Ordering Constraint Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Betweenness, we prove inapproximability of 14/15+Ï”14/15+\epsilon and 1/2+Ï”1/2+\epsilon. An OCSP is said to be approximation resistant if it is hard to approximate better than taking a uniformly random ordering. We prove that the Maximum Non-Betweenness Problem is approximation resistant and that there are width-mm approximation-resistant OCSPs accepting only a fraction 1/(m/2)!1 / (m/2)! of assignments. These results provide the first examples of approximation-resistant OCSPs subject only to P ≠\neq \NP

    Long-range entanglement generation via frequent measurements

    Full text link
    A method is introduced whereby two non-interacting quantum subsystems, that each interact with a third subsystem, are entangled via repeated projective measurements of the state of the third subsystem. A variety of physical examples are presented. The method can be used to establish long range entanglement between distant parties in one parallel measurement step, thus obviating the need for entanglement swapping.Comment: 7 pages, incl. 2 figures. v2: added a few small clarifications and a referenc

    Counting dependent and independent strings

    Full text link
    The paper gives estimations for the sizes of the the following sets: (1) the set of strings that have a given dependency with a fixed string, (2) the set of strings that are pairwise \alpha independent, (3) the set of strings that are mutually \alpha independent. The relevant definitions are as follows: C(x) is the Kolmogorov complexity of the string x. A string y has \alpha -dependency with a string x if C(y) - C(y|x) \geq \alpha. A set of strings {x_1, \ldots, x_t} is pairwise \alpha-independent if for all i different from j, C(x_i) - C(x_i | x_j) \leq \alpha. A tuple of strings (x_1, \ldots, x_t) is mutually \alpha-independent if C(x_{\pi(1)} \ldots x_{\pi(t)}) \geq C(x_1) + \ldots + C(x_t) - \alpha, for every permutation \pi of [t]
    • 

    corecore