1,056 research outputs found
Tomographic reconstruction of quantum states in N spatial dimensions
Most quantum tomographic methods can only be used for one-dimensional
problems. We show how to infer the quantum state of a non-relativistic
N-dimensional harmonic oscillator system by simple inverse Radon transforms.
The procedure is equally applicable to finding the joint quantum state of
several distinguishable particles in different harmonic oscillator potentials.
A requirement of the procedure is that the angular frequencies of the N
harmonic potentials are incommensurable. We discuss what kind of information
can be found if the requirement of incommensurability is not fulfilled and also
under what conditions the state can be reconstructed from finite time
measurements. As a further example of quantum state reconstruction in N
dimensions we consider the two related cases of an N-dimensional free particle
with periodic boundary conditions and a particle in an N-dimensional box, where
we find a similar condition of incommensurability and finite recurrence time
for the one-dimensional system.Comment: 8 pages, 1 figur
Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate
Recent experimental measurements of atomic intensity correlations through
atom shot noise suggest that atomic quadrature phase correlations may soon be
measured with a similar precision. We propose a test of local realism with
mesoscopic numbers of massive particles based on such measurements. Using
dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic
atoms, we demonstrate that strongly entangled atomic beams may be produced
which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures,
in direct analogy to the position and momentum correlations originally
considered by EPR.Comment: Final published version (corrections in Ref. [32], updated
references
Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides
We explore theoretically the feasibility of using frequency conversion by
sum- or difference-frequency generation, enabled by three- wave-mixing, for
selectively multiplexing orthogonal input waveforms that overlap in time and
frequency. Such a process would enable a drop device for use in a transparent
optical network using temporally orthogonal waveforms to encode different
channels. We model the process using coupled-mode equations appropriate for
wave mixing in a uniform second- order nonlinear optical medium pumped by a
strong laser pulse. We find Green functions describing the process, and employ
Schmidt (singular- value) decompositions thereof to quantify its viability in
functioning as a coherent waveform discriminator. We define a selectivity
figure of merit in terms of the Schmidt coefficients, and use it to compare and
contrast various parameter regimes via extensive numerical computations. We
identify the most favorable regime (at least in the case of no pump chirp) and
derive the complete analytical solution for the same. We bound the maximum
achievable selectivity in this parameter space. We show that including a
frequency chirp in the pump does not improve selectivity in this optimal
regime. We also find an operating regime in which high-efficiency frequency
conversion without temporal-shape selectivity can be achieved while preserving
the shapes of a wide class of input pulses. The results are applicable to both
classical and quantum frequency conversion.Comment: 24 pages, 20 figure
Mesoscopic entanglement of atomic ensembles through non-resonant stimulated Raman scattering
We propose a scheme of generating and verifying mesoscopic-level entanglement
between two atomic ensembles using non-resonant stimulated Raman scattering.
Entanglement can be generated by direct detection or balanced homodyne
detection of the Stokes fields from the two cells, after they interfere on a
beam splitter. The entanglement of the collective atomic fields can be
transferred to the anti-Stokes fields in a readout process. By measuring the
operator moments of the anti-Stokes fields, we can verify the presence of
entanglement. We model the effects of practical factors such as Stokes field
detector quantum efficiency and additive thermal noise in the entanglement
generating process, and anti-Stokes field losses in the entanglement
verification process, and find achievable regimes in which entanglement can be
verified at the levels of tens to hundreds of atomic excitations in the
ensembles.Comment: 35 papges, 6 figures and 1 table, accepted by Phys. Rev.
Biased tomography schemes: an objective approach
We report on an intrinsic relationship between the maximum-likelihood
quantum-state estimation and the representation of the signal. A quantum
analogy of the transfer function determines the space where the reconstruction
should be done without the need for any ad hoc truncations of the Hilbert
space. An illustration of this method is provided by a simple yet practically
important tomography of an optical signal registered by realistic binary
detectors.Comment: 4 pages, 3 figures, accepted in PR
Reconstruction of photon statistics using low performance photon counters
The output of a photodetector consists of a current pulse whose charge has
the statistical distribution of the actual photon numbers convolved with a
Bernoulli distribution. Photodetectors are characterized by a nonunit quantum
efficiency, i.e. not all the photons lead to a charge, and by a finite
resolution, i.e. a different number of detected photons leads to a
discriminable values of the charge only up to a maximum value. We present a
detailed comparison, based on Monte Carlo simulated experiments and real data,
among the performances of detectors with different upper limits of counting
capability. In our scheme the inversion of Bernoulli convolution is performed
by maximum-likelihood methods assisted by measurements taken at different
quantum efficiencies. We show that detectors that are only able to discriminate
between zero, one and more than one detected photons are generally enough to
provide a reliable reconstruction of the photon statistics for single-peaked
distributions, while detectors with higher resolution limits do not lead to
further improvements. In addition, we demonstrate that, for semiclassical
states, even on/off detectors are enough to provide a good reconstruction.
Finally, we show that a reliable reconstruction of multi-peaked distributions
requires either higher quantum efficiency or better capability in
discriminating high number of detected photons.Comment: 8 pages, 3 figure
Aircraft control via variable cant-angle winglets
Copyright @ 2008 American Institute of Aeronautics and AstronauticsThis paper investigates a novel method for the control of "morphing" aircraft. The concept consists of a pair of winglets; with adjustable cant angle, independently actuated and mounted at the tips of a baseline flying wing. The general philosophy behind the concept was that for specific flight conditions such as a coordinated turn, the use of two control devices would be sufficient for adequate control. Computations with a vortex lattice model and subsequent wind-tunnel tests demonstrate the viability of the concept, with individual and/or dual winglet deflection producing multi-axis coupled control moments. Comparisons between the experimental and computational results showed reasonable to good agreement, with the major discrepancies thought to be due to wind-tunnel model aeroelastic effects.This work has been supported by a Marie Curie excellence research grant funded by the European Commission
Aircraft System and Product Development: Teaching the Conceptual Phase
This paper reports the first offering of a graduate level subject covering the conceptual phase of aircraft product development. The output of the conceptual phase is a system level specification that usually serves as the input for a traditional undergraduate capstone subject on aircraft design. Of critical importance in the conceptual phase is addressing the business case for the candidate product. The conceptual phase spans a much wider range of topics than the technical issues which dominate preliminary design. These include user needs, investment and business requirements, market analysis, operational issues, exogenous constraints (certification, regulation, political, etc.), as well as engineering and manufacturing requirements.
Students in the subject were required to Prepare for the Board of Directors of a large aerospace company a compelling business case and specification for a large jet transport product. Three student teams produced original responses to the challenge and have reported their findings in a companion AIAA paper. This paper addresses the pedagogical approaches and outcomes. These encompass the use of distance learning technology and techniques for several off-campus practicing engineering students. Overall, the outcome was very gratifying. The class will be offered in the spring of 2001, focusing on a supersonic business jet
Quantum State Tomography of Complex Multimode Fields using Array Detectors
We demonstrate that it is possible to use the balanced homodyning with array
detectors to measure the quantum state of correlated two-mode signal field. We
show the applicability of the method to fields with complex mode functions,
thus generalizing the work of Beck (Phys. Rev. Letts. 84, 5748 (2000)) in
several important ways. We further establish that, under suitable conditions,
array detector measurements from one of the two outputs is sufficient to
determine the quantum state of signals. We show the power of the method by
reconstructing a truncated Perelomov state which exhibits complicated structure
in the joint probability density for the quadratures.Comment: 14 pages text and 3 figures. To be submitted to PR
- …
