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ABSTRACT 25 

Developmental bisphenol A (BPA) exposure is associated with adverse behavioral 26 

effects, although underlying modes of action remain unclear. Because BPA is a 27 

suspected xenoestrogen, the objective was to identify sex-based changes in adult 28 

zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 µM) or one of 29 

two control compounds (0.1µM 17β-estradiol [E2], and 0.1 µM GSK4716, a synthetic 30 

estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each 31 

arena held one fish unable to detect the presence of the other fish. A mirror was 32 

inserted at one end of each arena; baseline activity levels were determined without 33 

mirror. Arenas were divided into 3, computer-generated zones to represent different 34 

distances from mirror image. Circadian rhythm patterns were evaluated at 1-3 (= AM) 35 

and 5-8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored 36 

by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and 37 

number of attacks on mirror image were quantified. E2, GSK4716, and all BPA 38 

treatments dampened male activity and altered male circadian activity patterns; there 39 

was no marked effect on female activity. BPA induced non-monotonic effects (response 40 

curve changes direction within range of concentrations examined) on male % time at 41 

mirror only in AM. All treatments produced increased % time at the mirror during PM. 42 

Male attacks on the mirror were reduced by BPA exposure only during AM. There were 43 

sex-specific effects of developmental BPA on social interactions and time-of-day of 44 

observation affected results. 45 

 46 
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INTRODUCTION 52 

 Bisphenol A (BPA) is produced primarily for the production of polycarbonate 53 

plastics used in food and drink packaging, compact discs, impact-resistant safety 54 

equipment, and medical devices, as well as epoxy resins that are used as lacquers to 55 

coat metal food cans, bottle tops, and water supply pipes. In addition, BPA is used to 56 

synthesize polyvinyl chloride (PVC), some dental sealants and composites, and thermal 57 

printing paper used for cash register receipts (Noonan et al. 2011; Biedermann et al. 58 

2010; Welshons et al. 2006).  59 

The primary source of human exposure to BPA is through food and beverage 60 

containers from which BPA has leached into the product. In addition, BPA was also  61 

detected in dairy products, fruits and vegetables, meat and fish, cereals, and drinking 62 

water, although it is not clear if these levels are hazardous to health (Liao and Kannan 63 

2013; Cao et al. 2011; Wei et al. 2011; Thomson and Grounds 2005; Fent 2000; 64 

Theobald et al. 2000). The 2003-2004 National Health and Nutrition Examination 65 

Survey (NHANES III) conducted by the Center for Disease Control and Prevention 66 

found detectable levels of BPA in 93% of individuals 6 years and older (Calafat et al. 67 

2008); no associations with health effects were discussed. However, social cognition, 68 

communication and awareness were poorer among children ages 7-9 prenatally 69 

exposed to levels of BPA similar to those found in the NHANES III study population 70 

(Miodovnik et al. 2011). Pre- and post-natal BPA levels were also reported in pregnant 71 

women. Such exposures were associated with altered birth weight and height (Lee et al. 72 

2014), increased incidence of childhood asthma (Donohue et al. 2013), and sex-specific 73 

childhood behavioral problems (Perera et al. 2012; Braun et al. 2009). Other studies, 74 
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however, did not find correlations between BPA body burdens and maternal or 75 

maternal-child health outcomes such as metabolic disorders, immunologic or neurologic 76 

disease, risk of carcinogenicity, or various measures of reproductive development 77 

(Robledo et al. 2013; Kasper-Sonnenberg 2012; Willhite et al. 2008). However, none of 78 

those studies investigated developmental BPA-induced changes in childhood 79 

neurodevelopment or adult behavior, the central focus of this study. 80 

Because it is considered by many as a xenoestrogen, BPA has been associated 81 

with a range of molecular and physiological processes that may affect social behaviors, 82 

especially those linked to sex-specific activity patterns, e.g., alterations in gene 83 

expression (fish: Hatef et al. 2012; Ribeiro et al. 2012; rats: Li et al 2014), organ 84 

development (general vertebrates: Gibert et al. 2011; Masuo and Ishido 2011; fish: 85 

Molina et al. 2013; Huang et al 2012; Mihaich et al. 2012; Cao et al. 2010), and the 86 

hypothalamic-pituitary-gonadal axis activity (rats: Li et al. 2014). While it was shown to 87 

bind to a range of hormone receptors (human: Prasanth et al. 2010; fish: Jiao and 88 

Cheng 2010), there has been particular interest in BPA binding to estrogen receptors 89 

(ER), e.g., ERα, ERβ, and estrogen-related receptor gamma, ERRγ (general vertebrate: 90 

Ben-Jonathan and Steinmetz 1998; human: Takayanagi et al. 2006; fish: Saili et al. 91 

2012; mice: Kundakovic et al. 2013; rat: Cao et al. 2013;).  To explain differences in 92 

behavioral responses to BPA exposure by males vs. females, Masuo and Ishido (2011) 93 

and Kubo et al. (2001) suggest BPA action in the locus ceruleus, especially in males. 94 

Estrogens are a class of hormones of which 17β-estradiol (E2) is the most abundant 95 

and potent that are involved in brain neurodevelopment (McCarthy 2008). Disruptions in 96 

the normal binding activity of ER and ERR may be the basis for the observed alterations 97 
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in the sex-based social behavior of several vertebrate species, including human 98 

(general vertebrate: Galea and Barha 2011; human: Harley et al. 2013; Braun et al. 99 

2011; fish: Saili et al. 2012; mice: Williams et al 2013; Wolstenholme et al. 2011; 100 

monkeys: Nakagami et al. 2009). Therefore, in this study, the ER ligand E2, and a less 101 

commonly used synthetic ERRβ/γ ligand, GSK4716 were used to explore the 102 

hypothesis that BPA-induced changes in social behavior are a result of xenoestrogenic 103 

activity. While there are few data correlating ERRs to social behavior, two lines of 104 

indirect evidence suggest possible effects. Exposures to BPA or GSK4716 during early 105 

development led to hypersensitivity in larval zebrafish to light-dark transitions followed 106 

by extended swim times (Saili et al. 2012). Since in the present study, distance traveled 107 

was one of the variables measured as a function of social interaction, changes in 108 

locomotor activity due to GSK4716 might be a possible result even for adults. In juvenile 109 

mice, maternal exposures to BPA induced a change in mRNA levels for epigenetic 110 

regulators of DNA methyltransferase 1 and 3 in the hypothalamus. These alterations 111 

paralleled changes in ERRγ (Kundakovic et al. 2013) that may be a basis for altered 112 

social behavior. 113 

Even in non-social behaviors, e.g., learning, emotion and exploration, males and 114 

females displayed differential outcomes due to developmental BPA exposures (human: 115 

Perera et al. 2012; Braun et al. 2011, 2009; fish: Saili et al. 2012; mice: Jaṧareviḉ et al. 116 

2013; Kundakovic et al. 2013; Palanza et al. 2008 rats: Jones et al. 2011).  These 117 

behavioral disruptions are strongly correlated with a range of molecular, physiological, 118 

and organ-level mechanisms involved in sex-dependent behaviors, e.g., brain ER gene 119 

expression (rat: Cao et al. 2013), fetal ovarian and gonadal development (fish: Chung et 120 
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al. 2011; mice: Kundakovic et al. 2013; Tainaka et al. 2012; Xi et al. 2011a, 2011b; rat: 121 

Cao et al. 2013; sheep: Veifa-Lopez et al. 2013), pituitary and gonadotrophin 122 

development (mice: Brannick et al. 2012), brain and gonadal enzyme activity (rat: 123 

Nanjappa et al. 2012), altered hypothalamic-pituitary-gonadal (HPG) axis activity (mice: 124 

Xi et al. 2011a; rats: Ramos et al. 2003), and circulating testosterone levels (mice: 125 

Tanaka et al. 2006). In contrast, several studies were not able to identify correlations 126 

between BPA-induced mechanistic effects and behavioral disruptions (mice: Palanza et 127 

al. 2002; Cagan et al. 1999; rat: Kobayashi et al. 2012; Ryan et al. 2010) or differences 128 

between sexes in BPA-induced learning deficits (fish: Saili et al. 2012). Considerations, 129 

therefore, regarding differing experimental protocols, e.g., time of day of testing, age 130 

and length of exposure, specific behavioral outcome being examined, or genetic strain 131 

of test species, may be required to provide insights into mechanisms underlying 132 

behavioral toxicity. This study examined two of these possibilities, circadian variations in 133 

BPA-induced behavioral outcomes by including multiple times of day for testing and 134 

social interactions. Different outcomes and cause-and-effect interpretations may result if 135 

time-of-day of testing is not considered (Weber and Spieler 1994).  136 

Mammals and fishes display parallel social behaviors that are governed by 137 

similar underlying mechanisms (Oliveira 2013). Zebrafish (Danio rerio) has been used 138 

extensively to elucidate basic mechanisms underlying behavioral toxicology (Bailey et 139 

al. 2013). In particular, zebrafish was employed as a model for identifying sex-specific 140 

effects on social interactions and their sensitivity to chemical exposures (Dalbohm et al. 141 

2012) induced by developmental BPA exposure. 142 

 143 
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 144 

METHODS 145 

 146 

Treatment of Glassware and Plasticware:  All lab materials made of plastic 147 

were washed thoroughly in a 10% solution of a nontoxic, biodegradable detergent 148 

(Simple GreenTM; Sunshine Makers, Inc., Huntington Harbour, CA), rinsed repeatedly in 149 

ultrapure Milli-QTM water (Millipore Corp., Medford, MA), and immersed in a 30mM 150 

Na4EDTA (Fisher Scientific, Hanover Park, IL) solution overnight to remove all surface 151 

adsorbed metal ions; glassware was washed and rinsed similarly but immersed in a 152 

10% HNO3 (Fisher Scientific, Hanover Park, IL) solution overnight.  Glass and 153 

plasticware were then rinsed in ultra-pure Milli-QTM water. 154 

Zebrafish rearing: Adult tropical 5D strain (wildtype) zebrafish were raised at the 155 

Sinnhuber Aquatic Research Laboratory (SARL) in the Aquatic Biomedical Models 156 

Facility Core of the Environmental Health Sciences Center at Oregon State University 157 

under standard conditions (28◦C, 14 hr light/10 hr dark cycle) on a recirculating water 158 

system. Embryos obtained from group spawns were washed, screened for viability, and 159 

incubated in embryo medium (Westerfield, 2000) at 28◦C. Larvae destined for adult 160 

behavior testing were exposed to 0 (0.1% DMSO only = control), 0.1, 1 µM BPA, 0.1 µM 161 

E2, or 0.1 µM GSK4716 from 8-120 h post fertilization (hpf), then removed from the 162 

exposure solution, thoroughly rinsed with water, and raised at the SARL under standard 163 

conditions until approximately 3 months of age, at which time they were shipped 164 

overnight to the Neurobehavioral Toxicology Facility, Children’s Environmental Health 165 

Sciences Center, University of Wisconsin-Milwaukee, where they were raised under 166 
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standard conditions prior to adult testing. Zebrafish husbandry and behavior testing was 167 

conducted in compliance with approved Oregon State University and University of 168 

Wisconsin-Milwaukee Institutional Animal Care and Use Committee protocols. 169 

Chemical preparation: Bisphenol A (2,2-bis(4-hydroxyphenyl)propane; 99% 170 

purity, Tokyo Chemical Industry America (TCI), Portland, OR), GSK4716 (4-Hydroxy-2-171 

[(1E)-[4-(1-methylethyl)phenyl]methylene]hydrazide; Tocris Bioscience, Ellisville, MO, 172 

USA), and 17β-estradiol (Sigma-Aldrich, St. Louis, MO) were dissolved in dimethyl 173 

sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO). BPA stock concentration was 174 

confirmed by high-performance liquid chromatography (HPLC) analysis. Exposure 175 

solutions were prepared by diluting working stocks in buffered embryo medium at a final 176 

vehicle concentration of 0.1% DMSO. 177 

 Social Behavior Test:  178 

A. Testing Chamber: A white, plastic box (16 cm width x 25 cm length x 10 cm 179 

height) was constructed with interchangeable panels to allow for multiple testing 180 

designs. In the test described below a white plastic wall was inserted to split the 181 

chamber lengthwise so that each section of equal area would hold a single fish and 182 

each fish was unable to detect the presence of the other visually or by odor. The 10 cm 183 

height was necessary to prevent fish from jumping out of the chamber. At one end of 184 

each section a mirror was inserted; the opposite end remained without a mirror. An 185 

individual male was placed in one section and a female in the other so that each sex 186 

was tested together within the same time frame. Each section was divided into three 187 

zones: 0-1 cm from the mirror (= mirror), 1-12.5 cm from the mirror (= transition), and 188 

12.5-25 cm from the mirror (= opaque). These three zones represent different distances 189 
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from the mirror image and provided, therefore, different intensity levels of social 190 

interaction. 191 

 Fish movements were recorded at a rate of 30 frames/sec with an infrared-192 

sensitive digital camera (Ikegami Model ICD-49, Neuss, Germany) placed 45 cm above 193 

the bottom of the test chamber. Lighting was provided by a ring (diam. 10 cm) of 18 194 

white light LED (EnvironmentalLights.com, San Diego, CA, USA) placed above the test 195 

chamber to provide even lighting intensity (200 lux) throughout the chamber to allow the 196 

fish to see the mirror image. Lighting for the camera was provided by an infrared lamp 197 

(IR—ROOM Ultra-Covert 940 nm Infrared Illuminator, Night Vision Experts.com, 198 

Buffalo, NY) placed 45 cm below the test chamber to prevent glare. 199 

 B. Testing Protocol:  Experimental protocol follows that of Weber and Ghorai 200 

(2013). All tests used dechlorinated Lake Michigan tap water warmed to 28oC in an 201 

incubator. This represents the same water conditions used for maintaining the adult fish. 202 

The quality of City of Milwaukee water is rigorously and continuously tested and found 203 

to have undetectable levels of BPA, among many other chemical contaminants, that 204 

could potentially confound experimental variables (Milwaukee Water Works 2013). 205 

Water (1 L, 2.5 cm depth) was replaced after each trial to maintain equal temperatures 206 

between trials and remove any olfactory clues left by the previous fish. Before replacing 207 

with fresh water, chamber was rinsed three times with distilled water. To account for 208 

differential circadian social activity patterns entrained by feeding time, e.g., agonistic 209 

behavior (Weber and Spieler 1987) each fish was tested first within two hr of feeding 210 

time (0930 h) and again at 5 hr post feeding time (1400 h). Time required to test a 10-211 

fish set was approximately 90 min. 212 
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Individual male and female adult zebrafish (12-months old; n = 10 of each sex) 213 

were placed into separate sections of the testing chamber and allowed to acclimate for 214 

1 min before recording started. All fish were first tested in a chamber without a mirror to 215 

obtain baseline activity patterns; they were retested on a different day with the mirror 216 

inserted. Fish movements were monitored for 5 min. Using image analysis software 217 

(EthoVision v8.5, Noldus, Wageningin, The Netherlands), total distance traveled (cm), 218 

percent time spent in each zone (mirror, transition, and opaque), and number of attacks 219 

on the mirror image were recorded. Attacks were defined as movement into the zone 220 

where the mirror was located. While such movement may include both actual attacks on 221 

the mirror image it may also include general swimming motion into that zone. To 222 

minimize the second possibility, the zone was created to be no wider than ½ the 223 

average snout-to-tail length of an adult zebrafish.  224 

Statistical Analysis: Since none of the variables displayed a normal distribution, a 225 

generalized linear model, GLM, was used for each of the variables with a transform that 226 

was the most appropriate to model statistical comparisons, specifically for distance 227 

traveled a gamma distribution with a log transform, for time spent at the mirror a normal 228 

distribution with a log transform, and for attacks on the mirror a negative binomial (a 229 

Poisson allowing variability in the rate between subjects and assuming the same rate for 230 

each subject) distribution with a log transform was used. Multiple comparisons were 231 

made with the Duncan Empirical Bayes method (Dixon and Duncan1975). Data were 232 

analyzed for AM and PM time points for each of the 3 variables. Statistical significance 233 

was set at p < 0.05. 234 

 235 
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RESULTS 236 

 237 

 Distance Travelled: AM Testing Time: If the mirror was absent (Figure 1), there 238 

was no significant difference in distance traveled by males between any treatment 239 

groups. However, control females traveled significantly more than control males (+871 240 

cm,). BPA-, E2 and GSK4716-exposed females traveled significantly less than control 241 

females: 0.1 µM BPA (-496 cm), 1 µM BPA (-476 cm), E2 (-1107 cm) and GSK4716 (-242 

989).  0.1 µM BPA differed markedly only from E2 and GSK4716.  243 

After the mirror was inserted (Figure 1), distance traveled by BPA-, E2 and 244 

GSK4716-exposed males was significantly less than control. There was no significant 245 

difference between BPA-, E2 and GSK4716 treatments. While the distance traveled by 246 

control males was more than control females (+566 cm), it was less than females for 247 

exposures to 1 µM BPA (-809 cm) and E2 (-655 cm). There were no significant 248 

differences between males and females for exposures to 0.1 µM BPA or GSK4716. 249 

Distance traveled for females treated with 0.1 µM BPA or GSK4716 was markedly less 250 

than control (-496 cm and -749 cm, respectively). Distance traveled by females treated 251 

with either 1 µM BPA or E2 did not differ from control.  252 

PM Testing Time: If the mirror was absent (Figure 1), females traveled a 253 

significantly greater distance vs. males (+211 cm) regardless of treatment. Neither BPA 254 

nor E2 produced significant changes in distance traveled vs. control for either females 255 

or males. GSK4716 induced a significant decrease in distance traveled (-301 cm).  256 

After the mirror was inserted (Figure 1), control male activity was significantly 257 

higher than males treated with 1 µM BPA (+434 cm), E2 (+546 cm) or GSK4716 (+592 258 
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cm); these 3 treatments did not significantly differ from each other. Travel distance for 259 

males treated with 0.1 µM BPA was similar to control. For females, only GSK4716 260 

treatment traveled significantly less than controls (-422 cm). The distance traveled for 261 

control males was significantly higher than females (+1421 vs. +1081 cm). 262 

 % Time Spent at Mirror: AM Testing Time: If the mirror was absent (Figure 2), 263 

there were no significant differences in % time spent at the mirror between controls vs. 264 

treatment or between sexes. After the mirror was inserted (Figure 2), there were 265 

significantly longer times spent at the mirror for control males and females. Significant 266 

differences in time spent at the mirror were observed for: 0.1 µM BPA > control (+42%), 267 

E2 < control (-4%), and GSK4716 > control (+33%). While fish exposed to either 0.1 µM 268 

BPA or GSK4716 spent equal amounts of time at the mirror, they were both significantly 269 

greater than for those individuals exposed to 1 µM BPA or E2 (>35%). 270 

PM Testing Time: When the mirror was absent (Figure 2), there was no marked 271 

treatment effect for males or females, i.e., no sex x treatment interaction. Females spent 272 

more time at the mirror than males (+7%). After the mirror was inserted (Figure 2), there 273 

were no significant gender effects. For this variable, however, both E2 (+13%) and 274 

GSK4716 (+27%) exerted an additive effect on time males spent at the mirror time in 275 

addition to the effect of the mirror. 276 

 Attacks on Mirror:  AM Testing Time: When the mirror was absent (Figure 3), 277 

there was no marked treatment effect on the number of attacks. There was, however, a 278 

significant gender effect (females > males). As there was no mirror, these “attacks” were 279 

more likely general swimming movements into the mirror zone. After the mirror was 280 

inserted (Figure 3), there was no gender effect but there was a treatment effect; among 281 



15 
 

males each of the 4 treatments was significantly lower than control (-14.5 attacks, 0.1 282 

µM BPA < control; 1 µM BPA < control, -10.5 attacks; E2 < control, -10.4 attacks; 283 

GSK4716 < control, -14.5 attacks), but none were significantly different from one 284 

another. Female zebrafish exposed to 0.1 µM BPA or GSK4716 showed a significant 285 

decrease in attacks on the mirror image.  286 

PM Testing Time: The dominant factor for changes in the number of attacks was 287 

the presence of the mirror (Figure 3). While there were no significant differences among 288 

treatments, or interactions of mirror x sex, the difference relative to control with the 289 

mirror was significantly greater than without the mirror (+13.8 attacks). 290 

  291 

DISCUSSION 292 

 293 

Zebrafish live in loose social groups (Spence et al. 2008) and, therefore, serve as 294 

a useful model to understand how xenoestrogenic compounds disrupt normal social 295 

interactions. In this study, mirrors were employed to elicit agonistic displays, which 296 

include ritualized defensive interactions as well as passive and active aggression (King 297 

1973). These traits were measured among adult male and female fish that were 298 

developmentally exposed as embryos to varying concentrations of BPA. This exposure 299 

regimen was identical to the environmentally relevant levels used in a previous study 300 

(Saili et al. 2012) and compare favorably to the maternal delivery of BPA to a fetus 301 

(Zimmers et al. 2014; Aries 2013).  302 

Male zebrafish not treated with BPA as embryos swam shorter total distances 303 

when no mirror was in the test chamber vs. when a mirror was present. The image of a 304 



16 
 

same-sex and same-sized conspecific differs from those studies in which two live 305 

competitors are present in the same tank because body morphology affects mirror-306 

elicited response outcomes (Holtby et al. 1993). Without a clear body morphology 307 

difference, the response of an adult zebrafish to its perceived equally sized competitor 308 

may be more intense and for a longer period of time. While there was decreased activity 309 

in the PM observation time, males still swam longer distances if a mirror was present. 310 

When the mirror was absent, male activity was not significantly different among 311 

treatments; when the mirror was present, distance traveled was significantly less among 312 

BPA-, estradiol-, or GSK4716-exposed individuals vs. controls. This was in contrast to 313 

several studies, including rat pups (Xu et al. 2007) and our previous investigations into 314 

the locomotor activity of zebrafish larvae (Saili et al. 2012), that indicated hyperactivity 315 

following BPA exposure. Larval activity is not sex-based, whereas social interactions 316 

with another adult of same sex and size potentially raise issues of territoriality, resource 317 

use, and reproductive status which have a strong sex-based linkage. Interestingly, 318 

prenatal BPA exposures increased depression in boys (Harley et al. 2013) and mice (Xu 319 

et al. 2012), a behavioral outcome that may parallel the changes observed in the 320 

depressed locomotor activity in male zebrafish. 321 

Percent time spent in the mirror zone displayed a non-monotonic response 322 

(curve changes direction within range of concentrations examined), in this case the 323 

concentration-response curve was an inverted U-shape in which the intermediate 324 

exposure (0.1 µM BPA) concentration produced a higher response than either 0 or 1 µM 325 

BPA. Behavior within the mirror zone was most intense only when the mirror was 326 

inserted into the chamber and consisted of back-and-forth swimming in front of the 327 
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mirror image with no apparent attack movements directed to the mirror image. This 328 

activity, therefore, was likely to be a combination of several agonistic behaviors 329 

including aggression and territorial displays, as documented by zebrafish in the wild 330 

(Spence et al. 2008). That developmental exposure to either 0.1 µM BPA or 0.1 µM 331 

GSK4716 resulted in equally intense activity in the mirror zone suggests that, as 332 

supported by our previous studies (Saili et al. 2012) BPA is acting as an ERRγ agonist, 333 

at least at the lower BPA concentration. Yet, developmental exposure to either 0.1 µM 334 

E2 or 1 µM BPA resulted in a decrease in the amount of time spent in the mirror zone 335 

suggesting differential, concentration-dependent sensitivity to multiple pathways during 336 

development. For example, Masuo and Ishido (2011) and Kubo et al. (2001) 337 

demonstrated an inverted U-shaped BPA effect on the locus ceruleus in response to 338 

stimuli. Performance was decreased at very low levels and high levels of LC tonic 339 

discharge due to drowsiness and being inattentiveness and at high. Performance on a 340 

task that required focused attention (possibly similar to that required for interacting with 341 

the mirror image) was highest at moderate LC tonic activity (Ashton-Jones et al. 2007). 342 

Whether this parallels the inverted U-shaped response curve for % time swimming in 343 

front of the mirror of the low vs. high BPA-exposed zebrafish in this study is unclear, 344 

although fishes do possess this structure, albeit much smaller (Ma 1994). However, 345 

estrogenic compounds, e.g., diethylstilbestrol, have been shown to alter locus ceruleus 346 

morphology (Kubo et al. 2001).  The opposite effect of two compounds that interact with 347 

estrogen receptor sites as it relates to this one specific variable, % time spent at the 348 

mirror, suggests that ERs and ERRs may be involved in regulating the direction of non-349 
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aggressive social behaviors and which receptor is being affected may be dependent on 350 

BPA exposure concentration. 351 

Conversely, the number of attacks in the mirror zone showed a U-shaped 352 

concentration-dependent response for females, albeit statistically insignificant; a linear 353 

decrease in attacks with increasing exposure concentration was observed with males. 354 

Other non-monotonic responses due to BPA exposure were noted with learning tasks in 355 

male rats (Jones et al. 2011), metabolic function in mice (Angle et al. 2013), and protein 356 

regulation in a terrestrial isopod (Lemos et al. 2010). One functional basis for the non-357 

monotonic effect is that at doses higher than those required for ER-mediated 358 

responses, BPA interacts with other hormone receptor sites. Alternatively, BPA may be 359 

interacting on neuroendocrine systems that impact physiological process underlying 360 

behavioral outcomes (Léon-Olea et al. 2014; Wayne and Trudeau 2011). These 361 

interactions also may affect neurodevelopment potentially confounding the ability to 362 

make predictions of neurobehavioral toxicity over a range of concentrations (vom Saal 363 

et al. 2007). This would imply that BPA is more than a xenoestrogen and that it interacts 364 

directly and/or indirectly with multiple classes of neural and endocrine receptors. 365 

Another aspect of this study not generally included in other examinations of 366 

social interaction was the role of circadian rhythmicity in affecting outcomes and 367 

interpretations of behavioral toxicity. As demonstrated by each of the variables 368 

analyzed, the time-of-day when an experiment was conducted relative to a regularly 369 

occurring stimulus to which behavior was entrained (in this case feeding time) exerted a 370 

profound effect on behavioral outcomes. Examination of only the afternoon data would 371 

have forced the conclusion that BPA exerted little or no effect on social behavior. The 372 



19 
 

morning data, however, indicated that BPA produced a substantial impact on zebrafish 373 

social behavior.  374 

Circadian rhythms are important in regulating responses to the social stimulus 375 

used in this study, i.e., a social partner created by the mirror image. The presence of 376 

social partners might produce mutual behavioral synchronization in a wide range of 377 

species (Favreau et al. 2009). Such group enhancement of activity was observed in 378 

killifish (Fundulus heteroclitus) to be significantly higher than among solitary individuals 379 

(Kavaliers 1980). Social influences within a hierarchical relationship, i.e., relative 380 

dominance within the population, may induce mutual synchronization of activity 381 

rhythms. These, however, were not accounted for in this study and may explain the high 382 

variability in the behavioral outcomes. Circadian rhythms direct locomotor activity 383 

patterns in fish (Weber and Spieler 1994), which, in turn, alter the intensity of social 384 

behavior and sensitivity to mutual synchronization (Pankseep et al. 2008). It was 385 

observed that the afternoon swimming distance was less intense than the morning 386 

activity level and this, in turn, may play an important role in the unequal number of 387 

attacks during each observation time. Studies cited earlier that support the null 388 

hypothesis of BPA not inducing changes in specific behaviors and their underlying 389 

mechanisms (mice: Palanza et al. 2002; Cagan et al. 1999; rat: Kobayashi et al. 2012; 390 

Ryan et al. 2010) may be due to recording observations at times-of-day in which activity 391 

levels were less intense. While the light-dark cycle entrains pineal 5-HT rhythms 392 

(Ceinos et al. 2005), feeding time entrains both locomotor activity (Weber and Spieler 393 

1987) and circulating 5-HT levels (Ho et al. 1985). Without knowledge as to when the 394 

tests were conducted relative to these variables, it becomes difficult to compare other 395 
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studies to our data. Complicating the picture of locomotor activity patterns even further, 396 

some studies fed their test animals ad libitum rather than at a single time of day, thus 397 

altering the times and intensity of peak activity. 398 

Social behaviors are dependent upon neural and endocrine signaling as 399 

influenced by external cues. Disruptions in normal patterns of these behaviors may 400 

result from changes induced by environmental stressors on the complex interplay 401 

between neural and endocrine systems. The mirror-elicited behavior of the adult 402 

zebrafish involved two aspects of agonistic display, ritualized territorial displays and 403 

direct attacks. By measuring total distance traveled, total % time spent at the mirror (or 404 

the zone in which the mirror would be placed), and number of attacks on the mirror (or 405 

the zone in which the mirror would be placed), specific aspects of social interaction with 406 

a conspecific of the same sex and morphology (general activity level, degree of 407 

interaction or association, and aggressive behavior, respectively), insights into other 408 

mechanisms that were possibly affected by developmental BPA exposure are 409 

suggested.  410 

Ovarian steroids, which are affected by BPA exposure (fish: Hatef et al. 2012; 411 

mice: Xi et al. 2011; rats: Li et al. 2014), regulate the serotonin system, especially in 412 

regions critical to controlling social behaviors, e.g., raphe nuclei and hypothalamus. In 413 

rodent brains, treatment with estrogens increased levels of dorsal raphe 5HT2A mRNA 414 

(McEwen 2002) and increased the density of 5-HT2A binding sites in other brain 415 

regions associated with emotion and behavior (Fink et al. 1996). Since agonistic 416 

displays may be markedly affected by this interaction, xenoestrogenic activity of BPA as 417 

it relates to ER and ERRγ agonism (general: Zuercher et al. 2005; Ben-Jonathan and 418 
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Steinmetz 1998; human: Okada et al. 2008; rat: Washington et al. 2001), and the 419 

consequent effects on the serotonergic system during development may be an example 420 

of BPA-induced neuroendocrine disruption. Because serotonin is important during brain 421 

development and in controlling levels of aggression, and BPA enhances 5-HT activity, 422 

BPA-induced changes in embryonic 5-HT levels may be responsible for altered brain 423 

development (fish: Elipot et al. 2013; Dahlbom et al 2012; Clotfelter et al. 2007; mice: 424 

Rood and Beck 2013; rat: Cao et al. 2013; Donner and Handa 2011; Matsuda et al. 425 

2010; González et al. 2008; Honma et al. 2006; Orozco-Suárez 2003; Persico et al. 426 

2000; Yan et al. 1997).  427 

It is still an open question whether, in fact, altered embryonic 5-HT dynamics 428 

explain the changes in adult behavior observed in this study. Other investigations, 429 

however, using fish exposed to fluoxetine (FLX), a selective serotonin re-uptake 430 

inhibitor that is found as a contaminant in some aquatic systems suggest this may be a 431 

useful avenue of research. Behavioral disruptions occurred in fathead minnows 432 

(Pimephales promelas) of the 5-HT system after short-term, adult exposures to FLX 433 

(Weinberger and Klaper 2014). While at FLX concentrations higher than used in this 434 

study male aggression toward females increased, fish exposed to concentrations similar 435 

to this study caused a concentration-dependent decrease in total swimming distance. 436 

Other studies using fish models involve short-term larval FLX exposure followed by 437 

larval locomotor behavioral observations (Airhart et al. 2007) or 4-wk adult exposure 438 

followed by analyses of reproductive physiology and behavior (Foran et al. 2004) also 439 

demonstrated behavioral effects comparable to this study. Full comparisons, however, 440 

are limited due to different exposure regimens between studies. The embryonic 441 
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exposures used in this study suggest that adult behavioral effects may be the result of 442 

permanent neurological alterations caused by early (first 24 hpf) developmental 443 

exposures to low-level, environmentally-relevant concentrations of BPA. The underlying 444 

mechanisms of this behavior remain to be elucidated. 445 
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Figure Legends: 873 

Figure 1: Effect of exposures to bisphenol A (BPA) during early development on activity 874 

level of adult zebrafish (12 months). Distance traveled by male and female zebrafish 875 

within test chamber over a 5 min period after a 1 min acclimation period was compared 876 

with and without the presence of a mirror. Changes in circadian rhythm patterns were 877 

evaluated by testing each fish at two times of day: morning immediately after feeding 878 

time at 0900 hr and again at 1400 hr. Developmental exposure regimen (2-48 hours 879 

post fertilization) consisted of:        = 0.0 µM BPA;        = 0.1 µM BPA;       = 1.0 µM 880 

BPA;         = 0.1 µM estradiol; and         = 0.1 µM GSK4716.   881 

* = significantly different from control (p < 0.05) of same sex. 882 

 883 

Figure 2: Effect of exposures to bisphenol A (BPA) during early development on % time 884 

spent interacting with the mirror image by adult zebrafish (12 months). Percent time 885 

spent by male and female zebrafish in the test chamber mirror zone (≤2 cm away from 886 

wall where mirror was placed) over a 5 min period after a 1 min acclimation period was 887 

compared with and without the presence of a mirror. Changes in circadian rhythm 888 

patterns were evaluated by testing each fish at two times of day: morning immediately 889 

after feeding time at 0900 hr and again at 1400 hr. Developmental exposure regimen (2-890 

48 hours post fertilization) consisted of:        = 0.0 µM BPA;      = 0.1 µM BPA;  891 

     = 1.0 µM BPA;        =  0.1 µM estradiol; and         =  0.1 µM GSK4716.  892 

* = significantly different from control (p < 0.05) of same sex. 893 
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 894 

Figure 3: Effect of exposures to bisphenol A (BPA) during early development on the 895 

number of attacks on the mirror image by adult zebrafish (12 months). The number of 896 

attacks on the wall where the mirror was placed by male and female zebrafish in the 897 

test chamber over a 5 min period after a 1 min acclimation period was compared with 898 

and without the presence of a mirror. Changes in circadian rhythm patterns were 899 

evaluated by testing each fish at two times of day: morning immediately after feeding 900 

time at 0900 hr and again at 1400 hr. Developmental exposure regimen (2-48 hours 901 

post fertilization) consisted of:  902 

     = 0.0 µM BPA;    = 0.1 µM BPA;     = 1.0 µM BPA;     = 0.1 µM estradiol; and                                                  903 

=    =  0.1 µM GSK4716.  904 

* = significantly different from control (p < 0.05) of same sex.  905 
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Figure 1: 906 
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Figure 2: 908 
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Figure 3: 910 
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