4,558 research outputs found

    A psychometric evaluation of the PedsQL™ Family Impact Module in parents of children with sickle cell disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caring for a child with a chronic condition, such as sickle cell disease, can have a significant impact on parents and families. In order to provide comprehensive care and support to these families, psychometrically sound instruments are needed as an initial step in measuring the impact of chronic diseases on parents and families. We sought to evaluate the psychometric properties of the PedsQL™ Family Impact Module in populations of children with and without sickle cell disease. In addition, we sought to determine the correlation between parent's well being and their proxy report of their child's health-related quality of life (HRQL).</p> <p>Methods</p> <p>We conducted a cross-sectional study of parents of children with and without sickle cell disease who presented to an urban hospital-based sickle cell disease clinic and an urban primary care clinic. We assessed the HRQL and family functioning of both groups of parents utilizing the PedsQL™ Family Impact Module. The reliability, validity and factor structure of the instrument were determined and scores from the instrument were correlated with scores from parent-proxy report of their child's HRQL using the PedsQL™ 4.0 Generic Core Scales.</p> <p>Results</p> <p>Parents of 170 children completed the module (97 parents of children with sickle cell disease and 73 parents of children without sickle cell disease). The Family Impact Module had high ceiling effects but was reliable (Cronbach's alpha > 0.80 in all scales). The empirical factor structure was generally consistent with the theoretical factor structure and supported construct validity. The Family Impact Module discriminated between parents of children with severe sickle cell disease from parents of children with mild disease or no disease in the areas of communication and worry. There were no significant differences across any of the subscales between parents of children with mild sickle cell disease and those with no disease. Parents with higher scores, representing better HRQL and family functioning, generally reported higher HRQL scores for their children.</p> <p>Conclusion</p> <p>The PedsQL™ Family Impact module was reliable, however it displayed large ceiling effects and did not discriminate well between parents of children with and without sickle cell disease. Future research to evaluate the psychometric properties of the Family Impact Module for parents of healthy children may be helpful.</p

    Potassium administration increases and potassium deprivation reduces urinary calcium excretion in healthy adults

    Get PDF
    Potassium administration increases and potassium deprivation reduces urinary calcium excretion in healthy adults. This study was undertaken to evaluate the effects of dietary K intake, independent of whether the accompanying anion is Cl- or HCO3-, on urinary Ca excretion in healthy adults. The effects of KCl, KHCO3, NaCl and NaHCO3 supplements, 90 mmol/day for four days, were compared in ten subjects fed normal constant diets. Using synthetic diets, the effects of dietary KCl-deprivation for five days followed by recovery were assessed in four subjects and of KHCO3-deprivation for five days followed by recovery were assessed in four subjects. On the fourth day of salt administration, daily urinary Ca excretion and fasting UCaV/GFR were lower during the administration of KCl than during NaCl supplements (Δ = -1.11 ± 0.28 SEM mmol/day; P < 0.005 and -0.0077 ± 0.0022 mmol/liter GFR; P < 0.01), and lower during KHCO3 than during control (-1.26 ± 0.29 mmol/day; P < 0.005 and -0.0069 ± 0.0019 mmol/liter GFR; P = 0.005). Both dietary KCl and KHCO3 deprivation (mean reduction in dietary K intake -67 ± 8 mmol/day) were accompanied by an increase in daily urinary Ca excretion and fasting UCaV/GFR that averaged on the fifth day +1.31 ± 0.25 mmol/day (P < 0.005) and +0.0069 ± 0.0012 mmol/liter GFR (P < 0.005) above control. Both daily urinary Ca excretion and fasting UCaV/GFR returned toward or to control at the end of recovery. These observations indicate that: 1) KHCO3 decreases fasting and 24-hour urinary Ca excretion; 2) KCl nor NaHCO3, unlike NaCl, do not increase fasting or 24-hour Ca excretion and 3) K deprivation increases both fasting and 24-hour urinary Ca excretion whether the accompanying anion is Cl- or HCO3-. The mechanisms for this effect of K may be mediated by: 1) alterations in ECF volume, since transient increases in urinary Na and CI excretion and weight loss accompanied KCl or KHCO3 administration, while persistent reductions in urinary Na and Cl excretion and a trend for weight gain accompanied K deprivation; 2) K mediated alterations in renal tubular phosphate transport and renal synthesis of 1, 25-(OH)2-vitamin D, since KCl or KHCO3 administration tended to be accompanied by a rise in fasting serum PO4 and TmPO4 and a fall in fasting UPO4 V/GFR, a fall in serum 1,25-(OH)2-D and a decrease in fasting UCaV/GFR, while dietary KCl or KHCO3 deprivation were accompanied by a reverse sequence

    Depleted Energy Charge and Increased Pulmonary Endothelial Permeability Induced by Mitochondrial Complex I inhibition are Mitigated by Coenzyme Q\u3csub\u3e1\u3c/sub\u3e in the Isolated Perfused Rat Lung

    Get PDF
    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66±0.46 (SEM) to 2.34±0.15 µmol·g−1 dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36±1.64 to 38.62±3.14 µmol·15 min−1 perfusion·g−1 dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043±0.010 to 0.156±0.037 ml·min−1·cm H2O−1·g−1 dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency

    Existence of global strong solutions to a beam-fluid interaction system

    Get PDF
    We study an unsteady non linear fluid-structure interaction problem which is a simplified model to describe blood flow through viscoleastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier-Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid-structure interface and the action-reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain in particular that contact between the viscoleastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, but also of existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure

    Detection of Helicobacter pylori in bile of cats

    Get PDF
    Lymphocytic cholangitis (LC) in cats is a biliary disease of unknown etiology. Helicobacter spp. were recently implicated in human primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). Because of the similarities between PSC/PBC with LC, we hypothesized that Helicobacter spp. are involved in feline LC. A PCR with Helicobacter genus-specific 16S rRNA primers was performed on DNA isolated from feline bile samples. Four of the 15 (26%) LC samples were positive, whereas only 8/51 (16%) of non-LC samples were PCR positive (p=0.44). Sequence analysis of the amplicons revealed a 100% identity with the Helicobacter pylori specific DNA fragments. Our data suggest an etiological role of H. pylori in feline LC and that cats are a potential zoonotic reservoir

    Effects of Grassland Management Practices on Ant Functional Groups in Central North America

    Get PDF
    Tallgrass prairies of central North America have experienced disturbances including fire and grazing for millennia. Little is known about the effects of these disturbances on prairie ants, even though ants are thought to play major roles in ecosystem maintenance. We implemented three management treatments on remnant and restored grassland tracts in the central U.S., and compared the effects of treatment on abundance of ant functional groups. Management treatments were: (1) patch-burn graze—rotational burning of three spatially distinct patches within a fenced tract, and growing-season cattle grazing; (2) graze-and-burn—burning entire tract every 3 years, and growing-season cattle grazing, and (3) burn-only—burning entire tract every 3 years, but no cattle grazing. Ant species were classified into one of four functional groups. Opportunist ants and the dominant ant species, Formica montana, were more abundant in burn-only tracts than tracts managed with either of the grazing treatments. Generalists were more abundant in graze-and-burn tracts than in burn-only tracts. Abundance of F. montana was negatively associated with pre-treatment time since fire, whereas generalist ant abundance was positively associated. F. montanawere more abundant in restored tracts than remnants, whereas the opposite was true for subdominants and opportunists. In summary, abundance of the dominant F. montana increased in response to intense disturbances that were followed by quick recovery of plant biomass. Generalist ant abundance decreased in response to those disturbances, which we attribute to the effects of competitive dominance of F. montana upon the generalists

    Genetic components of grey cattle in Estonia as revealed by microsatellite analysis using two Bayesian clustering methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It was recently postulated that a few individual grey cattle still found in Estonia might be a relict of the old native cattle stock. Genotypes at 17 microsatellite loci from a total of 243 cattle from North European breeds and 11 grey cattle in Estonia were used in an attempt to clarify the genetic composition of the grey cattle.</p> <p>Findings</p> <p>We characterize the genetic components of 11 examples of the grey cattle in Estonia at the population and individual levels. Our results show that the grey cattle in Estonia are most genetically similar to the Holstein-Friesian breed and secondarily to the Estonian Red cattle.</p> <p>Conclusions</p> <p>Both Bayesian approaches gave similar results in terms of the identification of numbers of clusters and the estimation of proportions of genetic components. This study suggested that the Estonian grey cattle included in the analysis are a genetic composite resulting from cross-breeding of European dairy breeds.</p
    corecore