14 research outputs found

    The Marine Viromes of Four Oceanic Regions

    Get PDF
    Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earth's oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct “marine-ness” quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure

    Metagenomic and Small-Subunit rRNA Analyses Reveal the Genetic Diversity of Bacteria, Archaea, Fungi, and Viruses in Soil▿

    No full text
    Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse

    Viral diversity and dynamics in an infant gut

    No full text
    Metagenomic sequencing of DNA viruses from the feces of a healthy week-old infant revealed a viral community with extremely low diversity. The identifiable sequences were dominated by phages, which likely influence the diversity and abundance of co-occurring microbes. The most abundant fecal viral sequences did not originate from breast milk or formula, suggesting a non-dietary initial source of viruses. Certain sequences were stable in the infant's gut over the first 3 months of life, but microarray experiments demonstrated that the overall viral community composition changed dramatically between 1 and 2 weeks of age

    Types of Phages in the Four Metagenomes

    No full text
    <p>A new version of the Phage Proteomic Tree (left panel) was constructed from 510 complete phage and prophage genomes using the previously described method [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0040368#pbio-0040368-b023" target="_blank">23</a>]. The metagenomic sequences were compared to the phage on the Phage Proteomic Tree using TBLASTX, and the colored bars on the right represent significant similarities (<i>E</i>-value < 0.0001). Names of prophages are in red and the <i>Prochlorococcus</i> phage genomes are in green. An electronic version of the tree and a FASTA list of phage and prophage genomes used to make the tree are available at the SDSU Center for Universal Microbe Sequencing website (<a href="http://scums.sdsu.edu/phage/Oceans" target="_blank">http://scums.sdsu.edu/phage/Oceans</a>).</p

    Sampling Sites

    No full text
    <p>The circles represent the sampling locations in the Sargasso Sea (SAR), Gulf of Mexico (GOM), British Columbia (BBC), and the Arctic Ocean. The number of samples taken at each location and combined for sequencing, as well as the date and depth range, are shown in the boxes.</p
    corecore